1 Recap

- 1. Formula for the Jacobi fields of model spaces and an application to find the metric in geodesic normal coordinates.
- 2. Bonnet-Myers and a corollary.

2 Comparison geometry

2.1 Cartan-Hadamard

Let (M,g) be a complete manifold with $sec \leq 0$. Then the universal cover of M is diffeomorphic to \mathbb{R}^n .

Proof:We simply need to prove that \exp_p does not have critical points for some fixed p. If indeed it did at q, then consider the minimal geodesic $\gamma_v(t)$ joining p and q with a Jacobi field J that vanishes at p and q. Now

$$J'' + R(J, \gamma')\gamma' = 0$$

$$\Rightarrow \langle J'', J \rangle + Riem(J, \gamma', \gamma', J) = 0$$

$$\Rightarrow \langle J'', J \rangle \ge 0 Rightarrow \langle J', J \rangle' \ge 0.$$
(1)

with equality iff J' = 0. Thus using the endpoints we conclude that $J' \equiv 0$ and hence $J \equiv 0$. A contradiction

2.2 Killing-Hopf

Theorem 1. Let (M, g) be simply connected with constant sectional curvature K. Then (M, g) is isometric to (M_K, g_K) where M_K is the space form with sectional curvature K.

Proof. When $K \leq 0$, we already know by Cartan-Hadamard's proof that the exponential map is a diffeomorphism. Now take any point \tilde{p} in the space form and $p \in M$. Consider the map $F = \exp_p \circ \exp_{\tilde{p}}^{-1}$ (after choosing orthonormal bases for $T_{\tilde{p}}M_K$ and T_pM and identifying them with each other. The map F is a diffeomorphism from M_K to M. Since the metrics agree in normal coordinates, it is also an isometry.

By rescaling, assume that K = 1. (By Bonnet-Myers, we see that the diameter is $\leq \pi$.) We need to know about the critical points of the exponential map, i.e., conjugate points. To this end, we prove the following comparison theorem.

Theorem 2. Let (M,g) be a complete manifold such that $sec \leq k$, for some k > 0. Let $\gamma : [0,l] \to M$ be unit-speed geodesics such that $\gamma(0)$ and $\gamma(l)$ are conjugate. Then $l \geq \pi$.

Proof. Let K = 1 by rescaling. The idea is to compare this situation with that of a sphere (wherein we know the Jacobi fields). Let $p = \gamma(0)$, and $v = \gamma'(0)$. Assume without loss of generality that $\gamma(l)$ is the first conjugate point. Then there is a non-trivial normal

Jacobi field *J* such that J(0) = J(l) = 0 and $J(t) \neq 0$ on (0, l). Normalise the Jacobi field so that |J'(0)| = 1. Let u(t) = |J(t)|. Note that *u* is smooth on (0, l). It satisfies,

$$u' = \frac{\langle J', J \rangle}{|J(t)|}$$

$$\Rightarrow u'' \ge \frac{\langle J'', J \rangle}{u(t)} = -\frac{Riem(J, \gamma', \gamma', J)}{u(t)}$$

$$\ge -u.$$
(2)

Suppose $l < \pi$. Let $v(t) = \sin(t)$. Then v'' + v = 0. Now $(u'v - uv')' \ge 0$ and hence $f(t) = \frac{u(t)}{v(t)}$ satisfies $f' \ge 0$ on (0, l). Thus $f(l) = 0 \ge f(0+)$. We claim that f(0+) = 1 and hence there is a contradiction. Indeed, in geodesic normal coordinates, J(t) = tJ'(0). Thus $u(t) = t + O(t^3)$ and hence f(0+) = 1.

As a consequence, \exp_p is a local diffeomorphism on $B(0, \pi)$. Moreover, since $\exp_{\tilde{p}}$ is a diffeomorphism on $B(0, \pi)$ on the sphere (it only misses the opposite pole), the composition yields a local diffeomorphism ϕ from the sphere minus a pole to an open subset of M. Again using polar coordinates, we see that this map is actually a local isometry. Likewise, we have a local isometry ψ from the sphere minus the some point Q (such that $\psi(Q) = \phi(Q)$) which is neither of the poles to an open subset of M. By a previously proved lemma, $\phi = \psi$ wherever they are both defined. Hence we have a local isometry from S^n to M. By Ambrose, it is a cover and since S^n , M are simply connected, it is a global isometry.

Here are some corollaries of the comparison principle in the proof above (Let (M, g)) be complete and satisfy $sec \leq K$):

- In geodesic normal coordinates, g = dr² + h_r and g_K = dr² + sn⁽_K2)(r)g_{Sⁿ⁻¹}. Then h_r ≥ sn²_K(r)g_{Sⁿ⁻¹}. In particular, g(w, w) ≥ g_K(w, w). As usual, suppose q is a point and γ(t) is the radial geodesic connecting p and q. Then J = t^w/_r where w is tangent to a sphere of radius r. By the comparison principle, |J(r)|² = |w|²_q ≥ ^{sn²_K}/_{r²}|w|²_{Euc} = sn²_K|w|²<sub>S<sup>n-1</sub></sub>.
 </sub></sup>
- 2. If $K \leq 0$, $|((\exp_p)_*)_v(w)| \geq |w|$. In particular, for any curve σ in T_pM , we have, $L(\sigma) \leq L(\exp_p \sigma)$. Let $\gamma(t) = \exp_p(tv)$. Then if J(0) = 0, J'(0) = w, $J(t) = (\exp_p)_*)_{tv}(tw)$. Thus by the comparison theorem, $|J(1)| \geq |J'(0)| = |w|$. The second part follows easily.
- 3. Let $K \le 0$ and $\triangle ABC$ be a geodesic triangle. Then $A + B + C \le \pi$ and $a^2 + b^2 2ab \cos C \le c^2$. Let O be the origin in $T_C M$ and OA'B' a triangle in $T_C M$ with OA' = a, OB' = b and O = C. Now $\exp_C(A') = A$ and $\exp_C(B') = B$. By the previous corollary and the cosine rule, the second part follows.

By the triangle inequality, there is a Euclidean triangle with sides *a*, *b*, *c*. Using the cosine rule and the second part, we are done.

2.3 Bishop-Gromov

Let (M, g) be complete and $Ric \ge (n - 1)K$ where $K \in \mathbb{R}$. Define the volume ratio $V_K(r) = \frac{Vol(B_g(p,r))}{Vol(B_K(p_K,r))}$ where $p \in M$ and $p_K \in M_K$ (the choice of p_K does not matter). Then $V_K(r)$ is non-increasing on $(0, \infty)$. Thus $V_K(r) \le V_K(0+) = 1$ and hence $Vol(B_g(p, r)) \le Vol(B_K(p_K, r))$. (Also, if the diameter is finite, then $V_K(r) \ge V_K(R)$. This means the volumes of balls grow at least at a certain rate.)