NOTES FOR 6 NOV (THURSDAY)

1. Recap

- (1) Riemann mapping via electrostatics.
- (2) Definition of Sobolev spaces and density of smooth functions on bounded smooth domains.
- (3) Trace theorem proved the existence of the trace operator.
- 2. The Dirichlet problem for the Poisson equation on a smooth domain in \mathbb{R}^n (from Evans' book)
- 2.1. **Assigning boundary values through Trace.** Let $U \subset \mathbb{R}^n$ have a C^1 boundary. Then there exists a bounded linear map $Tr: H^1(U) \to L^2(\partial U)$ such that if u is continuous on \bar{U} and in $H^1(U)$, then $Tr(u) = u|_{\partial U}$. Moreover, the trace of functions in $H^1_0(U)$ is zero. Also, all trace-zero functions are in $H^1_0(U)$

Proof. Cont'd

As $m \to \infty$ we see that

Now we prove that every trace-zero function can be approximated by compactly supported smooth ones in H^1 . Firstly, we can assume using a partition-of-unity and equivalence of norms that u is compactly supported on the upper-half space (and replace U with the upper-half space). The same trick used for global smooth approximation ('shifting the point') works to approximate u in H^1 on the upper-half space by smooth ones u_m on the closed upper-half space (having compact support in the closed upper-half space). Now their restrictions to the boundary converge in $L^2(\partial U)$ to 0. We now take an exhaustion of the upper-half space as follows: let $0 \le \zeta \le 1$ be a smooth function that is 1 on [0,1] and 0 outside [0,2]. Write $w_m = u(1-\zeta_m)$ where $\zeta_k = \zeta(kx^n)$. We claim that w_m (which is smooth and compactly supported on the open upper half-space) converges to u in H^1 . Now

$$\int \|\nabla w_m - \nabla u\|^2 d^n x \le C \int |\zeta_m|^2 \|\nabla u\|^2 d^n x + Cm^2 \int_0^{2/m} \int_{\mathbb{R}^{n-1}} |u|^2 d^{n-1} x dt$$

$$=: A + B$$
(2.1)

Note that $A \to 0$ as $m \to \infty$ because of DCT. As for the second term, we need to use the fundamental theorem of calculus:

$$|u_{m}(x',x^{n})| \leq |u_{m}(x',0)| + \int_{0}^{x^{n}} ||\nabla u_{m}|| dt$$

$$(2.2)$$

$$\Rightarrow \int |u_{m}(x',x^{n})|^{2} d^{n-1}x' \leq C(\int |u_{m}(x',x^{n})|^{2} d^{n-1}x' |u_{m}(x',0)|^{2} d^{n-1}x' + x_{n} \int_{0}^{x^{n}} \int ||\nabla u_{m}(x',t)||^{2} d^{n-1}x' dt.$$

(2.3)
$$\int |u(x',x^n)|^2 d^{n-1}x' \le Cx^n \int_0^{x^n} \int ||\nabla u(x',t)||^2 d^{n-1}x' dt.$$

Substituting into the inequality we derived earlier, we see using Cauchy-Schwarz that as $m \to \infty$ the term $B \to 0$. Indeed,

$$Cm^{2} \int_{0}^{2/m} \int_{\mathbb{R}^{n-1}} |u|^{2} d^{n-1}x dt \leq Cm^{2} \int_{0}^{2/m} x^{n} \int_{0}^{x^{n}} \int ||\nabla u(x',t)||^{2} d^{n-1}x' dt dx^{n}$$

$$\leq Cm^{2} \int_{0}^{2/m} x^{n} \int_{0}^{2/m} \int ||\nabla u(x',t)||^{2} d^{n-1}x' dt dx^{n}$$

$$\leq C \int_{0}^{2/m} \int ||\nabla u(x',t)||^{2} d^{n-1}x' dt \to 0$$

$$(2.4)$$

by DCT.

