Inverse Hessian equations and positivity conditions on projective manifolds

Ved Datar

Indian Institute of Science

June 17, 2020

Outline

The Kähler cone

Demailly-Paun criteria

The inverse Hessian equations

Outline

The Kähler cone

Demailly-Paun criteria

The inverse Hessian equations

Outline

The Kähler cone

Demailly-Paun criteria

The inverse Hessian equations

The Kähler cone

Demailly-Paun criteria

Kähler manifolds

- Let M^n be a compact, complex manifold of dimension n.
- A (1,1) form ω , locally given by

$$\omega = \sqrt{-1}g_{\alpha\bar{\beta}}dz^{\alpha} \wedge d\bar{z}^{\beta}$$

is called Kähler if it is

- **Q** positive $\iff \omega(\xi,\bar{\xi}) > 0$ for all $\xi = \sum_i \xi^i \frac{\partial}{\partial z^i} \in T^{1,0}(M) \iff \{g_{\alpha\bar{\beta}}\}$ is positive definite.
- ② closed \iff $d\omega = 0 \iff$ at every point $p \in M$, there exists a system of holomorphic coordinates (z^1, \dots, z^n) centred at p such that

$$g_{\alpha\bar{\beta}}(z,\bar{z}) = \delta_{\alpha\bar{\beta}} + O(|z|^2).$$

3/28

Riemannian metric

• Recall that there is an endomorphism $J \in \operatorname{End}(TM)$, called the "complex structure" satisfying $J^2 = -id$. If $z^i = x^{2i-1} + \sqrt{-1}x^{2i}$, then

$$J\bigg(\frac{\partial}{\partial x^{2i-1}}\bigg) = \frac{\partial}{\partial x^{2i}}, \ J\bigg(\frac{\partial}{\partial x^{2i}}\bigg) = -\frac{\partial}{\partial x^{2i-1}}.$$

• A Kähler form ω then defines a natural Riemannian metric g on M:

$$g(X,Y) = \omega(X,JY).$$

• The volume form is then given by

$$dV = \frac{\omega^n}{n!}$$
.

• In fact if $X \subset M$ is any complex sub-manifold of dimension p, $\omega \Big|_{X}$ is a Kähler metric on X, and

$$\operatorname{Vol}(X,\omega) = \int_X \frac{\omega^p}{p!}.$$

Examples of Kähler manifolds

- Riemann surfaces: Let n = 1. Then there always exists a Kähler form.
- Complex flat space: \mathbb{C}^n with

$$\omega_{\mathbb{C}^n} := \frac{\sqrt{-1}}{2} \Big(dz^1 \wedge d\bar{z}^1 + \cdots + dz^n \wedge d\bar{z}^n \Big).$$

• Complex projective space \mathbb{P}^n . This is defined as $\mathbb{P}^n = \mathbb{C}^{n+1}/\mathbb{C}^*$, where $t \cdot (\xi^0, \dots, \xi^n) = (t \cdot \xi^0, \dots, t \cdot \xi^n)$. Then

$$\omega_{FS} := \sqrt{-1}\partial\overline{\partial}\log\left(|\xi_0|^2 + \dots + |\xi_n|^2\right)$$

is a Kähler metric on \mathbb{P}^n , called the *Fubini-Study* metric.

- Projective varieties: Let $M \subset \mathbb{P}^n$ be a complex sub-manifold. Then $\omega := \omega_{FS} \Big|_{M}$ defines a Kähler metric on M.
- Tori: Let $\Lambda \subset \mathbb{C}^n$ be a lattice. Then the Euclidean metric $\omega_{\mathbb{C}^n}$ (being translation invariant) induces a Kähler form ω_{Λ} on $M_{\Lambda} := \mathbb{C}^n/\Lambda$.
- (A non-example) **Hopf surface:** If $H = \mathbb{C}^2 \setminus \{(0,0)\}/(x,y) \sim (2x,2y)$. This is not Kähler.

