NOTES FOR 11 NOV (TUESDAY)

1. Recap

- (1) Trace theorem.
- (2) Gagliardo-Sobolev-Nirenberg inequality. The C^0 part of the Morrey inequality.

1.1. Sobolev embedding.

Theorem 1.1. For all $u \in C^1(\mathbb{R}^n)$, $||u||_{C^{0,\gamma}} \le C||u||_{W^{1,p}}$ where $\gamma = 1 - \frac{n}{p}$.

Proof. For a Hölder bound, we want to estimate |u(x) - u(y)| in terms of x - y. Now let r = ||x - y|| and $W = B(x, r) \cap B(y, r)$. Then

$$|u(x) - u(y)| \le \int_{W} |u(x) - u(z)| dz + \int_{W} |u(z) - u(y)| dz$$

$$\le Cr^{1 - n/p} ||Du||_{L^{p}}.$$
(1.1)

This shows the desired bound.

Now we have one more Sobolev embedding: Suppose U is bounded open with C^1 boundary and $n and <math>u \in W^{1,p}(U)$. Then u agrees a.e. with a $C^{0,\gamma}(U)$ function v with $\|v\|_{C^{0,\gamma}} \le C\|u\|_{W^{1,p}(U)}$.

Proof. We prove $p < \infty$ (and $p = \infty$ is an exercise). As before, we extend u to Eu. By convolution, we approximate by smooth functions u_m with compact support on \mathbb{R}^n . These functions converge (thanks to the above inequality) to a $C^{0,\gamma}(U)$ function v.

Inductively we get general Sobolev inequalities for $W^{k,p}$. The key point is that if you are in $W^{k,2}$ for all k, then you are smooth.

- 1.2. **Solving the Poisson equation weakly.** We shall now prove that there exists an $H_0^1(U)$ function u satisfying $\Delta u = f$ in a weak sense (where f is smooth on \bar{U}). Indeed, consider $B[u,v] = \int \nabla u.\nabla v$ on $H_0^1(U)$. By the Poincaré inequality, this is an inner product and equivalent to the Sobolev norm. Consider the linear functional $F(u) = -\int uf$. It is bounded linear and hence by Riesz representation there exists a unique $u \in H_0^1(U)$ such that B[u,v] = F(v) for all $v \in H_0^1(U)$. In particular, it is a distributional solution. We now need to prove that u is smooth.
- 1.3. **Difference quotients.** Suppose $u:U\to\mathbb{R}$ is in L^1_{loc} and $D^h_i u=\frac{u(x+he_i)-u(x)}{h}$. We have a similar theorem (as before about difference quotients). Let $1< p<\infty$, $V\subset\subset U$, and $0< h<\frac{1}{2}d(V,\partial U)$.
- **Theorem 1.2.** (1) Suppose $u \in W^{1,p}(U)$. Then $||D^h u||_{L^p}(V) \le C||Du||_{L^p}(U)$ for all $0 < h < \frac{1}{2}d(V, \partial U)$. (2) Suppose $u \in L^p(V)$ and $||D^h u||_{L^p(V)} \le C$. Then $u \in W^{1,p}(V)$ and $||Du||_{L^p(V)} \le C$.
- *Proof.* (1) By approximation, assume WLog that u is smooth. Then using FTC and Fubini $||D^h u||_{L^p}(V)^p \le C \int_0^1 \int_V ||Du(x+the_i)||^p \le C||Du||_{L^p}^p$.

(2) Suppose ϕ is a test function. Then we can prove the "integration-by-parts" formula $\int_V u D_i^h \phi = -\int D_i^{-h} u \phi$. The given estimate and Banach-Alagolu implies that passing to a subsequence, $D_i^{-h_k} u$ goes weakly to v_i in $L^p(V)$. We can easily show that $v_i = u_{x_i}$ in the weak sense and hence we are done.

This proof applies even to the tangential derivatives when *V* is a half-ball in the upper half-space.

