
1 Recap
1. Definition of surfaces.

2. First fundamental form.

3. Curvature using the shape operator and using parallel transport.

2 Review of Manifolds, Tangent bundle, Vector fields,
Lie bracket, etc

2.1 Manifolds
We want to study the curvature of a generalisation of surfaces. The correct generali-
sation is a manifold (with or without boundary) equipped with a Riemannian metric.
Recall the two (eventually equivalent) definitions of a smooth n-dimensional manifold-
without-boundaryM :

1. Extrinsic (as an embedded submanifold of RN ): M ⊂ RN with the induced
topology such that every point has a neighbourhood V that can be parametrised
using an open subset U ⊂ Rn as φ : U → V = φ(U) where φ is smooth into Rn,
1− 1, and Dφ is 1− 1. (As a consequence of the constant rank theorem, φ−1 can
be extended to a smooth map from a neighbourhood of U .)

2. Intrinsic: M is a Hausdorff second countable space equipped with a maximal
smooth atlas. A smooth atlas A is an open cover Uα ofM by sets that are home-
omorphic to open subsets φα(Uα) ⊂ Rn such that φα ∩ φ−1β are diffeomorphisms.
Two atlases are compatible if their union is a smooth atlas. A maximal smooth
atlas is a smooth atlas such that any smooth atlas compatible with it is already
contained in it. Every smooth atlas is contained in a unique maximal one (and
hence it is enough to specify a smooth atlas without worrying about the adjective
maximal).

A sphere is a manifold (either using stereographic projections or the implicit function
theorem). A smooth map f : M → N is a continuous map such that in coordinates
it is smooth. f is said to be an immersion if Df in coordinates is 1 − 1 (if it is so in
one pair of coordinate charts, it is so in any other pair). A 1 − 1 immersion that is a
homeomorphism to its image is called an embedding. An embedded submanifold (or
simply, a submanifold) is a subset S ⊂M which is a smooth manifold in its own right
such that the inclusion map is an embedding. A diffeomorphism is a smooth homeo-
morphism whose inverse is also smooth. The aim of differential topology is to classify
manifolds upto diffeomorphism. This aim has been realised for 1 and 2-dimensional
manifolds. It cannot be realised for dimensions≥ 4 in a sense (because of the existence
of undecidable problems).
The Whitney embedding theorem states that every smooth n-dimensional manifold
can be embedded in R2n+1 (and thus the intrinsic and extrinsic definitions are equiva-
lent).



A regular value of f :M → N is a point c ∈ N such that for every point p ∈ f−1(c),
Df is surjective (in any pair of charts). f−1(c) is then a submanifold of dimension
dim(M) − dim(N) (it could be empty too). A critical value is a point that is not a
regular value. The set of critical values in N has measure zero in N (which means it
can be coveredwith countably many charts such that in each chart, the set has measure
zero).
A smooth manifold-with-boundary is a Hausdorff second countable space such that
every point has a neighbourhood homeomorphic to an open subset of Rn or Hn with
the transition maps being smooth. The boundary ∂M is the collection of points that do
not have any neighbourhood homeomorphic to an open subset of Rn. It turns out to
be a submanifold of dimension n− 1. Moreover, its points are inverse images of ∂Hn.
If c is a regular value of f :M → R and f > c and f = c are non-empty, then f ≥ c is a
smooth manifold-with-boundary such that its boundary is f−1(c).

Every smooth manifold has a compact exhaustion. It is also paracompact. More-
over, it has a partition-of-unity subordinate to a given open cover. If we allow ourselves
a locally finite refinement, then the partition-of-unity can be chosen to have compact
support.

A manifold (with or without boundary) is said to be orientable if it has an oriented
atlas, i.e., an atlas such that det(D(φα∩φ−1β )) > 0 for all α 6= β. It is said to be oriented if
it is provided with an oriented atlas. Two atlases are said to be orientation compatible
if their union is oriented. This defines an equivalence relation between atlases. The
equivalence classes are called orientations and there are exactly two of them if the
manifold is connected (which we will assume wlog from now onwards).

