
1 Recap
1. Formula for the Jacobi fields of model spaces and an application to find the metric

in geodesic normal coordinates.

2. Bonnet-Myers and a corollary.

2 Comparison geometry

2.1 Cartan-Hadamard
Let (M, g) be a complete manifold with sec ≤ 0. Then the universal cover of M is
diffeomorphic to Rn.
Proof:We simply need to prove that expp does not have critical points for some fixed p.
If indeed it did at q, then consider the minimal geodesic γv(t) joining p and q with a
Jacobi field J that vanishes at p and q. Now

J ′′ +R(J, γ′)γ′ = 0

⇒ ⟨J ′′, J⟩+Riem(J, γ′, γ′, J) = 0

⇒ ⟨J ′′, J⟩ ≥ 0 Rightarrow⟨J ′, J⟩′ ≥ 0. (1)

with equality iff J ′ = 0. Thus using the endpoints we conclude that J ′ ≡ 0 and hence
J ≡ 0. A contradiction

2.2 Killing-Hopf
Theorem 1. Let (M, g) be simply connected with constant sectional curvatureK. Then (M, g)
is isometric to (MK , gK) where MK is the space form with sectional curvature K.

Proof. When K ≤ 0, we already know by Cartan-Hadamard’s proof that the exponen-
tial map is a diffeomorphism. Now take any point p̃ in the space form and p ∈ M .
Consider the map F = expp ◦ exp−1

p̃ (after choosing orthonormal bases for Tp̃MK and
TpM and identifying them with each other. The map F is a diffeomorphism from MK

to M . Since the metrics agree in normal coordinates, it is also an isometry.
By rescaling, assume that K = 1. (By Bonnet-Myers, we see that the diameter is ≤ π.
) We need to know about the critical points of the exponential map, i.e., conjugate
points. To this end, we prove the following comparison theorem.
Theorem 2. Let (M, g) be a complete manifold such that sec ≤ k, for some k > 0. Let
γ : [0, l] →M be unit-speed geodesics such that γ(0) and γ(l) are conjugate. Then l ≥ π.

Proof. LetK = 1 by rescaling. The idea is to compare this situation with that of a sphere
(wherein we know the Jacobi fields). Let p = γ(0), and v = γ′(0). Assume without loss
of generality that γ(l) is the first conjugate point. Then there is a non-trivial normal



Jacobi field J such that J(0) = J(l) = 0 and J(t) ̸= 0 on (0, l). Normalise the Jacobi
field so that |J ′(0)| = 1. Let u(t) = |J(t)|. Note that u is smooth on (0, l). It satisfies,

u′ =
⟨J ′, J⟩
|J(t)|

⇒ u′′ ≥ ⟨J ′′, J⟩
u(t)

= −Riem(J, γ′, γ′, J)

u(t)

≥ −u. (2)

Suppose l < π. Let v(t) = sin(t). Then v′′ + v = 0. Now (u′v − uv′)′ ≥ 0 and hence
f(t) = u(t)

v(t)
satisfies f ′ ≥ 0 on (0, l). Thus f(l) = 0 ≥ f(0+). We claim that f(0+) = 1 and

hence there is a contradiction. Indeed, in geodesic normal coordinates, J(t) = tJ ′(0).
Thus u(t) = t+O(t3) and hence f(0+) = 1.

As a consequence, expp is a local diffeomorphism on B(0, π). Moreover, since expp̃

is a diffeomorphism on B(0, π) on the sphere (it only misses the opposite pole), the
composition yields a local diffeomorphism ϕ from the sphere minus a pole to an open
subset of M . Again using polar coordinates, we see that this map is actually a local
isometry. Likewise, we have a local isometry ψ from the sphere minus the some point
Q (such that ψ(Q) = ϕ(Q)) which is neither of the poles to an open subset of M . By
a previously proved lemma, ϕ = ψ wherever they are both defined. Hence we have
a local isometry from Sn to M . By Ambrose, it is a cover and since Sn,M are simply
connected, it is a global isometry.

Here are some corollaries of the comparison principle in the proof above (Let (M, g)
be complete and satisfy sec ≤ K):

1. In geodesic normal coordinates, g = dr2+hr and gK = dr2+ sn
(
K2)(r)gSn−1 . Then

hr ≥ sn2
K(r)gSn−1 . In particular, g(w,w) ≥ gK(w,w).

As usual, suppose q is a point and γ(t) is the radial geodesic connecting p and
q. Then J = tw

r
where w is tangent to a sphere of radius r. By the comparison

principle, |J(r)|2 = |w|2q ≥
sn2

K

r2
|w|2Euc = sn2

K |w|2Sn−1 .

2. If K ≤ 0, |((expp)∗)v(w)| ≥ |w|. In particular, for any curve σ in TpM , we have,
L(σ) ≤ L(expp σ).
Let γ(t) = expp(tv). Then if J(0) = 0, J ′(0) = w, J(t) = (expp)∗)tv(tw). Thus by
the comparison theorem, |J(1)| ≥ |J ′(0)| = |w|. The second part follows easily.

3. Let K ≤ 0 and ∆ABC be a geodesic triangle. Then A+B + C ≤ π and a2 + b2 −
2ab cosC ≤ c2.
Let O be the origin in TCM and OA′B′ a triangle in TCM with OA′ = a,OB′ = b
andO = C. Now expC(A

′) = A and expC(B
′) = B. By the previous corollary and

the cosine rule, the second part follows.
By the triangle inequality, there is a Euclidean triangle with sides a, b, c. Using
the cosine rule and the second part, we are done.
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2.3 Bishop-Gromov
Let (M, g) be complete and Ric ≥ (n − 1)K where K ∈ R. Define the volume ratio
VK(r) = V ol(Bg(p,r))

V ol(BK(pK ,r))
where p ∈ M and pK ∈ MK (the choice of pK does not mat-

ter). Then VK(r) is non-increasing on (0,∞). Thus VK(r) ≤ VK(0+) = 1 and hence
V ol(Bg(p, r)) ≤ V ol(BK(pK , r)). (Also, if the diameter is finite, then VK(r) ≥ VK(R).
This means the volumes of balls grow at least at a certain rate.)
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