
1 Recap
1. Course logistics and motivation.

2. Curvature of plane curves.

3. Hopf’s rotation theorem.

2 Further motivation through surfaces in space
Before defining Riemannian manifolds, curvature, etc, we shall present the case of
surfaces quickly (without going into details) for motivation.

A smooth surface without boundary S ⊂ R3 is a subset with the induced topology
such that near every point p, there is a coordinate parametrisation, i.e., a smooth map
from an open set U ⊂ R2 ~r(u, v) : U → S ⊂ R3 that is 1 − 1, ~r(U) is a relatively open
neighbourhood of p, and ∂~r

∂u
, ∂~r
∂v

are linearly independent. An example of a surface is
the sphere x2 + y2 + z2 = 1 (using the implicit function theorem).

Any two such parametrisations are reparametrisations of each other using the in-
verse function theorem. Moreover, the inverse ~r−1 can be extended as a smooth map
in a neighbourhood of p in R3. If γ(t) is a path on the surface whose image is in ~r(U),
then it corresponds to a path u(t), v(t) and hence by the chain rule, γ′(t) is a linear
combination of ~ru, ~rv. We define the tangent space TpS at p ∈ S to be the subspace of
R3 spanned by ~ru, ~rv at p. A normal N is ~ru × ~rv 6= 0.

Assume thatS is connected. Howcanonedefine thedistance between twopoints on
a surface? The simplest way is to take the infimum of lengths of continuous piecewise
C1 paths lying on S connecting p and q. (Is this infimum always a minimum?) The in-
finitesimal properties of this distance is captured by inner product on the tangent space.

Choosing a local basis as ~ru, ~rv, we see that the matrix is given byG =

[
r2u ru.rv
ru.rv r2v

]
.

Thismatrix is sometimes called the first fundamental form of the surface (andwill later
be called the induced Riemannian metric in local coordinates). Note that if we change
the coordinates by a reparametrisation, G does change but only using the derivative
matrix of the reparametrisation (by a similarity transformation). For a sphere, if we
choose θ, φ, then G is diagonal with entries 1, sin2(θ).

If we could find a to-scale map of a part of the earth, then in particular, using the
coordinates provided by the “map", the matrix G is identity. That is, can we always
find a parametrisation such thatG is identity? Gauss identified a quantity (now called
the Gaussian curvature) that is invariant under reparametrisation and turns out to be
non-zero for the earth but zero for a plane (piece of paper) and hence this is not possi-
ble. This quantity captures the intrinsic curvature of the earth (as opposed to folding a
piece of paper and making it look curved).

There are two ways to approach this intrinsic curvature business:

1. Through curves and their curvature: Consider a unit-speed curve γ on S through
p. The naive definition of curvaturewould be ‖a(s)‖but the problem is that the ac-
celeration neednot point along the surface and that part is not relevantwhilst con-
sidering the curvature of the surface itself because the tangential part measures



how much the curve curves within the surface. Now define κγ = 〈a,N〉. This
quantity obvious varies with the curve. Define K = maxκγ minκγ . This seems
like the determinant of a certain matrix. Indeed, κγ = −〈v, dN

ds
〉 = −〈v,DNv〉.

The determinant of this bilinear form (DN is called the shape operator or the
Weingarten map) isK. Note that the direction of the normal makes no difference
toK (and perhaps is a clue to whyK is defined the way it is). In terms of the first
fundamental form, we can write a formula forK using onlyG and its derivatives
(two suffice). This will be a HW problem. One can see how this formula changes
under reparametrisation (it doesn’t) - HW and prove the Theorem Egregium.
(Does the trace of the shape operator have a meaning? It is called the mean
curvature and is related to soap bubbles!)

2. Through parallel transport: Is the sum of angles of a “triangle" (a triangle is one
whose sides are “lines", that is, distance-minimising curves) 180 degrees on the
earth? Take one with a vertex at the north pole and two on the equator. The
sum is obviously larger! (note that if we consider smaller and smaller triangles,
it seems that they get closer and closer to Euclidean ones and hence the sum
of angles gets close to 180 degrees. In fact, this fact is intimately related to K!)
So what goes wrong in the “usual" proof? The usual proof moves one side
parallel to itself to a vertex. So can we at least “parallel transport" tangent vectors
(forget the entire side itself!) along a curve? That is, what does it mean for a
vector field Y to be parallel along a curve γ? Naively, dY

dt
= DY v = 0 but that

is problematic because the only relevant part is the tangential component. So
we define the “covariant derivative" DY

dt
= dY

dt
− 〈dY

dt
, N〉N = dY

dt
+ 〈dN

dt
, Y 〉N .

Parallel transport would mean solving DY
dt

= 0 with Y (0) = Y0. (Later we shall
see that by ODE theory, we can indeed solve this equation.) We can hope that
a length minimising curve “follows its nose", that is, Dv

dt
= 0 and indeed we

shall see later that this is true. We can now see what happens when we take
any infinitesimal parallelogram ~r(u, v), ~r(u + du, v), . . . and parallel transport a
tangent vector around it. A calculation shows that the change (of angle, because
the length remains the same) is actually K times the area of this parallelogram.
This is a case of the local Gauss-Bonnet theorem.
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