1 Recap

1. Cartan-Hadamard
2. Killing-Hopf using ODE comparison
3. Triangle inequality comparison.

4. Statement of Bishop-Gromov.

2 Comparison geometry

2.1 Bishop-Gromov volume comparison and rigidity

Let (M,g) be complete and Ric > (n — 1)K where K € R. Define the volume
ratio Vie(r) = wiip i
not matter). Then Vi(r) is non-increasing on (0,00) (actually it is non-increasing
on (0,inj,) even if M is not complete). Thus Vk(r) < Vk(0+) = 1 and hence
Vol(By(p,r)) < Vol(Bk(pk,r)). (Also, if the diameter is finite, then Vi (r) > Vi (R).
This means the volumes of balls grow at least at a certain rate.) Moreover, if equality
holds then B(p, R) is isometric to B (px, R) if R < inj,. In general, the space has
constant curvature. If R > dia(M) and K > 0 then M is isometric to a sphere.

To prove such a result, we must differentiate the volume integral (and hence the volume
form) in normal coordinates. Let D, = M — Cut, and D, = T,M — exp~'(Cut,). On
D,, we have geodesic normal coordinates (the exponential map is a diffeomorphism).
Now if ¢ = exp,(v), then 0|, = ((exp,).)s(e;). Let S,M be the unit sphere in 7,M.
The volume form is vol, = /det(g)dz'...dz" (where 2" are arranged to be an ori-
ented chart). Now in the exponential polar coordinates, vol, = A(r,6)drdo,_; where
A(r,0) = "~ det(((exp,)+)rg). Now as always, we want to write this expression using
Jacobi fields so that we can use the Jacobi equation to differentiate. We claim that if
Jo, ..., J, (because J; = ~') are normal Jacobi fields along () = t6 (where 6 € S, M)
such that J5(0), ... are linearly independent and J;(0) = 0, then

where p € M and px € Mg (the choice of px does
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Suppose J/(0) = w; (with J{(0) = w; = +/(0)), then J; (for i # 1) is the variation field

of I's(t,s) = exp,(t(0 + sw;)) and J;(t) = ((exp,).)w(tw;). That is, the matrix whose
columns are J; (including J;) is D exp, [’ tW]. Thus the determinant of this matrix is

det(D exp,)t""" det([y' W]) and hence we are done. O

As a corollary, If (M, g) is a constant sec= K simply connected complete manifold,

then Ak(r,0) = sn’ '(r). (Indeed, the Jacobi’s are sny(t)ex(t) where e (t) are parallel
transports of an orthonormal basis.)

Here is an interesting consequence: we can calculate the area of S™ as f gn-1 foﬂ sin” (t)dtdo,_, =

% where I'(s) = [;” e "t*~1dt when s > 0.

Now we differentiate the volume form.



Lemma 2.1. If Ricc > (n — 1)Kg, then for all t < t..(0),

d d sy
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Thus A(t,0) < Ak(t). Moreover, equality holds for some t = R and all 6 iff B(p, R) is
isometric to Bx(R).

Proof. The first step is to realise that for any invertible matrix-valued path, £In A4 =
tr(A~'A’). This equality can be proven for matrices with distinct eigenvalues by the
implicit function theorem and diagonalisation. For general matrices, noting that the
derivative at ¢t = 0 is the same as for the path A(¢) = A(0) + tA’(0) and that both sides
are real analytic in ¢ as well as in the entries of A, it holds for all invertible matrices.

Choose 7/(0), e, . .., e, to be an oriented orthonormal frame for 7),M, parallel trans-
porttogety', Es, ..., E, along 7. On an oriented manifold, parallel transport preserves
orientation (why?) Thus 7/, Es... is oriented. Fix T' < t.,. Let J; be the Jacobi
field with J;(0) = 0, J;(T') = E;(T'). (The two-point problem has a solution provided
there are no conjugate points.) Let A(¢) be the matrix taking 7/, Es,... to 7/, Ja, .. ..
This matrix is non-singular on (0, 7] and hence has positive determinant. Moreover,
det(A)? = det(P) where Py = (Ji, J;). Thus, £ In A(t,0) = Ltr(P~'P') whichat ¢t =T

is > . (J;, Ji)(T) = >, 1(J;, J;) which by the following index lemma is < >, I(X;, X;)

where X; = ;SK((;))E (1):

Lemma 2.2. Let v : [0,b] — M be a unit-speed geodesic with no conjugate points. If J is
a normal Jacobi field and X is any normal field along ~ such that X(0) = J(0) = 0 and
X (b) = J(b), then L,(J,J) < I,(X, X) with equality iff X = J.

The proof of this lemma is very similar to the calculation done for the usual index
lemma. (Roughly, choose a basis of normal Jacobi fields and write J, X in terms of
it. Now compute the Riemann tensor term in the index form for X in terms of the
derivatives using the Jacobi equation, and then use fundamental theorem of calculus,
and so on.)

Now we can calculate and easily see that £ In A(t,) < 4 1In Ay and hence that - is
decreasing in ¢ (at least when t < t.,). Usmg the exphc1t expression for the ]acobl
fields in normal coordinates, we see that the limit as ¢ — 0is 1. Thus A < Ag. If
we have equality for some ¢ = R and all §, (in particular, we require R to be less than
the injectivity radius at the point), then by monotonicity, A = Ak for all t < R. Thus
J; = X;. Now J; = sng(R)J;(t) satisfy J;(0) = 0 and J!(0) = ¢;. Using geodesic normal
coordinates, we see (as usual) that the metric is precisely that of the space-form and
hence B(p, R, g) is isometric to B(pg, R, gx)- ]

Suppose r < inj,. Now V, = [ a(t)dt where a(t) = [q. . A(t,0)do and likewise
2 a(t

ing in rq, ry: Indeed, fff ar(t)dt [? a(t)dt < f "2 dt IK ” ax(t)dt and hence 9,, f < 0.

Likewise for 7.

If equality holds, then V, = Vi(r) for all » < R. Upon differentiation, we see that

A = Ak for all r < R. Thus using exponential coordinates, we see that if r < inj,,

Vi = fo ar(t)dt. Now if we consider f(rl,rg) = then f(ry,rs) is decreas-
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then B(p,r) is isometric to B (pk,r) (note that the diameter is < Tz if K > 0 by
Bonnet-Myer).
For the “global" statement, we need something about the cut locus. To be contin-
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