
1 Recap
1. Riemannian submersions and the quotient manifold theorem.

2. Orthonormal frames and normal coordinates.

1.1 Induced metrics on tensor bundles
Firstly, given a Riemannian metric g onM , recalling that it is simply a smoothly varying
inner product on TM , we can define a smooth metric h on a vector bundle V as an
inner product on each of the fibres Vp such that it is smoothly varying, i.e., for any local
trivialising sections ei, h(ei, ej) is a local smooth function. Alternatively, it is a smooth
section of the tensor bundle V ∗ × V ∗ that is an inner product on each fibre.
Now we can define an induced Riemannian metric on T ∗M (more generally for V ∗) by
first defining the so-called musical isomorphism b : TpM → T ∗

pM as vb(w) = g(v, w).
This isomorphism is actually a smooth vector bundle isomorphism (why?) Now define
g∗(vb, wb) = g(v, w). In local coordinates, (vb)i = gijv

j (this is also called lowering an
index in physics terminology), i.e., (vb) = Gv and henceG−1(vb) = v. Its inverse is called
# (or raising indices). Now ⟨v, w⟩ = vTGw and ⟨ω, η⟩ = ωT G̃η = (G−1ω)TGG−1η =
ωT (G−1)Tη and hence G̃ = (G−1)T . We denote its local components as gij .
At this juncture, we can define the gradient of a function f : M → R as a vector field:
∇f = (df)#, i.e., (∇f)i = gij∂jf . So the gradient needs a Riemannian metric for its
definition (indeed, the gradient is supposed to be “normal" to the level sets).
We can raise and lower indices on tensors too. We can also define inner products
among tensors. Indeed, given inner products on V and W , there is a natural “tensor"
inner product on V ⊗W (that is, ⟨v ⊗ w, a⊗ b⟩ = ⟨v, a⟩⟨w, b⟩ extended linearly). Thus
⟨S, T ⟩ = Si1i2...

j1j2...
gi1a1gi2a2 . . . g

j1b1 . . . T a1a2...
b1b2...

. For instance, for 2-forms, here is an example
∥dx ∧ dy∥2Euc = ∥dx⊗ dy − dy ⊗ dx∥2 = 2.

1.2 Volume form
Let (M, g) be an orientable Riemannian manifold. We wish to define a top-form volg
(called the volume form) such that its integral over M must give the volume/surface
area of M . To this end, if we consider a local orthonormal cobasis ω1, . . . , ωn, then
ω1∧ω2 . . . ωn ought to give the infinitesimal area/volume of a square provided the basis
e1, . . . , en is compatible with the orientation. Suppose we choose another orthonormal
oriented cobasis η1, . . . , ηn, then ηi = P j

i ωj where P is an orthogonal matrix-valued
function whose determinant is +1 (because the orientation is compatible). Thus η1 ∧
η2 . . . ηn = det(P )ω1∧ω2 . . . = ω1∧. . . (because of the transformation rule for top-forms).
Thus the form volg = ω1 . . . is a smooth nowhere vanishing globally defined form that is
compatible with the orientation. This form is called the volume form. In local oriented
coordinates, it is

√
det(g)dx1 ∧ dx2 . . .. Indeed, this expression coincides with volg in

case the coordinate vector fields are chosen to be orthonormal at a point. Moreover, if
we change oriented coordinates, it changes to

√
det(g) det( ∂x

i

∂yj
)2 det(∂yj/∂xi)dx1∧ . . . =√

det(g)dx1 ∧ dx2 . . .. Thus it is a well-defined global orientation compatible nowhere



vanishing form that coincides with volg at every point by choosing the right coordinates.
Hence it is volg. Now we can define the integrals of functions using

∫
M
fvolg.

2 Distance on a Riemannian manifold
To make a Riemannian manifold-with-boundary (M, g) into a metric space, one consid-
ers dg(p, q) to be the infimum of the lengths l(γ) =

∫ b

a
∥γ′∥dt over all piecewise smooth

regular (that is, γ′(t) ̸= 0) paths γ : [a, b] → M . Such paths are called admissible
paths (and their images are typically called admissible curves). A reparametrisation
is a homeomorphism between intervals that is a diffeomorphism on the subintervals
where γ is smooth and regular. It is easy to see that the length is additive (timewise),
reparametrisation invariant, and isometry invariant. It is also easy to see that every
admissible curve has a unique forward reparametrisation by arc-length.

For the distance function to make sense, we need non-emptyness of the set where
the infimum is taken.
Prop: If M is a connected manifold-with-boundary, any two points can be connected by an
admissible curve.

Proof. Given p, let S be the set of all points in M that can be connected by an admissible
curve from p. It is non-empty (p is in it) and open: Suppose p is connected to q, then q
can be connected to nearby points lying in a coordinate chart. It is also closed: Indeed,
if qn → q, then q can be connected to qn for large n such that it lies in a coordinate
neighbourhood of q.
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