1.4. **Regularity - Interior.** We shall prove that all the Sobolev norms (on a compact set V) are bounded and hence u is smooth in the interior. Suppose u is already smooth up to the boundary (and zero on the boundary). Let's prove estimates then (the non-smooth case will involve replacing derivatives by difference quotients). Let $\zeta \equiv 1$ on V and compactly supported in U.

$$\Delta u = f \Rightarrow \int \sum_{i,j} \zeta^2 u_{ii} u_{jj} = \int \zeta^2 f^2$$

$$\Rightarrow -\int ((\zeta^2)_j u_{ii} u_j + \zeta^2 u_{iij} u_j) = \int \zeta^2 f^2$$

$$\Rightarrow \int (-(\zeta^2)_j u_{ii} u_j + (\zeta^2)_i u_{ij} u_j + \zeta^2 u_{ij}^2) = \int \zeta^2 f^2.$$
(1.2)

Using Cauchy-Schwarz we can conclude that $||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{H^1(U)}) \le C||f||_{L^2(U)}$ because $u \in H^1_0(U)$. Differentiating the equation and using this estimate over and over, we get estimates for Sobolev norms. However, the catch is that we cannot literally say that $\Delta u = f$. We can only say it in a weak sense. So the above calculation needs to be modified for the non-smooth case. We first note the following useful "calculus" for v being compactly supported.

(1.3)
$$\int_{U} vD_{k}^{-h}w = -\int wD_{k}^{h}v$$
$$D_{k}^{h}(vw) = v^{h}D_{k}^{h}w + wD_{k}^{h}v.$$

Note that $B[u,v] = \int \nabla u \cdot \nabla v = -\int fv$ for all $v \in H_0^1(U)$. Motivated by the calculation for smooth ones and by the presence of -h in the calculus above, we try $v = -D_{\nu}^{-h}(\zeta^2 D_{\nu}^h u)$. Therefore

$$\int D_k^h(\nabla u) \cdot \nabla(\zeta^2 D_k^h u) = \int f D_k^{-h}(\zeta^2 D_k^h u)$$

$$\Rightarrow \int_V D_k^h(\nabla u)^2 \le C ||u||_{H^1(U)}^2 + C ||f||_{L^2(U)}^2 \le C ||f||_{L^2(U)}^2.$$

We can prove higher regularity inductively. Indeed, we can prove that $\Delta D^{\alpha}u = D^{\alpha}f$ is satisfied in the weak sense. Of course $D^{\alpha}u$ does NOT have trace zero on the boundary UNLESS $\alpha_n = 0$. (Why is the latter true?) However, since we are proving interior regularity, the previous estimates continue to work. Thus $D^{\alpha}u$ is in $H^2(V)$ and so on. Therefore, u is smooth in the interior.

1.5. **Regularity - Boundary.** Regularity is again a local property (near the boundary). So we want to change coordinates via a local diffeomorphism $x \to y = (x', x^n - g(x'))$ to flatten the boundary (the Jacobian of this map is 1). This changes the PDE. Indeed, $B[u, v] = \sum_i \int u_i v_i dx = \int u'_\alpha \frac{\partial y^\alpha}{\partial x^i} v'_\beta \frac{\partial y^\beta}{\partial x^i} dy$ and $\int v f dx = \int v' f' dy$. Thus we can instead study the new elliptic PDE $(a^{ij}u_j)_i = f$ where $a^{ij} = \sum_\alpha \frac{\partial y^i}{\partial x^\alpha} \frac{\partial y^j}{\partial x^\alpha}$ on a semiball of radius 1 centred at the origin in the upper half-space. As before, we can multiply

by ζ with the difference being that ζ is allowed to be supported on the upper half-space, i.e., it is zero on the curved part of the semiball. Roughly speaking we multiply by u_{ij} where i, j are in the horizontal directions. As for u_{nn} , we can solve for it using the PDE itself and hence get estimates upto the boundary.

Let $1 \le k \le n-1$, 1/100 > h > 0, and $v = -D_k^{-h}(\zeta^2 D_k^h u)$ where $\zeta \equiv 1$ on $B(0,\frac{1}{2})$ and supported on B(0,1). Note that $v \in H_0^1(U)$. Thus $B'[u,v] = \int fv$. We estimate as before to conclude that $u_k \in H^1(V)$, and $\sum_{i+j<2n} \|u_{ij}\|_{L^2(V)} \le C(\|f\|_{L^2(U)} + \|u\|_{H^1(U)})$. Using the PDE itself, we see that $\|u_{nn}\|_{L^2(V)}$ also satisfies a similar bound. Hence we have shown that for $\Delta u = f$, $u \in H^2(U)$ and $\|u\|_{H^2(U)} \le C(\|f\|_{L^2(U)})$. (In fact the same kind of estimate holds even if add first-order terms to the equation.) To prove higher-order regularity, again we change our coordinates. Then take $\tilde{u} = D^\alpha u$ where $\alpha_n = 0$. Now we can show that \tilde{u} is a solution of a new PDE obtained by differentiating the old one. That will allow use to show that $\tilde{u} \in H^2(V)$. By solving using the PDE itself, we can actually upgrade the regularity to H^m for all m and hence u is smooth up to the boundary.