NOTES FOR 28 AUG (THURSDAY)

1. Recap

- (1) Induced metrics on submanifolds and examples.
- (2) Geodesics and some properties.

2. Riemannian manifolds

By the smooth dependence on parameters of an ODE, $\exp_q(v)$ depends smoothly on q and on v and defines a smooth map $\exp_q: T_qM \to M$.

Note that $(\exp_q)_{v*}: T_v(T_qM) \stackrel{\cdot}{\simeq} T_qM \to T_{\exp_q(v)}M$ is its pushforward. We claim that

Theorem 2.1. $(\exp_q)_{0*} = Id$ and hence \exp_q is a local diffeomorphism around $\vec{0}$.

Proof. Clearly the first statement and the inverse function theorem imply the second. Now if $v \in T_qM$, we need to obtain a curve $c(t) \in T_qM$ such that c(0) = 0, c'(0) = v, and $\frac{d\exp_q(c(t))}{dt}|_{t=0} = v$. Let c(t) = tv. Then $\exp_q(c(t)) = \exp_q(tv)$ which is the time-t geodesic starting at q pointing along v at t = 0. Thus we are done.

In fact, we can say more.

Theorem 2.2. Geodesics are locally length minimising. Moreover, if $p \in M$, there exists a geodesic ball $B_{\epsilon_p}(p)$ such that every two points in the ball can be connected by a unique length minimising geodesic lying in the ball and such that the exponential map is a diffeomorphism restricted to the ball. Such a ball is called a geodesically convex ball.

Now we make a definition of a useful coordinate system.

Definition 2.3. Given $q \in M$, the coordinate system defined by $\exp_q : U \subset T_qM \to M$ is called a geodesic normal coordinate system at q (after choosing coordinates on U that is).

This set of coordinates is extremely useful. In fact,

Theorem 2.4. There is a geodesic normal coordinate system v at p, $g_{ij}(p) = \delta_{ij}$ and $\frac{\partial g_{ij}}{\partial v^k}(p) = 0$.

Proof. Choose coordinates x^{μ} so that $g_{\mu\nu}(p) = \delta_{\mu\nu}$. (This can be easily accomplished by taking any coordinate system and rotating it so as to diagonalise g.) Let v^i be coordinates in T_pM . Now exp is a local diffeomorphism. So $x^{\mu}(v^j) = x^{\mu} \circ \exp(v^j)$ is a change of coordinates in a small neighbourhood.

local diffeomorphism. So $x^{\mu}(v^{j}) = x^{\mu} \circ \exp(v^{j})$ is a change of coordinates in a small neighbourhood. Note that since $\exp_{0*} = Id$, $\frac{\partial x^{\mu}}{\partial v^{j}}|_{v=0} = \delta^{\mu}_{j}$. Now $\tilde{g}_{ij} = g_{\mu\nu}\frac{\partial x^{\mu}}{\partial v^{i}}\frac{\partial x^{\nu}}{\partial v^{j}}$. So it is easy to see that $\tilde{g}_{ij}(0) = \delta_{ij}$. Since the geodesics through p are linear in this coordinate system, we see that the Christoffel symbols $\tilde{\Gamma}^{r}_{ij}(0) = 0$. It is easy to see that if the Christoffel symbols are 0, then so are all first partial derivatives of the metric.

More generally, any coordinate system in which the metric at p is standard upto first order is called a normal coordinate system at p.

Actually, we can prove the existence of normal coordinates in much simpler manner even without reference to geodesics.

Theorem 2.5. There is a normal coordinate system y at p.

Proof. Choose any coordinate system at x at p such that x=0 is p. Using a linear map, we may diagonalise g at p. So without loss of generality, $\tilde{g}_{\mu\nu} = \delta_{\mu\nu} + a_{\mu\nu\alpha}x^{\alpha} + O(x^2)$. (Note that $a_{\mu\nu\alpha} = a_{\nu\mu\alpha}$.) Change the coordinates to y such that $x(y)^i = y^i + b^i_{jk}y^jy^k$ where $b^i_{jk} = b^i_{kj}$. Now

$$g_{ij} = \tilde{g}_{\mu\nu} \frac{\partial x^{\mu}}{\partial y^{i}} \frac{\partial x^{\nu}}{\partial y^{j}} = (\delta_{\mu\nu} + a_{\mu\nu\alpha}y^{\alpha} + O(y^{2}))(\delta_{i}^{\mu} + b_{ik}^{\mu}y^{k})(\delta_{j}^{\nu} + b_{jk}^{\nu}y^{k})$$

$$= \delta_{ij} + a_{ijk}y^{k} + (b_{ijk} + b_{jik})y^{k} + O(y^{2})$$
(2.1)

So we just need to choose b so that $a_{ijk} = -b_{ijk} - b_{jik} \ \forall \ k$. So take $b = -\frac{a}{2}$.

