
1 Recap
1. Definition and existence of Riemannian metrics.

2. Constructing new ones from old ones: Conformal changes, submanifolds, prod-
ucts and warped products, and Riemannian submersions and covers.

2 Riemannian metrics
Riemannian submersions and coverings: Given a cover and a metric h on N , there is a
unique one on M that makes it into a Riemannian cover (why?) We now construct a
Riemannian metric on a torus Rn/Zn where the Zn lattice is

∑
i civi where vi is a basis

of Rn and ci are integers. Indeed take the usual Euclidean metric g =
∑

i dx
i ⊗ dxi on

Rn. This metric is invariant under translations by the lattice. Thus, at least on paper
it seems to descend to the torus. Indeed, rigorously, note that dxi are globally defined
forms on the torus that trivialise its cotangent bundle. Simply declare g =

∑
i dx

i⊗dxi.
It is easy to see that this defines a Riemannian covering. Thus we can attempt to
generalise this construction when a Lie group G acts on a Riemannian manifold via
isometries. Hopefully M/G is a manifold such that the quotient map is covering
map and the Riemannian metric descends to give a Riemannian cover. Unfortunately,
this expectation fails: Take R2 with the R∗ action a → λa. The quotient is not even
Hausdorff! (A digression: If you remove the origin, then it is Hausdorff. This raises
an interesting question of what you ought to remove. In some special manifolds, the
things needed to remove come from algebra. This subject is called geometric invariant
theory.) One problem seems to be the presence of fixed points.
Def: We say that an action is (fixed-point) free if the isotropy group Gx = {g ∈ G|gx =
x} for every x is trivial.
This is not good enough for the quotient to be a manifold. For example, R acts on
S1 × S1 as t.(w, z) = (exp(2πit)w, exp(2παt)z) where α is irrational. This action is free.
The orbits can be shown to be dense (maybe HW). Thus, one cannot separate the orbits
and the quotient is not Hausdorff.
Basically, if you take a sequence of group elements going off to “infinity", and it the
orbit of a point has a limit point, there could be a problem. Indeed, in the worst case
orbits can “intersect" at “infinity" (and yet the space can be Hausdorff like the example
of say CPn) but if there is a limit point, then such an “intersection" can happen earlier.
Thus we make a definition: G is said to act properly on M if G ×M → M ×M given
by (g, p) → (g.p, p) is a proper map (this is equivalent to GK = {g ∈ G|g.K ∩K ̸= ϕ} is
compact if K is compact), that is, the preimage of a compact set is compact.
It turns out that quotients by proper actions are Hausdorff.
Here is the quotient manifold theorem: Let G act freely, smoothly and properly on M .
Then M/G is a topological manifold of dim dim(M) − dim(G) with a unique smooth
structure such that the quotient map is a smooth submersion. If G is discrete, then
under these hypotheses, the quotient map is a smooth covering map.
One can prove a Riemannian extension of the above result:
If G ⊂ Isom(M, g), then there is a unique smooth Riemannian metric on the quotient
such that the map is a Riemannian submersion.



Recall that Aut(N) is the group of smooth deck transformations of a smooth cover
N → M . If this group is a subgroup of the isometry group, the above result implies
that the quotient inherits a unique metric such that the cover is a Riemannian cover.
Examples:

1. Consider Z acting on R×R as n.(x, y) = (x+n, y). The quotient is clearly S1×R.
It inherits the Euclidean metric because translations are isometries.

2. In the example of the torus outlined above, such tori are called flat tori. Now the
point is that different lattices can give rise to different metrics! (HW)

3. S2n+1/S1 is CPn (why?) and inherits a natural metric (why?) called the Fubini-
Study metric.

Before we proceed further, we note the following: Given any smooth Riemannian
metric and a point p, there exists a neighbourhood U and n = dim(M) smooth vector
fields Ei on U such that Ei(q) form an orthonormal basis of TqM for all q ∈ U .
Indeed, choose any coordinate chart around p. Perform the Gram-Schmidt procedure
to convert the vector fields ∂i to an orthonormal basis. This process involves algebraic
operations and square roots of positive functions. Thus the basis is smooth.
In fact, by means of a constant linear transformation, we can assume without loss of
generality that Ei(p) = ∂i(p), that is, gij = I +O(|x|). As you will show in the HW, one
can prove that there exist coordinates such that gij = I +O(|x|2). Such coordinates are
called normal coordinates (not to be confused with a very specific choice of normal
coordinates called geodesic normal coordinates that we will deal with, later). One
could wonder if the second-order term can be gotten rid of. Unfortunately such is
not the case. In fact, Riemann proved (more or less) that the ability to get rid of the
second order term at all points is equivalent to finding coordinates where the metric
is Euclidean. This second-order obstruction turns out to be related to the Riemann
curvature tensor.
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