HW 2 (due on 4 Sept (Thursday) in the class)

Please write your answers clearly and rigorously. Write your name in plain lettering (as opposed to cursive) and also staple all the pages.

- 1. Suppose (M,g) is a Riemannian manifold. Assume that $\psi_0: M \to \mathbb{R}$ is a continuous Lipschitz function (with Lipschitz constant 1/4) which is differentiable almost everywhere such that $|d\psi_0|_g \leq \frac{1}{4}$ almost everywhere. Prove that there exists a smooth function $\psi: M \to \mathbb{R}$ such that $|\psi_0 \psi| \leq 1$ and $|d\psi|_g \leq 1$.
- 2. Suppose $s \geq 0$. Define $H^{-s}(S^1 \times S^1 \dots)$ as the collection of all complex sequences $a_{\vec{k}}$ where $\vec{k} \in \mathbb{Z}^n$ such that $||a||^2_{H^{-s}} = \sum_{\vec{k} \in \mathbb{Z}^n} |a_{\vec{k}}|^2 (1 + |k|^2)^{-s} < \infty$. (In other words, a is allowed to grow polynomially in some sense.)
 - (a) Prove that if s > l then $H^{-l} \subset H^{-s}$.
 - (b) Prove that the map $T_a(b) = \sum_{\vec{k}} \bar{a}_{\vec{k}} b_{\vec{k}}$ is well-defined when $b \in H^s$ and $a \in H^{-s}$. Also proved that T_a is a bounded linear functional on H^s with $||T_a|| = ||a||_{H^{-s}}$.
 - (c) Prove that there is a function $f_a \in H^s$ such that $T_a(b) = \langle b(x), f_a(x) \rangle_{H^s}$.
 - (d) Prove that $a \to T_a$ is an isomorphism between H^{-s} and $(H^s)^*$. $(H^{-s}$ is called the space of distributions of order s.)
 - (e) Suppose $a \in H^{-s}$ satisfies $\sum |a_k|^2 (1+|k|^2)^l < \infty$ where $l \geq 0$, then prove that $a_k = \hat{f}(\vec{k})$ where $f \in H^l$.
 - (f) Prove that smooth functions are dense in the space of distributions of order s.
 - (g) This question is intentionally vague: Define a distribution of order s (where s is an integer) without using Fourier coefficients. Now assume s can be a real number. Define the notion of a (weak) derivative of a distribution as a distribution of a higher order (with and without using Fourier). Also make the following precise: "If a sequence of distributions converge, then so do their derivatives."
 - (h) Suppose $L: H^{s+l} \to H^s$ is an elliptic operator on the torus with constant coefficients, prove that $u \in ker(L^*: (H^s)^* \simeq H^{-s} \to (H^{s+l})^*) \simeq Coker(L)$ if and only u corresponds to a smooth solution to $L_{form}^* u = 0$.
- 3. Suppose (V, ∇^v) , (W, ∇^w) are two bundles with connections on a smooth manifold M. Let $\Gamma(V)$, $\Gamma(W)$, $\Gamma(V \otimes W)$ be the spaces of smooth sections. Let $S \subset \mathbb{R}$

 $\Gamma(V \otimes W)$ be the subspace consisting of sections of the form $\sum_{i=1,j}^{N} c_{ij} s_i \otimes t_j$ where $s_i \in \Gamma(V), t_j \in \Gamma(W)$ and N is arbitrary, i.e., S consists of finite linear combinations of decomposable sections. Let X be a smooth vector field.

- (a) Define $\nabla_X^{v \otimes w} \sum_{i=1,j}^N c_{ij} s_i \otimes t_j = \sum_{i=1,j}^N c_{ij} (\nabla_X^v s_i \otimes t_j + s_i \otimes \nabla_X^w t_j)$. Prove that it is linear on S, tensorial in X, and satisfies the Leibniz rule.
- (b) Prove that if $\sum_{i=1,j}^N c_{ij} s_i \otimes t_j = \sum_{\alpha=1,\beta=1}^M \tilde{c}_{\alpha\beta} \tilde{s}_{\alpha} \otimes \tilde{t}_{\beta}$ on a neighbourhood U_p of a point p, then $\nabla_X^{v \otimes w} (\sum_{i=1,j}^N c_{ij} s_i \otimes t_j) = \nabla_X^{v \otimes w} \sum_{\alpha=1,\beta=1}^M \tilde{c}_{\alpha\beta} \tilde{s}_{\alpha} \otimes \tilde{t}_{\beta}$. (Hence $\nabla^{v \otimes w}$ is well-defined on S.)
- (c) Given a point $p \in M$, prove that if $s \in \Gamma(V \otimes W)$, then there exists a section $\tilde{s} \in S$ such that $s = \tilde{s}$ on a neighbourhood U_p of p. Conclude that $\nabla^{v \otimes w}$ is a connection on $V \otimes W$.

Comment: The same proof (almost word-to-word) shows that $d^{\nabla}: \Gamma(\Omega^r(M) \otimes V) \to \Gamma(\Omega^{r+1}(M) \otimes V)$ is well-defined.

Optional question: Suppose M is compact. Show that $S = \Gamma(V \otimes W)$.