It is natural to ask if there is a geodesic normal coordinate system to the second order. Shockingly enough, there isn't (in general). In fact,

Theorem 2.6. There exists a (0,4) tensor (called the Riemann curvature tensor of g) which is locally $R_{\mu\nu\alpha\beta}$ such that in geodesic normal coordinates,

(2.2)
$$g_{\mu\nu} = \delta_{\mu\nu} - \frac{1}{3} R_{\mu\alpha\nu\beta}(0) x^{\mu} x^{\nu} + O(x^3)$$

where in these coordinates, $R_{ijkl}(0) = \frac{1}{2} \frac{\partial^2 g_{jk}}{\partial x^i \partial x^l}(0) + \frac{1}{2} \frac{\partial^2 g_{il}}{\partial x^j \partial x^k}(0) - \frac{1}{2} \frac{\partial^2 g_{jl}}{\partial x^i \partial x^k}(0) - \frac{1}{2} \frac{\partial^2 g_{ik}}{\partial x^j \partial x^l}(0)$. In fact, all the other terms in the Taylor expansion depend only on R and its derivatives. So there is a change of coordinates such that g is Euclidean everywhere, then, since the Euclidean coordinates are geodesically normal, the Riemann curvature tensor is identically 0.

So one can prove that one cannot draw a map of any part of Bangalore on a piece of paper such that distances are to scale, by calculating the curvature of the sphere with the metric induced from the Euclidean space. It turns out to be a non-zero tensor. We will return to curvature later on in a different way. This theorem is to show you that the notion of curvature is "forced" upon us. (It is not an artificial definition.)

3. Connections and curvature

Here are a bunch of observations / questions :

- (1) In \mathbb{R}^n , you have the idea of a "constant" vector field. (Indeed, this is one way to prove that \mathbb{R}^n is parallelizable, i.e., it has trivial tangent bundle.) So you need to able to find the directional derivative $\nabla_V X$ of any vector field along a direction V. Note that if we manage to define this concept, then $\nabla_{\gamma'(t)} X(\gamma(t)) = 0$ amounts to parallel transporting the vector field along γ .
- (2) Suppose $(S, g_S) \subset (\mathbb{R}^n, Euc)$ is a submanifold with the induced metric. (Actually every Riemannian manifold is of this form by the Nash embedding theorem.) Suppose X is a tangent vector field along S. Suppose that N_1, N_2, \ldots, N_k are local linearly independent unit normal vector fields on $U \subset S$ (where k = n dim(S)). Assume that V is a tangent vector on S at p. How can we define the directional derivative $\nabla_V X(p)$? Clearly, the usual Euclidean directional derivative $D_V X = \frac{\partial \vec{X}}{\partial x^i} V^i$ is not the right one because it measures how fast X is changing perpendicular to S as well. So we need to project this back to S.

In other words, the "correct" way to define a directional derivative is $\nabla_V X = D_V X - \sum_{i=1}^k \langle D_V X, N_i \rangle_{Euc} N_i$. Now note that $\langle D_V X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} - \langle X, D_V N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Euc} = D_V \langle X, N_i \rangle_{Euc} + D_V \langle X, N_i \rangle_{Eu$

 $-\langle X, D_V N_i \rangle_{Euc}$. In other words,

(3.1)
$$\nabla_V X = D_V X - \sum \langle X, D_V N_i \rangle_{Euc} N_i = D_V X + a \text{ term linear in } X.$$

It turns out (miraculously) that the linear term is related to the Christoffel symbols and the Riemann curvature tensor of g_S that we defined before. This way of defining a directional derivative is called the Levi-Civita connection. In general, a "directional derivative" on a vector bundle is called a "connection".

