NOTES FOR 19 AUG (TUESDAY)

1. Recap

- (1) Proved Sobolev embedding and compactness
- (2) Defined elliptic operators.

2. Constant-coefficient elliptic operators on the torus

Definition 2.1. A linear differential operator L with constant coefficients on the torus is said to be elliptic ¹ if the principal symbol $\sigma_{\vec{k}}$ is invertible for all $|k| \neq 0$.

Assume that L is elliptic. Because the A are constants, there exist constants (called the ellipticity constants) δ_1, δ_2 such that $\delta_2 ||\vec{k}||^l ||\vec{v}|| \ge ||[\sigma_{\vec{k}}][\vec{v}]|| \ge \delta_1 ||\vec{k}||^l ||\vec{v}||$ for all $\mu \times 1$ column vectors \vec{v} .

Even for elliptic operators, the above equation for Fourier coefficients cannot always be inverted. However, for sufficiently large |k|, it can be inverted to produce an "approximate" solution \vec{u}_{app} whose Fourier coefficients are 0 for $|k| \leq N$ and $\widehat{\vec{u}_{app}}(\vec{k}) = \hat{L}_{\vec{k}}^{-1} \widehat{\vec{f}}(\vec{k})$. We claim that

Theorem 2.2. If \vec{f} is in H^s and L is elliptic, then

- (1) \vec{u}_{app} is in H^{s+l} .
- (2) The map $G: H^s \to H^{s+l}$ given by $G(f) = \vec{u}_{app}$ is a bounded linear map (with the bound depending on the ellipticity constants, s, l, and coefficients of the lower order terms).
- (3) $L \circ G I : H^s \to H^s$ and $G \circ L I : H^{s+l} \to H^{s+l}$ are compact operators. (In simple english, G is an "almost" inverse of L. It is called a parametrix for L.)
- (4) If $\vec{u} \in H^{s+l}$ satisfies $L(\vec{u}) = \vec{f}$, then $||u||_{H^{s+l}} \le C(||f||_{H^s} + ||u||_{L^2})$ where C depends only on the ellipticity constants, s, l, and bounds on the other coefficients (the lower order terms).
- Proof. (1) Note that $|\widehat{\vec{u}_{app}}(\vec{k})| \leq C \frac{\|\widehat{\vec{f}}(\vec{k})\|}{\|\vec{k}\|^l}$ if $|\vec{k}| \geq N$ where N is sufficiently (depending on the ellipticity constants and the coefficients of the lower order terms) large. Indeed, the magnitude of the lower order terms is less than $C(\|\vec{k}\|^{l-1} + \|\vec{k}\|^{l-2} + \dots \leq C\|\vec{k}\|^{l-1})$ if $\|\vec{k}\| > 1$. Now $\|[\sigma_{\vec{k}} + lower][\vec{v}]\| \geq (\delta_1 \|\vec{k}\|^l C\|\vec{k}\|^{l-1}) \|\vec{v}\|$. Of course if $|\vec{k}| \geq N$ is large, then $\|\hat{L}[\vec{v}]\| \geq c \|\vec{v}\|$ where c > 0. Hence $\|\hat{L}^{-1}[\vec{v}]\| \leq C \|\vec{k}\|^{-l} \|\vec{v}\|$ for large N.

The above easily implies that $\vec{u}_{app} \in H^{s+l}$. Moreover, $\|\vec{u}_{app}\|_{H^{s+l}} \leq C\|f\|_{H^s}$.

- (2) The last inequality implies this result.
- (3) $K(f) = L \circ G(f) f = L(u_{app}) f = -\sum_{|k| < N} \widehat{\vec{f}}(\vec{k}) e^{i\vec{k}.\vec{x}}$. Now K(f) is smooth and is

hence in $H^a \, \forall \, a$. By the Rellich compactness lemma, $K(f): H^s \to H^s$ is compact. Now $G(L(u)) - u = -\sum_{|k| < N} \hat{u}(k) e^{i\vec{k} \cdot \vec{x}}$. As before this is a smooth function and hence by the Rellich

lemma, $G \circ L - I$ is compact.