2.2. **Sobolev embedding.** We shall first prove the Gagliardo-Sobolev-Nirenberg inequality: Let $1 \le p < n$ and u be smooth and compactly supported in \mathbb{R}^n . We want to prove an inequality of the type $||u||_{L^q} \le C||\nabla u||_{L^p}$. If indeed such an inequality holds, suppose we change the scale, that is, consider $u_t(x) = u(tx)$. Then $\int |u_t|^q = \frac{1}{t^n} \int |u|^q$ and $\int ||\nabla u_t||^p = \frac{t^p}{t^n} \int ||\nabla u||^p$. Thus $q = \frac{np}{n-p}$ if we want a scale-invariant inequality (otherwise if we zoom in or out, we will get a contradiction). Indeed, this inequality is true for C^1 compactly supported functions as we shall now show:

As is usual in maths, starting with the simplest non-trivial case p = 1 is best. In fact, if we manage to prove this case, apply the estimate to $v = |u|^{\gamma}$ where $\gamma > 1$ is cleverly chosen as follows to get the result for higher p (why is $v \in C^1$?):

(2.5)
$$\left(\int |u|^{\gamma n/(n-1)}\right)^{(n-1)/n} \le C \int ||\nabla |u|^{\gamma}|| = C\gamma \int |u|^{\gamma-1} ||\nabla u||$$
$$\le C\gamma \left(\int |u|^{(\gamma-1)p/(p-1)}\right)^{(p-1)/p} ||\nabla u||_{L^p}.$$

So choosing $\gamma = \frac{p(n-1)}{n-p} > 1$ works.

Now we prove that case of p = 1. The idea is to use FTC and Hölder repeatedly.

$$|u(x)| \le \int_{-\infty}^{\infty} ||\nabla u|| (x^{1}, \dots, y^{i}, \dots) dy^{i} \, \forall \, 1 \le i \le n$$

$$\Rightarrow |u(x)|^{n/(n-1)} \le \prod_{i=1}^{n} \left(\int_{-\infty}^{\infty} ||\nabla u|| (x^{1}, \dots, y^{i}, \dots) dy^{i} \right)^{1/(n-1)}.$$

Now integrate w.r.t x^1 on both sides. One term is independent of x^1 in the product and pulls out.

$$(2.7) \qquad \int |u(x)|^{n/(n-1)} dx^1 \leq \int_{-\infty}^{\infty} \|\nabla u\|(x^1,\ldots,y^i,\ldots) dy^1 \int \left(\int_{-\infty}^{\infty} \|\nabla u\|(x^1,\ldots,y^i,\ldots) dy^i\right)^{1/(n-1)} dx^1.$$

At this juncture, we use the general Hölder inequality to get

$$(2.8) \quad \int |u(x)|^{n/(n-1)} dx^1 \leq \int_{-\infty}^{\infty} \|\nabla u\|(x^1, \dots, y^i, \dots) dy^1 \Pi_{i=2}^n \left(\int \int_{-\infty}^{\infty} \|\nabla u\|(x^1, \dots, y^i, \dots) dx^1 dy^i \right)^{1/(n-1)}.$$

Now integrate w.r.t x^2 on both sides. Again one term is independent of x^2 and pulls out. The integral of the product of the other terms is again estimated using the general Hölder inequality to result in

the following.

$$\int |u(x)|^{n/(n-1)} dx^{1} dx^{2} \leq \left(\int \int_{-\infty}^{\infty} ||\nabla u|| (x^{1}, \dots, y^{i}, \dots) dx^{1} dy^{2} \right)^{1/(n-1)} \left(\int_{-\infty}^{\infty} ||\nabla u|| (x^{1}, \dots, y^{i}, \dots) dx^{2} dy^{1} \right)^{1/(n-1)}$$

$$(2.9) \qquad \times \prod_{i=3}^{n} \left(\int \int \int_{-\infty}^{\infty} ||\nabla u|| (x^{1}, \dots, y^{i}, \dots) dx^{1} dx^{2} dy^{i} \right)^{1/(n-1)}.$$

Continuing like this, we get the desired estimate.

To generalise this inequality to Sobolev embedding for U, we need a device to extend a given function from u to a compactly supported function in \mathbb{R}^n with controlled Sobolev norm. This is the topic of the next theorem.