The Kähler cone

- ω a Kähler form \Longrightarrow (by being virtue of being closed and real) $[\omega]$ represents a cohomology class in $H^{1,1}_{\tilde{\alpha}}(M) \cap H^2(M,\mathbb{R})$.
- $(\sqrt{-1}\partial\overline{\partial}\text{-Lemma})\ \omega'\in [\omega]\ \Longleftrightarrow\ \omega'=\omega+\sqrt{-1}\partial\overline{\partial}\varphi$ for some $\varphi\in C^\infty(M,\mathbb{R})$.
- Conversely, we say that a class $\alpha \in H^{1,1}_{\bar{\partial}}(M) \cap H^2(M,\mathbb{R})$ is *positive* or *Kähler*, and write $\alpha > 0$, if it contains a Kähler metric.
- ullet The Kähler cone ${\cal K}$ is defined to be

$$\mathcal{K} := \{ \alpha \in H^{1,1}_{\bar{\partial}}(M) \cap H^2(M,\mathbb{R}) \mid \alpha > 0 \}.$$

• Fact: \mathcal{K} is an open, convex cone in the finite dimensional space $H_0^{1,1}(M) \cap H^2(M,\mathbb{R})$. Convex cone simply means that $\alpha \in \mathcal{K} \implies t\alpha \in \mathcal{K}$ for all t > 0.

Question

Given a Kähler manifold M, how can one characterize it's Kähler cone K?

Examples of the Kähler cone

- Let M be a Riemann surface. Then $H^{1,1}_{\bar\partial}(M)=H^2(M,\mathbb{R})\cong\mathbb{R}$. Let ω be a Kähler form with $\int_M\omega=1$. Then any other $\alpha\in H^{1,1}_{\bar\partial}(M)$ is given by $\alpha=t[\omega]$ for some $t\in\mathbb{R}$. If $\alpha>0$, then there exists a $\omega'\in\alpha$ such that $\omega'>0$. In particular, $\int_M\omega'=\int_M\alpha>0$. So t>0. Hence $\mathcal{K}=\mathbb{R}_+$.
- Now let $M_{\Lambda} = \mathbb{C}^n/\Lambda$. Hodge theory \Longrightarrow

$$H^{1,1}_{\overline{\partial}}(M)\cap H^2(M,\mathbb{R})=\Big\{\Big[\sum_{i,j}a_{i\overline{j}}dz^i\wedge dz^{\overline{j}}\Big]\mid A:=\{a_{i\overline{j}}\} \text{ is hermitian symmetric}\Big\}.$$

Hence

 $\mathcal{K} \cong \{A \in M_{n \times n}(\mathbb{C}) \mid A \text{ is a hermitian positive definite matrix}\}.$

7/28

Ample line bundles

• Let $\pi: L \to M$ be a holomorphic line bundle i.e. $M = \bigcup_{\alpha=1}^N U_\alpha$, $\tau_{\alpha\beta}: U_\alpha \cap U_\beta \to \mathbb{C}^*$ holomorphic such that

$$L=\sqcup_{\alpha}U_{\alpha}\times\mathbb{C}\backslash\sim,$$

where $(x_{\alpha}, \lambda_{\alpha}) \sim (x_{\beta}, \lambda_{\beta})$ if and only if $x_{\alpha} = x_{\beta}$ and $\lambda_{\alpha} = \tau_{\alpha\beta}(x_{\alpha}) \cdot \lambda_{\beta}$. So locally $L\Big|_{U_{\alpha}} = U_{\alpha} \times \mathbb{C}$, and $L_{x} := \pi^{-1}(x)$ is a one-dimensional \mathbb{C} vector space.

