
1 Recap
1. Induced metrics on tensor bundles. Gradient.

2. Volume form.

3. Admissible curves, distance function, and the fact that it is well-defined on con-
nected manifolds-with-boundary.

2 Distance on a Riemannian manifold
It is easy to see that this distance function is an isometry-invariant.
Now we prove an important theorem: Let (M, g) be a connected Riemannian manifold-
with-boundary. The distance function dg(p, q) makes M into a metric space with the same
topology.

Proof. dg is obviously symmetric (just reverse the direction of the paths) and dg ≥ 0.
Consider admissible paths γ1, γ2 connecting (p, q) and (q, r) respectively such that
d(p, q) ≤ l(γ1) ≤ d(p, q) + ϵ

2
and likewise for d(q, r). Now γ1 concatenated with γ2 gives

an admissible path γ from p to r and d(p, q) + d(q, r) ≤ l(γ) ≤ d(p, q) + d(q, r) + ϵ. Since
l(γ) ≥ d(p, r) we see that d(p, r) ≤ d(p, q) + d(q, r) + ϵ ∀ϵ > 0 and hence the triangle
inequality holds. If d(p, q) = 0, then we need to prove that p = q: If p and q are distinct,
there are two non-intersecting coordinate balls (of Euclidean radius 2) with centred
around p and q. Now the Riemannian metric is comparable to the Euclidean metric in
these balls in that 1

C
gEuc ≤ g ≤ CgEuc. Thus, 1

C
lEuc(γ) ≤ l(γ) ≤ ClEuc(γ). Now lEuc(γ)

is the length of the straight line joining the two points (why?) and hence there is a
minimum distance separating the two points.
Consider a basis of coordinate balls forM (of Euclidean radius at most 1) centred at each
point p ∈ M such that they are contained in coordinate 2-balls. By the aforementioned
calculation, each ball contains a metric ball and any metric ball of radius at most
1
C

contains a coordinate ball. Hence the basis of metric balls gives rise to the same
topology as the Euclidean ones.

3 The energy functional and geodesics
Naively one can try to minimise l(γ) among admissible curves using calculus of vari-
ations. That is, suppose 0 ∈ [c, d] and γ(t, s) : [a, b] × [c, d] is a variation of admissible
curves, i.e., it is continuous, on [ai, ai+1]× [c, d] it is smooth and for each fixed s, γ(t, s)
is an admissible curve. If l(γ) achieves a minimum at some admissible curve γ0, then
for any admissible variation (such that γ(t, 0) = γ0 and it fixes the endpoints), the
derivative of l(γ(., s)) at s = 0 ought to be zero if l(γ(., s)) is differentiable. That will
gives us an equation for such curves (which we can then hope, have solutions, and are
genuine minimisers). However, l is painful because of the square root. A substitute
is to consider E(γ) =

∫ b

a
∥γ′∥2dt. Then suppose we differentiate a smooth variation



assuming we have a smooth minimiser,
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∫ b

a

(
−gklΓ
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′)i(γ′)j − gkj(γ
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)
γk
,sdt, (1)

where 2gklΓ
l
ij = gkj,i− gij,k + gki,j . (These Γ’s are called Christoffel symbols.) Moreover,

V k = γk
,s is a vector field along the curve (at s = 0) that is zero at the endpoints.

It is smooth at smooth points (if we take non-smooth variations along non-smooth
minimisers), i.e., can be extended locally to a smooth vector field (why? HW). Likewise,
γ′ is also a vector field that is smooth at smooth points. Now we see that 2

∫ b

a
fkγ

k
,sdt = 0

for all such γk
,s. This implies that fk is 0 at all smooth points. Indeed, in a coordinate

neighbourhood of one, simply choose the vector field V =
∑

k fk∂kρ where ρ is a
smooth bump function. The variation is γ(t, s) = γ(t) outside the neighbourhood and
F (γ(t), s) where F is the flow of V inside. Thus fk is zero in that neighbourhood. We
shall extend this argument to the more general piecewise smooth case later.

This gives rise to the geodesic equation: (γi)′′ + Γi
jk(γ

j)′(γk)′ = 0. Note that the
Christoffel symbols are not components of a (1, 2) tensor because they do not transform
correctly. Solutions of this equation are called geodesics. It is not immediately obvious
that this equation makes sense globally (HW). One can now try to study the relationship
between these geodesics and length-minimising curves. However, one might raise a
valid objection: Why not look at the L4 energy or the L6 energy or some such thing?
We need more justification to claim that this is the right set of curves to study.

4 Connections and the Levi-Civita connection
Recall that on surfaces, one of the ways we looked at curvature was to parallel transport
a vector along a small curve. The difference was related to the curvature. Note that this
concept of parallel transport also has bearing on length minimising curves. How do you
minimise the distance you travel? You literally follow your nose! That is, you parallel
transport your velocity! How does one model this phenomenon mathematically? We
can try the following in the case of say submanifolds of Euclidean space: A smooth
vector field V over a smooth curve γ is parallel to itself if DV

dt
= dV

dt
−π(dV

dt
) = 0 where π

is the orthogonal projection to the normal vector space. (It is not immediately obvious
that this definition does not depend on how you extend V smoothly locally but that’s
an exercise.) On a general manifold, we do not have this luxury.
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