Theorem 2.1. Let $1 \le p < \infty$. (The theorem holds even for $p = \infty$ but we won't bother.) Suppose $U \subset \mathbb{R}^n$ is a bounded open subset with C^1 boundary. Select any bounded open set V such that $U \subset V$. There exists a bounded linear operator (an 'extension map') $E: W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$ such that for each $u \in W^{1,p}(U)$, Eu = u a.e. in U, Eu has support in V and $||Eu||_{W^{1,p}} \le C||u||_{W^{1,p}(U)}$.

Proof. By approximation, assume that u is smooth up to the boundary. (We need $p < \infty$ here.) First assume that ∂U is flat near x^0 and lies in $x^n = 0$. Choose some open ball B centred at the origin such that $B^+ \subset \bar{U}$. Now define v(x) = u(x) when $x^n \ge 0$ and x is in the ball, and $v(x) = -3u(x', -x^n) + 4u(x', -x^n/2)$ when $x^n < 0$ and x is in the ball. It is easy to check that v is in $C^1(\bar{B})$ and satisfies $||v||_{W^{1,p}(B)} \le C||v||_{W^{1,p}(B^+)}$. Now use the implicit function theorem, equivalence of norms under diffeomorphisms, and a partition-of-unity (with supports such that there are all contained in V) to patch up these local extensions. □

Now we prove that if $U \subset \mathbb{R}^n$ is bounded open with C^1 boundary, $1 \le p < n$ and $u \in W^{1,p}(U)$, then $u \in L^q(U)$ with the estimate $||u||_{L^q}(U) \le C||u||_{W^{1,p}(U)}$:

Indeed, extend u to v = Eu having compact support in \mathbb{R}^n , and with controlled $W^{1,p}$ norm. Now by convolution, there exist smooth compactly supported v_m converging to v in $W^{1,p}(\mathbb{R}^n)$. The GSN inequality now implies the result.

Remark: For $u \in W_0^{1,p}(U)$, we can do better. The RHS can be taken to be $\|\nabla u\|_{L^p(U)}$. This is also called Poincaré's inequality.

Now we look at what happens when n . We have the Morrey inequality.

Theorem 2.2. For all $u \in C^1(\mathbb{R}^n)$, $||u||_{C^{0,\gamma}} \le C||u||_{W^{1,p}}$ where $\gamma = 1 - \frac{n}{p}$.

Proof. First we prove a C^0 bound and then upgrade it to Hölder. Naively, we would use FTC and try to bound the derivative using $W^{1,p}$. But the latter involves an n-dimensional integral (as opposed to 1-dimensional). So we might have better luck bounding an average. Motivated by this observation, consider $|u(x)| \le \int_{B(x,1)} |u(x) - u(y)| dy + \int_{B(x,1)} |u(y)| dy$. The last term is $\le C||u||_{L^p(\mathbb{R}^n)}$. We need to bound

the first term. Let $w \in \partial B(0,1)$ and 0 < s < r.

$$|u(x+sw) - u(x)| \leq \int_{0}^{s} ||\nabla u||(x+tw)dt$$

$$\int_{\partial B(0,1)} |u(x+sw) - u(x)|dA \leq \int_{0}^{s} \int_{\partial B(0,1)} ||\nabla u||(x+tw)dAdt$$

$$\leq \int_{B(0,s)} \frac{||\nabla u||(z)}{||z-x||^{n-1}} dz$$

$$\Rightarrow \int_{\partial B(x,s)} ||u(z) - u(x)||dA(z) \leq s^{n-1} \int_{B(0,r)} \frac{||\nabla u||(z)}{||z-x||^{n-1}} dz$$

$$\Rightarrow \int_{B(x,r)} ||u(y) - u(x)||dy \leq \frac{r^{n}}{n} \int_{B(x,r)} \int_{B(0,r)} \frac{||\nabla u||(z)}{||z-x||^{n-1}} dz.$$

$$(2.10)$$

By Hölder's inequality, we get a C^0 bound. Cont'd.....