1 Recap

- 1. Distance function is a metric with the same topology. (We did not prove that the distance function on Euclidean space is the usual one. Here is the proof: Approximate by a piecewise linear curve and use the triangle inequality.)
- 2. Geodesic equation via variation of the Energy functional for smooth critical points.
- 3. Motivation for parallel transport through derivatives.

2 Connections and the Levi-Civita connection

On a general manifold, we can still try to define $\frac{DV}{dt}$, or more generally, the directional derivative of *V* along some vector field *X* (in the case of a curve, it is $X = \gamma'$) $\nabla_X V$ using abstract properties. More generally, we can try to differentiate *sections s* of vector bundles *E* with respect to a direction field *X*, $\nabla_X s$. To this end, we define:

A connection $\nabla_X s$ is a map taking smooth vector fields X and smooth sections s of a vector bundle E, and producing smooth sections of E (this is crucial - indeed, $\frac{DV}{dt}$, the acceleration, is a smooth tangent field on the submanifold) such that

- 1. $\nabla_{f_1X+f_2Ys} = f_1\nabla_Xs + f_2\nabla_Ys$ for smooth functions f_1, f_2 and smooth vector fields X, Y. This property indicates that the directional derivative at a point genuinely depends on the direction at that point alone. (and is not a differential operator that needs the behaviour of the vector field at other points).
- 2. If a_1, a_2 are constants, then $\nabla_X(a_1s_1 + a_2s_2) = a_1\nabla_Xs_1 + a_2\nabla_Xs_2$.
- 3. $\nabla_X(fs) = X(f)s + f\nabla_X s$ (the Leibniz rule -indicating that indeed ∇ depends on the first derivative of the section).

We can now easily prove (how?) that $\nabla_X s$ depends only on the local behaviour of s and only on the value of X at the point.

The next order of business is to see what a connection looks like locally. Suppose we choose a trivialising collection of local smooth sections e_1, \ldots, e_r for the vector bundle, then

$$\nabla_X(s^i e_i) = X(s^i)e_i + s^i \nabla_X e_i. \tag{1}$$

Now if we choose coordinates for the manifold, then

$$\nabla_X(s^i e_i) = X^{\mu} \partial_{\mu} s^i e_i + s^i X^{\mu} \nabla_{\partial_{\mu}} e_i$$

= $X^{\mu} \left(\partial_{\mu} s^i + A^i_{\mu j} s^j \right) e_i,$ (2)

where $\nabla_{\partial_{\mu}} e_j = A^i_{\mu j} e_i$. These A's are called connection coefficients. (It turns out that the Christoffel symbols are connection coefficients for a (unique) connection on TM called the Levi-Civita connection.) There is a slightly different way to look at connections. Note that since $\nabla_X s(p)$ depends purely on X(p), the map $X(p) \to \nabla_X s(p)$ is a smooth

vector bundle morphism from TM to E (why? This concept is sometimes called "tensoriality in X"). In other words, ∇s can be thought of as a section of $E \otimes T^*M$ (why?) and is sometimes called a "vector-valued 1-form". Thus $\nabla s = (something)_{\mu}^i dx^{\mu} \otimes e_i$. The $(something)_{\mu}^i$ is precisely $\partial_{\mu}s^i + A^i_{\mu j}s^j$. It can also be written locally as $\nabla s = (ds^i + A^i_j s^j)e_i$ or even more simply, ds + As where A is a matrix of 1-forms called the connection matrix. Here is an important proposition:

Connections exist on every vector bundle E over a manifold M.

Proof: Cover *M* with trivialising open sets U_{α} and let ρ_{α} be a partition-of-unity subordinate to them. Define ∇s as $\nabla s = \sum_{\alpha} \rho_{\alpha} ds^i_{\alpha} \otimes e_{i,\alpha}$. This sum is locally finite and hence well-defined. It is easy to check that the axioms of a connection are met. \Box