HW 6 (due on Oct 30)

Please write your answers clearly and rigorously. Write your name in plain lettering (as opposed to cursive) and also staple all the pages.

- 1. Prove the Moser-Trudinger inequality $\int e^{\beta u^2} \leq C$ if $||u||_{H^1} \leq 1$ on a compact oriented surface.
- 2. Let $\int u = 0$ and $u \in H^1$. Let e_n be the eigenfunctions of the Laplacian with eigenvalues λ_n . Then $u = \sum_n u_n e_n$ in L^2 . Prove that
 - (a) $u_0 = 0$.
 - (b) The eigenvalues of Δ are non-positive. (Denote the largest non-zero one by λ_1 .)
 - (c) $\|\nabla u\|_{L^2}^2 = -\sum_n |u_n|^2 \lambda_n$
 - (d) Deduce the Poincaré inequality.
- 3. Let f_1, f_2 be smooth positive functions and $p \ge 1$ be any real number. Solve

$$\Delta u = f_1 |u|^p - f_2$$

on a compact oriented surface using your favourite method.