1 Recap

1. Proved a “local" Bishop-Gromov.

2 Comparison geometry

2.1 Bishop-Gromov volume comparison and rigidity

Lemma 2.1. If Ricc > (n — 1)K g, then for all t < t..(0),

SNy

S A(,0) < S Ax(t,0) = (n—1) M)

Thus A(t,0) < Ak(t). Moreover, equality holds for some t = R and all 6 iff B(p, R) is
isometric to Bx(R).

SNk

Using this lemma, we can try to prove Bishop-Gromov, except that we need to
known something about the cut locus:

Theorem 1. Let (M, g) be a connected complete Riemannian manifold.

1. The cut time from the unit tangent bundle (that is, the subset of T'M consisting of unit
vectors) to (0, 0o] is continuous.

2. The cut locus of a point p is a closed subset measure zero. That is, away from a set
of measure zero, the exponential map is a diffeomorphism (and the distance function is
smooth).

Proof. 1. Suppose (p,v) € UT'M and (p;,v;) — (p,v). Let b = liminf ¢; = ¢ (pi, vi)
and ¢ = limsup ¢;. We shall prove that ¢ < t...(p,v) < b.
¢ < teu(p,v): Suppose ¢ < oco. Then, upto a subsequence, ¢; — ¢ and 7, is
minimising on [0,¢;]. By continuity, d,(p,exp,(cv)) = limdy(p;,exp,,(civi)) =
lim ¢; = ¢ and hence v, is minimising on [0, ¢|]. Thus t.,; > c. If ¢ = oo, the same
argument shows that 7, is minimising on arbitrarily large intervals.
tewt(p,v) < b WLog, b < co. Again, passing to a subsequence, ¢; — b. So
either v,(¢;) is conjugate to p; for infinitely many 7 or there is another geodesic o;
for infinitely many indices. In the first, by continuity, v,(b) is a critical point of
the exponential map and hence t.,;, < b. In the second case, near the limit, the
exponential map is 1 — 1 and hence since v; — w (after passing to a subsequence),
we have a distinct geodesic exp,,(tw) which means that ¢.,; < b.

2. There are two things to prove.

(a) Closed: Ifexp,((c; = teut(p, vi))vi) — w (forunit vectors v;), then d(p, exp,,(civ;)) =
¢; — c for some c up to a subsequence. Now up to a further subsequence,
v; — w and by continuity, ¢..(p,v) = c. Hence w = exp,(cv).

(b) Measure zero: Note that the cut locus of p is the image of the cut-locus C in
the tangent space under exp,. If we prove that C' has measure zero, we will
be done. Now C' is locally a graph over a part of a sphere of a continuous
function ¢.,; and hence has measure zero.



]
Now V, = [ a(t)dt where a(t) = [, A(t,0)do and likewise Vi = [ ax(t)dt.

Now if we consider f(rq, 7"2) = %,
71

t)dt [ a(t)dt < ['*a(t)dt [* ax(t)dt and hence 9, f < 0. Likewise for 7.
if equahty holds then V = VK( ) for all r < R. Upon differentiation, we see that
A = Ak for all r < R. Thus using exponential coordinates, we see that if r < inj,, then
B(p, ) is isometric to Bk (pk,r) (note that the diameter is < —z if K > 0 by Bonnet-
Myer). For arbitrary r, using the Jacobi field expressions (J; = X;) we see that since
they coincide, the sectional curvatures are the same. Thus if K > 0, and R > dia(M),
then by Killing-Hopf, M is a quotient of S™ and since the volumes are equal, M is
Sn. O

then f(ry,72) is decreasing in ry, ro: Indeed,

2.2 Cheng's diameter rigidity theorem

Recall Cheng’s theorem: Let (M, g) be a complete Riemannian manifold with Ric >
(n — 1)K g where K > 0. If diam(M) = T then M is isometric to a sphere.

By rescaling, assume that K = 1. Choose p, ¢ in M (which we know is compact by
Bonnet-Myers) such that d(p, ¢) = 7. By the triangle inequality, B(p,5) N B(q,5) = ¢
and hence Vol(M) > Vol(B(p, %)) + Vol(B(q,%)). By Bishop-Gromov, there is an

1> a= “//Oll((é\f such that Vol(B(p,r)) > aVol(Bk(pk,r)). If we prove that o = 1,

then by the equality case for Bishop-Gromov, we will be done. Now we see using

Bishop-Gromov to each of the balls that Vol(B(p, 5)) > % and Vol(B(q, %)) >
%. Putting these together, we see that equality holds. Thus for all » € [7, 7],
Vol(B(p,r)) = aVol(Bk(pxk,r)) and likewise for q. Now if r < 7, again, Vol(M) >
Vol(B(p,r)) + Vol(B(q,m —1)) > aVol(S™) = Vol(M) and hence equality holds for all

r. Taking » — 0, we see that a = 1. O

2.3 Synge’s theorem

Werecall that the second derivative of the length functionalis [ (||V'||*—Riem(V,~',~,V)).
If V' is somehow chosen to be parallel, and if the sectional curvature is > 0, then the
second derivative is strictly negative and hence our geodesic is not a minimiser. Some-
how we want to leverage this observation. The first step is the observation that in
every non-trivial free homotopy class there is a minimising closed geodesic. If we can
use these two observations together, maybe we can conclude simple-connectedness
somehow. To delve into more detail, how may one construct a variation field V' such
thatsay I'(s, ) = exp,,,(sV (t)) is a variation by closed loops? One way is to try paralell
transporting some vector V' (0) from the starting point of the geodesic loop under con-
sideration. Unfortunately, V(1) need notbe equal to V'(0). So we need a parallel normal
(why normal?) field such that V(1) = V(0). Note that since parallel transport preserves
inner products, the parallel transport map P : T,M — T,M has determinant +1, and
every eigenvalue is +1. Thus, some parity (odd/even) will determine whether 1 occurs
as an eigenvalue (other than for the trivial eigenspace spanned by +/(0)) or not. There-



fore, we expect some orientability to play a role. That is the content of Synge’s theorem:

Theorem 2. Let (M, g) be a compact Riemannian manifold with positive curvature. Then
1. if M is even dimensional and orientable, then M is simply connected.

2. if M is odd dimensional, it is orientable.
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