
1 Recap
1. Cartan-Hadamard

2. Killing-Hopf using ODE comparison

3. Triangle inequality comparison.

4. Statement of Bishop-Gromov.

2 Comparison geometry

2.1 Bishop-Gromov volume comparison and rigidity
Let (M, g) be complete and Ric ≥ (n − 1)K where K ∈ R. Define the volume
ratio VK(r) = V ol(Bg(p,r))

V ol(BK(pK ,r))
where p ∈ M and pK ∈ MK (the choice of pK does

not matter). Then VK(r) is non-increasing on (0,∞) (actually it is non-increasing
on (0, injp) even if M is not complete). Thus VK(r) ≤ VK(0+) = 1 and hence
V ol(Bg(p, r)) ≤ V ol(BK(pK , r)). (Also, if the diameter is finite, then VK(r) ≥ VK(R).
This means the volumes of balls grow at least at a certain rate.) Moreover, if equality
holds then B(p,R) is isometric to BK(pK , R) if R < injp. In general, the space has
constant curvature. If R > dia(M) and K > 0 then M is isometric to a sphere.
To prove such a result, we must differentiate the volume integral (and hence the volume
form) in normal coordinates. Let Dp = M − Cutp and D̃p = TpM − exp−1(Cutp). On
Dp we have geodesic normal coordinates (the exponential map is a diffeomorphism).
Now if q = expp(v), then ∂i|q = ((expp)∗)v(ei). Let SpM be the unit sphere in TpM .
The volume form is volg =

√
det(g)dx1 . . . dxn (where xi are arranged to be an ori-

ented chart). Now in the exponential polar coordinates, volg = A(r, θ)drdσn−1 where
A(r, θ) = rn−1 det(((expp)∗)r,θ). Now as always, we want to write this expression using
Jacobi fields so that we can use the Jacobi equation to differentiate. We claim that if
J2, . . . , Jn (because J1 = γ′) are normal Jacobi fields along γθ(t) = tθ (where θ ∈ SpM )
such that J ′

2(0), . . . are linearly independent and Ji(0) = 0, then

A(t, θ) =
|γ′ ∧ J2(t) ∧ . . . |γθ(t)

|J ′
1(0) ∧ . . . |p

. (1)

Suppose J ′
i(0) = wi (with J ′

1(0) = w1 = γ′(0)), then Ji (for i ̸= 1) is the variation field
of Γi(t, s) = expp(t(θ + swi)) and Ji(t) = ((expp)∗)tθ(twi). That is, the matrix whose
columns are Ji (including J1) is D expp[γ

′ tW ]. Thus the determinant of this matrix is
det(D expp)t

n−1 det([γ′ W ]) and hence we are done.
As a corollary, If (Mk, gK) is a constant sec= K simply connected complete manifold,
then AK(r, θ) = snn−1

K (r). (Indeed, the Jacobi’s are snk(t)ek(t) where ek(t) are parallel
transports of an orthonormal basis.)
Here is an interesting consequence: we can calculate the area ofSn as

∫
Sn−1

∫ π

0
sinn−1(t)dtdσn−1 =

2π(n+1)/2

Γ((n+1)/2)
where Γ(s) =

∫∞
0

e−tts−1dt when s > 0.
Now we differentiate the volume form.



Lemma 2.1. If Ricc ≥ (n− 1)Kg, then for all t < tcut(θ),

d

dt
lnA(t, θ) ≤ d

dt
lnAK(t, θ) = (n− 1)

sn′
K

snK

. (2)

Thus A(t, θ) ≤ AK(t). Moreover, equality holds for some t = R and all θ iff B(p,R) is
isometric to BK(R).

Proof. The first step is to realise that for any invertible matrix-valued path, d
dt
lnA =

tr(A−1A′). This equality can be proven for matrices with distinct eigenvalues by the
implicit function theorem and diagonalisation. For general matrices, noting that the
derivative at t = 0 is the same as for the path A(t) = A(0) + tA′(0) and that both sides
are real analytic in t as well as in the entries of A, it holds for all invertible matrices.
Choose γ′(0), e2, . . . , en to be an oriented orthonormal frame for TpM , parallel trans-
port to get γ′, E2, . . . , En along γ. On an oriented manifold, parallel transport preserves
orientation (why?) Thus γ′, E2 . . . is oriented. Fix T < tcut. Let Ji be the Jacobi
field with Ji(0) = 0, Ji(T ) = Ei(T ). (The two-point problem has a solution provided
there are no conjugate points.) Let A(t) be the matrix taking γ′, E2, . . . to γ′, J2, . . ..
This matrix is non-singular on (0, T ] and hence has positive determinant. Moreover,
det(A)2 = det(P ) where Pkl = ⟨Jk, Jl⟩. Thus, d

dt
lnA(t, θ) = 1

2
tr(P−1P ′) which at t = T

is
∑

i⟨J ′
i , Ji⟩(T ) =

∑
i I(Ji, Ji) which by the following index lemma is ≤

∑
i I(Xi, Xi)

where Xi =
snK(t)
snK(T )

Ei(t):

Lemma 2.2. Let γ : [0, b] → M be a unit-speed geodesic with no conjugate points. If J is
a normal Jacobi field and X is any normal field along γ such that X(0) = J(0) = 0 and
X(b) = J(b), then Iγ(J, J) ≤ Iγ(X,X) with equality iff X = J .

The proof of this lemma is very similar to the calculation done for the usual index
lemma. (Roughly, choose a basis of normal Jacobi fields and write J,X in terms of
it. Now compute the Riemann tensor term in the index form for X in terms of the
derivatives using the Jacobi equation, and then use fundamental theorem of calculus,
and so on.)
Now we can calculate and easily see that d

dt
lnA(t, θ) ≤ d

dt
lnAK and hence that A

AK
is

decreasing in t (at least when t < tcut). Using the explicit expression for the Jacobi
fields in normal coordinates, we see that the limit as t → 0 is 1. Thus A ≤ AK . If
we have equality for some t = R and all θ, (in particular, we require R to be less than
the injectivity radius at the point), then by monotonicity, A = AK for all t ≤ R. Thus
Ji = Xi. Now J̃i = snK(R)Ji(t) satisfy J̃i(0) = 0 and J̃ ′

i(0) = ei. Using geodesic normal
coordinates, we see (as usual) that the metric is precisely that of the space-form and
hence B(p,R, g) is isometric to B(pK , R, gK).

Suppose r < injp. Now Vr =
∫ r

0
a(t)dt where a(t) =

∫
Sn−1 A(t, θ)dσ and likewise

VK =
∫ r

0
aK(t)dt. Now if we consider f(r1, r2) =

∫ r2
r1

a(t)∫ r2
r1

aK(t)dt
, then f(r1, r2) is decreas-

ing in r1, r2: Indeed,
∫ r2
r1

aK(t)dt
∫ r2
s

a(t)dt ≤
∫ r2
r1

a(t)dt
∫ r2
s

aK(t)dt and hence ∂r1f ≤ 0.
Likewise for r2.
If equality holds, then Vr = VK(r) for all r ≤ R. Upon differentiation, we see that
A = AK for all r < R. Thus using exponential coordinates, we see that if r < injp,

2



then B(p, r) is isometric to BK(pK , r) (note that the diameter is ≤ π√
K

if K > 0 by
Bonnet-Myer).
For the “global" statement, we need something about the cut locus. To be contin-
ued.........
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