A covering space Y (in the sense of topology) of a manifold X as a natural smooth
structure. Indeed, if Uα is a coordinate chart contained in an evenly covered neigh-
bourhood, then π−1(Uα) = ∪iVα,i with π being a homeomorphism from Vα,i to Uα for
each i. Now we get charts on the cover such that π is a smooth immersion.

2.2 Tangent bundle and vector bundles
Note that it is hard to produce examples of diffeomorphisms. Oneway to try to produce
them is to imagine a fluid is flowing along the manifold and follow it for some time. To
this end, we need to define a “smoothly varying collection of tangent vectors". Firstly,
one needs to make sense of a tangent vector. The tangent space TpM is defined in
several (equivalent ways):

1. Derivations on the ring of smooth functions: A derivation D : C∞(M) → R is
a linear map such that D(fg) = f(p)Dg + g(p)Df . The collection of derivations
forms a vector space TpM . It turns out that this vector space is n-dimensional
and TpM = TpU for any coordinate chart U canonically, and ∂

∂xi
|p span this space.

2. Equivalence classes of curves: Let γ(t) : (−ε, ε) → M be a smooth map such
that γ(0) = p. Define an equivalence relation between two such maps γ1 ∼ γ2
if γ′1(0) = γ′2(0) in one (and hence any) coordinate chart. The set of equivalence
classes is TpM with addition defined as coordinate-wise addition (in any chart).

3. Physicist’s definition: TpM = ∪αRn
α p∈Uα/(vα ∼ vβ if

∂xiα
∂xjβ

(p)vjβ = viα).
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Given a smooth map f : M → N , the derivative/pushforward at p is f∗ : TpM → TpN
defined as (f∗D)(g) = D(g ◦ f) using derivations or f∗v = Dfv using the physicist’s
definition/local coordinates.
Next, a smoothly varying vector field (in the physicist definition) is simply a collection
of smooth functions Xα : Uα → Rn that transform correctly, i.e., X i

α = ∂xiα
∂xjβ

Xj
β . Ideally

we would like to say that TM = ∪pTpM is a manifold such that a smoothly varying
vector field is a smoothmap fromM to TM commutingwith the obvious projection. To
this end, we need to make TM into a manifold. CoverM with a countable atlas. Now
consider the bĳection Tα : Uα × Rn → π−1(Uα) ⊂ TM given by Tα(p,~v) = vi ∂

∂xiα
(p) ∈

TpM . Consider a countable basis of Uα and define a topology by using a countable
basis of TM using Tα. This topology is Hausdorff and (obviously) second countable. It
is locally Euclidean too (using T−1α ) and the transition maps are diffeomorphisms of a
very particular type: (p,~v)→ (p, wi = ∂xi

∂yj
vj)which preserve the vector space structure

of each TpM .
We can generalise this construction to get a smoothly varying family of vector

spaces. A smooth real vector bundle V of rank r over M is an n + r-dimensional
manifold equipped with a smooth surjective projection map π : V → M such that
π−1(p) = Vp (the “fibre") is a real r-dimensional vector space for every p, and V is
locally trivial, i.e., there exists a diffeomorphism π−1(Up) → Up × Rr that commutes
with projections and is a linear isomorphism on each fibre.
A smooth section s : M → V of a vector bundle is a smooth function such that
π(s(p)) = p. Having a smooth local collection of r sections si such that si(p) forms a
basis for Vp is equivalent to being locally trivial. Such sections are said to form a local
frame/trivialisation.
A vector bundle morphism T : V → W is a smooth map commuting with projections
that is linear on each fibre. Other than TM , there are several natural vector bundles
associated to M . The cotangent bundle T ∗M = ∪pT ∗pM equipped with T ∗α(p, ~ω) =

ωi
(
∂
∂xi

)∗ give T ∗M a smooth vector bundle structure. If V,W are vector bundles, then
V ⊕W and V ⊗W are defined using local trivialising sections as si⊕ tj and si⊗ tj being
the local trivialising sections. In this way, we can define tensor bundles. If f : M → R
is a smooth function, then df is a smooth 1-form defined as dfp(Xp) = Xp(f). In local
coordinates, df = ∂f

∂xi

(
∂
∂xi

)∗.
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