- A hermitian metric h on L is a fiberwise hermitian metric h(x) on each L_x which varies smoothly. Locally, it is specified by $h_\alpha \in C^\infty(U_\alpha, \mathbb{R}_+)$ such that for $x \in U_\alpha \cap U_\beta$, $h_\alpha(x) = |\tau_{\alpha\beta}(x)|^2 h_\beta(x)$.
- The *curvature* of h given by the form $\Theta_h := -\sqrt{-1}\partial\overline{\partial}\log h$ is a global closed (1,1), purely imaginary form. In fact $\omega_h := \frac{\sqrt{-1}}{2\pi}\Theta_h$ is a global, closed, real (1,1) form.
- The first Chern class of L is defined to be the cohomology class $c_1(L) := [\omega_h] \in H^{(1,1)}_{\overline{\partial}}(M) \cap H^2(M,\mathbb{R}).$
- Fact: $c_1(L) \in H^2(M, \mathbb{Z})$, and conversely any class $\alpha \in H^{1,1}_{\overline{\partial}}(M) \cap H^2(M, \mathbb{Z})$ is $c_1(L)$ for some line bundle L. The cohomology classes $H^{1,1}_{\overline{\partial}}(M) \cap H^2(M, \mathbb{Z})$ will henceforth be called integral classes.

The Seshadri-Nakai-Moishezon criteria

- We say that L is \underline{ample} if $c_1(L) \in \mathcal{K} \iff$ there exists a hermitian metric h such that ω_h is a Kähler form.
- (Kodaira) If L is ample, then holomorphic sections of L^k given an embedding of M into \mathbb{P}^{N_k} for k >> 1.

Theorem 1.1

Let M be projective.

 $\textbf{ (Nakai-Moishezon) A line bundle } L \to M \text{ is ample if and only if for any sub-variety } V \subset M,$

$$\int_V c_1(L)^{\dim V} > 0.$$

(Seshadri) A line bundle $L \to M$ is ample if and only if for any $x \in M$, there exists a constant $\varepsilon(x) > 0$ such that for any curve $C \subset M$ passing through x,

$$\int_{C} c_1(L) > \varepsilon(x) \mathrm{mult}_x C.$$

9/28

The Kähler cone

Demailly-Paun criteria

Some positivity classes

Let (M^n, χ) be a Kähler manifold.

- ullet We have already seen the Kähler cone $\mathcal{K}.$ We now introduce one more positivity classes.
- ullet The class ${\cal P}$ is the class of classes numerically positive on analytic sets, ie.

$$\mathcal{P}:=\{\alpha\in H^{1,1}_{\overline{\partial}}(M)\cap H^2(M,\mathbb{R})\mid \int_Y\alpha^{\dim Y}>0 \text{ for all subvarieties }Y\subset M\}.$$

Remark

It is tempting to imagine, especially given the Nakai criteria, that K = P. But this is wrong!

An example

Consider the torus $M_{\Lambda}=\mathbb{C}^n/\Lambda$. If $n\geq 2$, for a generic choice of Λ , M_{Λ} is not projective. Worse, it has no non-trivial sub-variety. Recall that

$$H^{1,1}_{\overline{\partial}}(M)\cap H^2(M,\mathbb{R})=\left\{\left[\sum_{i,j}a_{i\overline{j}}dz^i\wedge dz^{\overline{j}}\right]\mid A:=\{a_{i\overline{j}}\}\text{ is hermitian symmetric}\right\}$$

$$\mathcal{K}=\{A\in M_{n\times n}(\mathbb{C})\mid A\text{ is a hermitian positive definite matrix}\}.$$

On the other hand, since the only sub-variety is M itself,

$$\mathcal{P} = \{A \in M_{n \times n}(\mathbb{C}) \mid A \text{ is a hermitian matrix with } \det(A) > 0\}.$$

So $\mathcal{P} \subsetneq \mathcal{K}$.

Main theorems of Demailly-Paun

Theorem 2.1

The following are equivalent (TFAE).

