NOTES FOR 23 OCT (THURSDAY)

1. Recap

- (1) Proved a special case of the uniformisation theorem using the method of continuity (solving a linear PDE, assume WLOG $K_0 < 0$).
- (2) Relationship with Riemann surfaces.

2. The uniformisation theorem for Genus ≥ 2 : A variational method

If $g = e^{-f}g_0$ and we want K(g) = K, then $\Delta f = Ke^{-f} - K_0$. It is a semilinear PDE. Let K = -1. Let the area of g_0 be normalised to be 1. One can prove existence by minimising a certain functional. This approach is there in Kazdan-Warner ("Curvature function for compact two manifolds".) Let $E[f] = \frac{1}{2} \int_M |\nabla f|^2 - \int_M K_0 f$. We want to minimise this functional over H^1 with the constraint $\int_M -e^{-f} = 2\pi\chi(M)$. Why is this problem even sensible? Zeroethly, ignore the constraint for the next few minutes. Firstly, it is obvious (Cauchy-Schwarz) that E(f) is finite for H^1 functions. Secondly, it is bounded below by C-S again. Now we come to the pesky constraint, i.e., suppose you have a sequence $u_i \to u$ in H^1 and u_i satisfy the constraint, then what about u? (From now onwards, we pass to subsequences without mentioning the same, like evil chumps.) Firstly, there is a constant C (independent of p) such that $||w||_{L^p} \le C\sqrt{p}||w||_{H^1}$. Indeed, locally, if w is compactly supported, then $w(x) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \nabla_{euc} w(x-y) \cdot \frac{y}{|y|^2} dy$ (by the divergence theorem) from which Young's inequality ($||f * g||_{L^p} \le ||f||_{L^2}||g||_{L^{2p/(p+2)}}$ for $p \ge 2$) and a partition-of-unity give the result. A power series expansion, the above inequality, and Poincaré 's inequality (A HW exercise asks you to prove the Poincaré inequality: There exists a constant C such that $C||\nabla f||_{L^2} \ge ||f - \int f||_{L^2}|$ show the Moser-Trudinger inequality: $\int_M e^{\beta u^2} dA \le \gamma$ for some positive β , γ and all $||u||_{H^1} \le 1$.

By AM-GM, for any $\alpha > 0$, $\int_M e^{\alpha |u|} \le C' \exp\left(\alpha |\int u| + C\alpha^2 ||\nabla u||_{L^2}^2\right)$.

Using $|e^t - 1| \le |t|e^{|t|}$ and this inequality, we see that if $u_j \to u$ weakly in H^1 , then passing to a subsequence, $e^{u_j} \to e^u$ strongly in L^2 . Therefore, the constraint is met by u.

We now prove a better lower bound on E(f). Indeed, wLog we can assume that $K_0 < 0$ by solving a linear equation $\Delta f_0 + K_{0,old} = 2\pi \chi(M) = K_{0,new}e^{-f_0}$. Since $x \to e^{-x}$ is convex, by Jensen's inequality $2\pi |\chi(M)| = \int e^{-f} \geq e^{-\int f}$ and hence $\int f \geq -C$.

Putting the above together, we see that E(f) is bounded below (in a coercive manner). Indeed, $E(f) = \frac{1}{2} \int_{M} |\nabla (f - f f)|^2 - \int_{M} K_0(f - f f) + 2\pi |\chi(M)| f f \ge -C + \frac{1}{C} ||f - f f||_{H^1}^2$. Let f = u + f f. So f u = 0 and hence $||u||_{L^2} \le C||\nabla u||_{L^2}$. So there is a sequence $f_n \in H^1$ (satisfying the constraint) such that $E(f_n) \to \inf E$. By coercivity, u_n weakly converges to u in H^1 . By the M-T arguments, $e^{-ku_n} \to e^{-ku}$ for every k strongly in L^2 . Solving for $f f_n$ from the constraint, $f f_n = -\ln\left(\frac{2\pi |\chi(M)|}{\int e^{-u_n}}\right)$ which converges to a number f = A + u. Hence f = A + u and it satisfies the constraint. Since $f_n \to f$ strongly in f = A + u is see that f = A + u and f = A + u. Hence f = A + u is see that f = A + u. Hence f = A + u is set that f = A + u. Hence f = A + u is set that f = A + u is satisfies the constraint. Since f = A + u is set that f = A + u is satisfied the constraint. Since f = A + u is satisfied the constraint. Since f = A + u is satisfied the constraint. Since f = A + u is satisfied the constraint. Since f = A + u is satisfied the constraint. Since f = A + u is satisfied the constraint. Since f = A + u is satisfied the constraint.

and $E(u) = \inf E$ where $f = \oint f + u$. Cont'd....