¹it is called elliptic because for $\mu = 1$ and n = 2, we get the equation of an ellipse

(4) Taking Fourier series on both sides, $\hat{L}\hat{\vec{u}}(\vec{k}) = \hat{\vec{f}}(\vec{k})$. Of course, for large |k|, u coincides with u_{app} . For small |k| < N, $(1 + |k|)^{s+l} \le (1 + N)^{s+l} \le C$ where C depends only on N, s, l and hence only on the ellipticity constants, s, l, and the bounds on the lower order coefficients. This proves the result.

Now we define a useful notion in functional analysis.

Definition 2.3. Suppose H_1, H_2 are Hilbert spaces. A bounded linear operator $T: H_1 \to H_2$ is called Fredholm if ker(T), Coker(T) are finite-dimensional.

We prove the following useful theorem about Fredholm operators. In these results, we use the easy fact that if T is a bounded linear operator and K is compact, then $T \circ K$ and $K \circ T$ are compact. We also use a slightly more difficult fact that if K is compact, then K^* is so as well.

Theorem 2.4. Let $T: H_1 \to H_2$ be a bounded linear operator.

- (1) If Im(T) is closed, then Coker(T) is naturally a Banach space isomorphic to $Im(T)^{\perp}$. Therefore, Coker(T) is a Hilbert space.
- (2) If the range of T is closed, then $Coker(T)^* \simeq Ker(T^*)$ where $T^*: H_2^* \to H_1^*$.
- (3) If Coker(T) is finite dimensional, then the range is closed.
- (4) T is Fredholm if and only if T^* is so.
- (5) T is Fredholm if and only if there exist bounded linear maps $G_1, G_2 : H_2 \to H_1$, such that $G_1 \circ T I$, $T \circ G_2 I$ are compact operators.
- (6) The set of Fredholm operators $S \subset B(H_1, H_2)$ is open.
- (7) Suppose $I \subset \mathbb{R}$ is a connected set. If $F(t): I \subset \mathbb{R} \to S$ is a continuous map, then the index Ind(F(t)) = dim(Ker(F(t))) dim(Coker(F(t))) is a constant.
- (8) If $K: H_1 \to H_2$ is a compact operator and T is Fredholm, then T+K is Fredholm with the same index.
- *Proof.* (1) Define $||[y]|| = \inf_{y \in [y]} ||y||$. By Riesz's lemma, the infimum is attained as a minimum $y_0 \in Im(T)^{\perp}$. The map $[y] \to y_0$ is linear and an isomorphism. We are done.
 - (2) Take $\rho \in ker(T^*) \subset H_2^*$ to $\lambda \in Coker(T)^*$ where $\lambda([y]) = \rho(y)$. This map $V : ker(T)^* \to Coker(T)^*$ is well-defined because $\rho(Tx) = T^*(\rho)(x) = 0$ by definition. It is clearly a linear map (and bounded). If the range is closed, then Coker(T) is a Hilbert space isomorphic to $Im(T)^{\perp}$. Consider the map $U : Coker(T)^* \to H_2^*$ given by $U(\lambda)(v) = \lambda([v])$. This map is clearly linear and bounded. It can be easily seen to invert V.
 - (3) Let $X = Ker(T)^{\perp}$ and let $v_1, \ldots, v_n \in H_2$ be such that $[v]_i$ form a basis for Coker(T). Denote by C the span of v_i in H_2 . Note that $C \cap Im(T) = \{0\}$. Define a map $S: X \oplus C \to H_2$ as S(x,c) = T(x) + c. This map is clearly 1-1. It is onto because $[y] = \sum_i c_i[v_i]$ and hence $y = \sum_i c_i v_i + T(x)$. Thus, S is a bounded linear isomorphism. Therefore, by the open mapping theorem, it is a homeomorphism. Hence, S(x,0) = Im(T) is closed.
 - (4) Suppose T is Fredholm. Since Coker(T) is f.d., the range is closed. Thus, $ker(T^*) = Coker(T)^*$ which is f.d. Moreover, $Coker(T^*) = Im(T^*)^{\perp} = Ker(T)$ (why?) and hence f.d.
 - (5) cont'd....