- (3) The above definitions of directional derivative are important even for a general vector bundle. For example if we want to prove that there is a nowhere vanishing section of a certain vector bundle, ideally, we would want to take a "constant" section. But to even define that, we need to know the notion of a directional derivative.
- (4) The notion of "curvature" seems to depend on one derivative of the Christoffel symbol (or alternatively, two derivatives of the metric).

The above mentioned observations force us to define a connection $\nabla_W s$ on vector bundles. It is suppose to represent how fast a section s is changing along the tangent vector W. In fact, if W is a vector field, then $\nabla_W s$ better be a section of the vector bundle itself. So, we have

Definition 3.1. Suppose V is a smooth rank-r real vector bundle (a similar definition holds for complex vector bundles) over a smooth manifold M. Suppose $\Gamma(V)$ is the (infinite-dimensional) vector space of smooth sections of V over M. Suppose X is a vector field on M. Then a connection (sometimes called an affine connection) ∇ on V is a map $\nabla_X : \Gamma(V) \to \Gamma(V)$ satisfying the following properties.

- (1) Tensoriality in X: If s is a smooth section of V, X_1, X_2 are two vector fields, and f_1, f_2 are two smooth functions, then $\nabla_{f_1X_1+f_2X_2}(s) = f_1\nabla_{X_1}s + f_2\nabla_{X_2}s$. In other words, the value of $\nabla_X s$ at p depends only on the value of X at p but not on the derivatives of X.
- (2) Linearity in s: If s_1, s_2 are two sections and c_1, c_2 are two real numbers, then $\nabla_X(c_1s_1 + c_2s_2) = c_1\nabla_X s_1 + c_2\nabla_X s_2$.
- (3) Leibniz rule: If f is a smooth function and s is a section, $\nabla_X(fs) = f\nabla_X s + df(X)s = f\nabla_X + X(f)s$.

The first assumption (tensoriality in X) can be stated in another nice way: Suppose we fix s. Then the map $(X, \alpha) \to \alpha(\nabla_X s)$ is a map from $Vect\ fields \times \Gamma(V^*) \to C^{\infty}\ functions$ which is multilinear (over functions). It can be proved that there exists a smooth section $T_s \in \Gamma(T^*M \otimes V^{**} \simeq V)$ such that $T_s(X, \alpha) = \alpha(\nabla_X s)$.

Thus ∇ can be thought of as a map $\Gamma(V) \to \Gamma(V \otimes T^*M)$ given by $s \to \nabla s$. The space $\Gamma(V \otimes T^*M)$ is commonly called "vector-valued 1-forms". Moreover, in this framework, a connection satisfies $\nabla(fs) = df \otimes s + f \nabla s$.

Theorem 3.2. Every vector bundle has a connection.

Proof. Suppose M is covered by a locally finite cover U_{α} of trivialisation open sets for V. Suppose $T_{\alpha}: \pi^{-1}U_{\alpha} \to U_{\alpha} \times \mathbb{R}^r$ is the trivialising isomorphism of bundles. There is an obvious connection ∇_{α} on the trivial bundle $U_{\alpha} \times \mathbb{R}^r$. Define $\tilde{\nabla}_{\alpha} s = T_{\alpha}^{-1} \nabla_{\alpha} (T_{\alpha} s)$ as a connection on V on the set U_{α} . Suppose ρ_{α} is a partition-of-unity subordinate to U_{α} .

Now, define $\nabla s = \sum_{\alpha} \rho_{\alpha} \tilde{\nabla}_{\alpha} s$. The meaning of this statement is "Take s, restrict it to U_{α} , calculate $\tilde{\nabla}_{\alpha} s$ as a section over U_{α} , multiply by ρ_{α} and extend it to all of M by 0 outside U_{α} , and sum over all α . It is a finite sum at every point because of local finiteness of the cover. Thus we have a section

of $V \otimes T^*M$ "

We still have to prove that ∇ is a connection. Indeed,

(3.2)
$$\nabla(fs) = \sum_{\alpha} \rho_{\alpha} \tilde{\nabla}_{\alpha}(fs) = \sum_{\alpha} \rho_{\alpha}(df \otimes s + f \tilde{\nabla}_{\alpha} s)$$
$$= df \otimes s \sum_{\alpha} \rho_{\alpha} + f \nabla s = df \otimes s + f \nabla s$$