
1 Recap
1. Bishop-Gromov.

2. Cheng diameter rigidity.

3. Motivated the statement of Synge and reduced it to properties of the determinant
of the parallel transport map, and to a study of orientability.

2 Comparison geometry

2.1 Synge’s theorem
Theorem 1. Let (M, g) be a compact Riemannian manifold with positive curvature. Then

1. if M is even dimensional and orientable, then M is simply connected.

2. if M is odd dimensional, it is orientable.

Before we prove this theorem, we shall develop some theory about orientation (it
is useful regardless of this particular theorem).
Firstly, given a manifold M , we can come up with a double-cover (not necessarily con-
nected) M̃ called the orientation double cover of M : Consider the set M̃ = ∪p∈M(p, op)
where op is the two-element set of orientation classes on TpM (recall that an orienta-
tion on a vector space is simply a choice of ordered basis and the equivalence relation
is the determinant of the change of basis is 1). There is an obvious projection map
π : M̃ → M . Using coordinate charts on M , we can make M̃ into a manifold, with π
being a smooth covering map (how?). Also, M̃ is orientable (why?)

Lemma 2.1. M is orientable iff M̃ is disconnected. Moreover, as a cover in this case, it is
diffeomorphic to M × Z2.

Proof. 1. M is orientable: Choose an orientationO. Consider the section s :M → M̃
given by s(p) = O(p). The image of s is connected. The image of s̃ = −O(p) is
also connected. These two images do not intersect. Hence M̃ is disconnected.
Moreover, M × {−1, 1} → M̃ given by f(p, x) = (p, xO(p)) is a diffeomorphism.

2. M̃ is disconnected: Let C be the connected component of (p, o). We claim that

(a) π(C) = M : Suppose q /∈ π(C). Then consider a path γ(t) joining p and q. It
lifts upstairs starting at (p, o) to (q, oq). A contradiction.

(b) C does not have (p,−o): Indeed, if it did, then consider a path γ(t) between
(p, o) and (p,−o). Then we claim that for any point (q, oq) ∈ C, it can be
connected to (q,−oq) and hence M̃ is actually connected. Take a path s(t)
downstairs connecting q and p. Now first follow s(t) and then π(γ(t)). This
lifts upstairs uniquely to a path connecting (q, oq) to (p,−o). Now come back
to q downstairs via the reverse of s(t). The lift upstairs cannot end at (q, oq)
by uniqueness of the lift. Hence it ends at (q,−oq).



As a corollary, we see that (M, g) is non-orientable iff for every point p ∈ M , there
exists a loop from p such that det(P ) = −1 (how?).
Now we can prove Synge’s theorem:

1. If M is orientable, then det(P ) = 1 for a minimising geodesic loop in a non-
trivial free homotopy class (if π1(M) ̸= {1}). Since P (γ′(0)) = γ′(0), if M is
even-dimensional, the orthogonal complement is odd-dimensional and since
det(P ) = 1, 1 occurs as an eigenvalue. We are done by the above argument.

2. IfM is odd-dimensional and non-orientable, note that since it has a double cover,
π1(M) ̸= 0. Moreover, there exists a loop in a non-trivial homotopy class such
that det(P ) = −1.

As a corollary, if M is compact, even-dimensional, non-orientable, and has positive
curvature, then π1(M) = Z2 (why?). Thus RP2 ×RP2 cannot admit a metric of positive
sectional curvature. However, it is not yet known whether S2 × S2 can or not (the
famous Hopf conjecture).

2.2 Preissmann’s theorem
We have mostly dealt with positive curvature. Preissmann’s theorem deals with nega-
tive sectional curvature. As in the case of Synge, we want to know something about the
fundamental group. Any subgroup H of π1 corresponds to a group of deck transfor-
mations of the universal cover. (Also, every deck transformation is an isometry of the
pullback metric of the universal cover. Why?) Now since we know closed minimising
geodesics exist in every free homotopy class (and this fact helps with the fundamental
group as in Synge), it is natural to ask which geodesics are left invariant by a deck
transformation ψ ∈ H (if there are several for each element, maybeH is not too large?).
Also, we know that if γ̃ is a geodesic which is a reparametrisation of γ, then these two
parametrisations are related by an affine map. By the isometry property, γ̃(t) = γ(t+a)
(or a backward parametrisation). We can hope that for every element of H , there is a
geodesic γ and ψ(γ(t)) = γ(t+ a) for a unique a. Then we can associate a real number
a to every element of H . Hopefully, this means that H is a cyclic group. This flimsy
motivation allows us to conjecture and prove the following result of Preissmann.

Theorem 2. If (M, g) is a compact (connected as always) Riemannian manifold with sec < 0,
then every nontrivial abelian subgroup of π1(M) is isomorphic to Z.

The “motivation" above motivates the following definition: Let (M, g) be a complete
manifold and ϕ : M → M be an isometry. A geodesic γ is said to be an axis for ϕ if
ϕ(γ(t)) = γ(t+ a) ∀ t. An isometry is said to be axial/translation along γ if it does not
have fixed points and if it has an axis γ. (As an example, every translation of Euclidean
space has an axis.)
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