
1 Recap
1. Proved a “local" Bishop-Gromov.

2 Comparison geometry

2.1 Bishop-Gromov volume comparison and rigidity
Lemma 2.1. If Ricc ≥ (n− 1)Kg, then for all t < tcut(θ),

d

dt
lnA(t, θ) ≤ d

dt
lnAK(t, θ) = (n− 1)

sn′
K

snK

. (1)

Thus A(t, θ) ≤ AK(t). Moreover, equality holds for some t = R and all θ iff B(p,R) is
isometric to BK(R).

Using this lemma, we can try to prove Bishop-Gromov, except that we need to
known something about the cut locus:

Theorem 1. Let (M, g) be a connected complete Riemannian manifold.

1. The cut time from the unit tangent bundle (that is, the subset of TM consisting of unit
vectors) to (0,∞] is continuous.

2. The cut locus of a point p is a closed subset measure zero. That is, away from a set
of measure zero, the exponential map is a diffeomorphism (and the distance function is
smooth).

Proof. 1. Suppose (p, v) ∈ UTM and (pi, vi) → (p, v). Let b = lim inf ci = tcut(pi, vi)
and c = lim sup ci. We shall prove that c ≤ tcut(p, v) ≤ b.
c ≤ tcut(p, v): Suppose c < ∞. Then, upto a subsequence, ci → c and γvi is
minimising on [0, ci]. By continuity, dg(p, expp(cv)) = lim dg(pi, exppi

(civi)) =
lim ci = c and hence γv is minimising on [0, c]. Thus tcut ≥ c. If c = ∞, the same
argument shows that γv is minimising on arbitrarily large intervals.
tcut(p, v) ≤ b: WLog, b < ∞. Again, passing to a subsequence, ci → b. So
either γv(ci) is conjugate to pi for infinitely many i or there is another geodesic σi

for infinitely many indices. In the first, by continuity, γv(b) is a critical point of
the exponential map and hence tcut ≤ b. In the second case, near the limit, the
exponential map is 1−1 and hence since vi → w (after passing to a subsequence),
we have a distinct geodesic expp(tw) which means that tcut ≤ b.

2. There are two things to prove.

(a) Closed: If expp((ci = tcut(p, vi))vi) → w (for unit vectors vi), thend(p, expp(civi)) =
ci → c for some c up to a subsequence. Now up to a further subsequence,
vi → w and by continuity, tcut(p, v) = c. Hence w = expp(cv).

(b) Measure zero: Note that the cut locus of p is the image of the cut-locus C in
the tangent space under expp. If we prove that C has measure zero, we will
be done. Now C is locally a graph over a part of a sphere of a continuous
function tcut and hence has measure zero.



Now Vr =
∫ r

0
a(t)dt where a(t) =

∫
Sn−1 A(t, θ)dσ and likewise VK =

∫ r

0
aK(t)dt.

Now if we consider f(r1, r2) =
∫ r2
r1

a(t)∫ r2
r1

aK(t)dt
, then f(r1, r2) is decreasing in r1, r2: Indeed,∫ r2

r1
aK(t)dt

∫ r2
s

a(t)dt ≤
∫ r2
r1

a(t)dt
∫ r2
s

aK(t)dt and hence ∂r1f ≤ 0. Likewise for r2.
If equality holds, then Vr = VK(r) for all r ≤ R. Upon differentiation, we see that
A = AK for all r < R. Thus using exponential coordinates, we see that if r < injp, then
B(p, r) is isometric to BK(pK , r) (note that the diameter is ≤ π√

K
if K > 0 by Bonnet-

Myer). For arbitrary r, using the Jacobi field expressions (Ji = Xi) we see that since
they coincide, the sectional curvatures are the same. Thus if K > 0, and R > dia(M),
then by Killing-Hopf, M is a quotient of Sn and since the volumes are equal, M is
Sn.

2.2 Cheng’s diameter rigidity theorem
Recall Cheng’s theorem: Let (M, g) be a complete Riemannian manifold with Ric ≥
(n− 1)Kg where K > 0. If diam(M) = π√

K
, then M is isometric to a sphere.

By rescaling, assume that K = 1. Choose p, q in M (which we know is compact by
Bonnet-Myers) such that d(p, q) = π. By the triangle inequality, B(p, π

2
) ∩ B(q, π

2
) = ϕ

and hence V ol(M) ≥ V ol(B(p, π
2
)) + V ol(B(q, π

2
)). By Bishop-Gromov, there is an

1 ≥ α = V ol(M)
V ol(Sn

K)
such that V ol(B(p, r)) ≥ αV ol(BK(pK , r)). If we prove that α = 1,

then by the equality case for Bishop-Gromov, we will be done. Now we see using
Bishop-Gromov to each of the balls that V ol(B(p, π

2
)) ≥ V ol(M)

2
and V ol(B(q, π

2
)) ≥

V ol(M)
2

. Putting these together, we see that equality holds. Thus for all r ∈ [π
2
, π],

V ol(B(p, r)) = αV ol(BK(pK , r)) and likewise for q. Now if r < π
2
, again, V ol(M) ≥

V ol(B(p, r)) + V ol(B(q, π − r)) ≥ αV ol(Sn) = V ol(M) and hence equality holds for all
r. Taking r → 0, we see that α = 1.

2.3 Synge’s theorem
We recall that the second derivative of the length functional is

∫
(∥V ′∥2−Riem(V, γ′, γ′, V )).

If V is somehow chosen to be parallel, and if the sectional curvature is > 0, then the
second derivative is strictly negative and hence our geodesic is not a minimiser. Some-
how we want to leverage this observation. The first step is the observation that in
every non-trivial free homotopy class there is a minimising closed geodesic. If we can
use these two observations together, maybe we can conclude simple-connectedness
somehow. To delve into more detail, how may one construct a variation field V such
that say Γ(s, t) = expγ(t)(sV (t)) is a variation by closed loops? One way is to try paralell
transporting some vector V (0) from the starting point of the geodesic loop under con-
sideration. Unfortunately, V (1) need not be equal to V (0). So we need a parallel normal
(why normal?) field such that V (1) = V (0). Note that since parallel transport preserves
inner products, the parallel transport map P : TpM → TpM has determinant ±1, and
every eigenvalue is±1. Thus, some parity (odd/even) will determine whether 1 occurs
as an eigenvalue (other than for the trivial eigenspace spanned by γ′(0)) or not. There-
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fore, we expect some orientability to play a role. That is the content of Synge’s theorem:

Theorem 2. Let (M, g) be a compact Riemannian manifold with positive curvature. Then

1. if M is even dimensional and orientable, then M is simply connected.

2. if M is odd dimensional, it is orientable.
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