
1 Recap
1. Review of manifolds (with and without boundary), submanifolds, Whitney em-

bedding, and regular values.

2. Tangent spaces and the tangent bundle (various definitions), vector bundles, and
the cotanget bundle.

2 Review of Manifolds, Tangent bundle, Vector fields,
Lie bracket, etc

2.1 Forms, wedge product, and the exterior derivative
Multilinear maps are called tensors and multilinear maps factor as linear maps from
the tensor product. Multilinear maps have bases ϵi1 ⊗ . . .. Among tensors we have
symmetric and skew-symmetric/alternating ones defined in the usual manner. The
alternating ones are also called forms. They have a basis ϵI(v1, . . . , vk) = det(ϵi(vj)).
Given a (0, k)-tensor T , we can produce a k-form using the Alt construction as follows:
Alt(T )(v1, . . . , vk) =

1
k!

∑
σ∈Sk

sgn(σ)T (vσ(1), . . .). Using this construction we can gener-
alise the cross product to the wedge product of forms as ω ∧ η = (k+l)!

k!l!
Alt(ω⊗ η). Now

ϵIJ = ϵI ∧ ϵJ and this product is associative and bilinear. Also, ω ∧ η = (−1)klη ∧ ω. If
ω is a 0-form (a number), then ω ∧ η = ωη.
We can construct the vector bundle of k-forms, the sections of which are called k-
form fields, or differential k-forms, or abusing terminology, simply k-forms again. The
wedge product extends to form fields. We can define the pullback of form fields using
a smooth map f : M → N as (f ∗ω)p(Xp) = ωf(p)(f∗Xp).
Now we define the exterior derivative of a form field in Rn: If ω = ωiϵ

I , then
dω = dωi ∧ ϵI = ∂ωi

∂xj ϵ
jI . In particular, df = ∂f

∂xidx
i and ϵI = dxi1 ∧ dxi2 . . .. The

pullback commutes with d and d2 = 0. Now f ∗ω = ωI ◦ fdf i1 ∧ . . .. This exterior
derivative extends to manifolds too.
Forms ω such that dω = 0 are closed and if ω = dη, they are called exact. Of course
exact forms are closed but the converse is false. It is true for star-shaped domains in Rn

(Poincaré lemma). The failure is measured by the de Rham cohomology vector spaces:
Hk(M) is closed k-forms that are quotiented out by exact ones. H0(M) is the number
of connected components and Hk(M) = 0 if k > n. It turns out that if a manifold is
not compact or not orientable, then Hn(M) = 0. If M is compact and orientable, then
Hn(M) = R.

2.2 Vector fields, flows, and the Lie bracket
A smooth vector field is a section of the tangent bundle TM , i.e., X :→ TM is smooth
and commutes with the projection. Locally, it is a local collection of smooth functions
associated to every chart X i (where X = X i ∂

∂xi in Einstein summation - the repeated
indices are summed over) such that when we change coordinates, Xα = ∂yα

∂xi X
i. Alter-

natively, it is an R-linear map C∞(M) → C∞(M) such that X(fg) = fX(g) + gX(f).



Indeed, it is easy to see that a vector field produces such a map. Given such a map, if xi

are coordinates, and ρ a bump function that is identically 1 in a neighbourhood of p, then
X(p) = X(xiρ) ∂

∂xi (why is this valid?). Given a smooth vector field X on a compact
manifold (without boundary), and a point p ∈ M , there exists a unique integral curve
γp : R → M through p, i.e., γ(0) = p,X(γp(t)) = (γp)∗∂t (written as X(γp(t)) = dγp/dt.
Moreover, γ depends smoothly on p, t (taken jointly) and if F (p, t) = γp(t), then for
every t, F is a diffeomorphism and it satisfies F (p, t+ s) = F (F (p, t), s) = F (F (p, s), t)
and F (F (p, t),−t) = p. It is a one-parameter group of diffeomorphisms. These facts
can be proven using the theory of ODE.

Using bump functions, one can construct several non-trivial examples of vector
fields. In fact, if dim(M) ≥ 2, then any two points can be exchanged by means of
diffeomorphisms.

Locally, ∂
∂x1 is a vector field. If X(p) ̸= 0, the converse is also true, that is, X = ∂

∂x1

locally for an appropriate choice of coordinate x1 (again by flowing using ODE the-
ory). If we have two vector fields X, Y that are linearly independent at p (and hence
nearby), it is not true that X = ∂1 and Y = ∂2. The reason is that [∂1, ∂2]f = 0
whereas X(Y (f)) − Y (X(f)) =: [X, Y ](f) is not necessarily zero. The vector field
[X, Y ] = XY − Y X is called the commutator or the Lie bracket of X and Y . It obeys
skew-symmetry, bilinearity, and the Jacobi identity. This is true for any number of
vector fields. (A special case of the Frobenius theorem.)

2.3 Integration and Stokes’ theorem
A connected manifold-with-boundary M is said to be orientable if there exists a
nowhere vanishing top form ω. Two such top forms are said to define the same orien-
tation if they are proportional by a positive function. (Otherwise, they are of opposite
orientation.) An atlas is said to be orientation compatible with ω if ω(∂1, ∂2, . . . , ∂n) > 0
for all charts. If dim(M) ≥ 2, then an atlas is orientation compatible with some form
if det( ∂yi

∂xj ) > 0 for all pairs. Two atlases are said to define the same orientation if their
union is an oriented atlas.

If f : Rn → R has c as a regular value (with f−1(c) ̸= ϕ), then f−1(c) is an orientable
(sub)manifold (without boundary). Indeed, take N = ∇f and consider the top form
ω(X1, . . . , Xn−1) = dx1 ∧ dx2 . . . dxn(N,X1, . . .) = det(NX1 . . .). If M has a boundary
∂M , then the boundary inherits an orientation fromM by choosing an “outward point-
ing vector N". Alternatively, one can simply choose boundary charts and restrict them
to ∂M . These orientations are not the same! They agree only with the dimension of
M is even! (We choose the former to be the “correct" induced orientation.) There are
non-orientable manifolds too! (like RP2).

Given an oriented manifold M (with or without boundary) and a smooth top form
ω,

∫
M
ω :=

∑
i

∫
M
ρiω (for any partition of unity ρi) where

∫
M
ω is defined when ω is

compactly supported in an oriented chart as
∫
Rn(ϕ

−1)∗(ω) =
∫
Rn f ◦ ϕ in the sense of

Lebesgue (where ω = fdx1 ∧ dx2 . . .). The change of variables formula shows that
this definition is well-defined. It turns out that to calculate using this definition, it is
enough to use one chart that covers the manifold-upto-measure zero (measure zero
on a manifold simply means that around every point there is a chart in which the set
has measure zero). For instance, one can calculate an integral over a sphere using
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stereographic coordinates or latitude and longitude.
Stokes theorem: If M is oriented and compact, and ∂M has the induced orientation

if dim(M) is even and the opposite one if dim(M) is odd, then
∫
M
dω =

∫
∂M

ω if ω is an
n− 1-form. In particular, if there is no boundary, then

∫
M
dω = 0.
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