- $oldsymbol{0}$ α is a Kähler class.
- **9** For every irreducible analytic set $V \subset X$ of pure dimension p, and for every $k = 1, 2, \cdots, p$.

$$\int_{V} \alpha^{k} \wedge \chi^{p-k} > 0.$$

Remark

In the case of tori $M_{\Lambda} = \mathbb{C}^n/\Lambda$, condition (3) is equivalent to the statement that

$$\int_{M_{\Lambda}} \alpha^{k} \wedge \omega_{M_{\Lambda}}^{n-k} > 0,$$

which in turn is equivalent to saying that each minor of A, the hermitian symmetric matrix representing α , is positive, that is A itself is positive definite. So the theorem is easily verified for tori.

A generalization of the Nakai criteria for projective manifolds

Corollary 2.1

If M is projective, then K = P.

Proof.

It is enough to show that $\mathcal{P} \subset \mathcal{K}$. Suppose $M \subset \mathbb{P}^N$, and suppose $\alpha \in \mathcal{P}$, that is,

$$\int_{V} \alpha^{k} > 0$$

for all sub-varieties of dimension k. Let $\chi=c_1(H)$, where H is the restriction of the hyperplane bundle $\mathcal{O}_{\mathbb{P}^N}(1)$. Then the corollary follows from the Theorem and the observation

$$\int_{V} \alpha^{k} \wedge \chi^{p-k} = \int_{V \cap H_{1} \cap H_{2} \cdots H_{p-k}} \alpha^{k},$$

with hyperplanes H_1, \dots, H_{p-k} in general position.

Outline of the proof of the theorem of Demailly-Paun in the projective case

The main aim is to show that (3) \Longrightarrow (1). Let $I = \{t \in [0, \infty) \mid \alpha + t[\chi] \in \mathcal{K}\}$. Then $t \in I$ if t >> 1. Let $t_0 = \inf I$. W. I. o. g. suppose $t_0 = 0$.

Goal: $0 \in I$.

The key new innovation of Demailly-Paun is the so-called mass concentration technique.

Proposition 2.1

Let (M,χ) be Kähler, and let α such that $\alpha+t[\chi]\in\mathcal{K}$ for all t>0 and $\int_M\alpha^n>0$. Then given any ample divisor Y, there exists a non-negative current $\Theta\in\alpha$ such that $\Theta\geq\beta_Y[Y]$ for some $\beta_Y>0$ and $\Theta=\omega_0+\sqrt{-1}\partial\overline{\partial}\varphi$ for some $\omega_0\in\alpha$ and $\varphi\in L^\infty(M)$.

- Here a (1,1) current Θ is simply a linear functional on $\mathcal{A}^{(n-1,n-1)}(M)$.
- Example: If $Y = \sum a_i Y_i$ is a divisor, then that defines a (1,1) current of integration by

$$\langle [Y], \eta \rangle = \sum_i a_i \int_{Y_i} \eta.$$

- We say that $\Theta \in \alpha$ if $\Theta = \omega_0 + \sqrt{-1}\partial\overline{\partial}\varphi$ for some ω_0 a smooth form in α and $\varphi \in L^1_{loc}$.
- We say that $\Theta>0$ if locally $\Theta=\sqrt{-1}\partial\overline{\partial}\theta$ such that θ is a plurisubharmonic function (ie. sub-harmonic when restricted to complex lines).

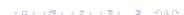
The main steps in the proof of Demailly-Paun

Assumption: $\alpha + t[\chi] \in \mathcal{K}$ for all t > 0 and for all $V \subset M$,

$$\int_{V} \alpha^{k} \wedge \chi^{\dim V - k} > 0.$$

Goal: $\alpha \in \mathcal{K}$.

- Step-1: (Mass concentration) There exists $\Theta \in \alpha$ such that $\Theta \geq \beta_Y[Y]$ for some $\beta_Y > 0$.
- Step-2: Then $\Xi = \Theta \frac{\beta \gamma}{2}[Y] + \frac{\beta \gamma}{2} \chi_Y > 0$ on M. Moreover $\Xi \in \alpha$. Let $T = (1 \delta)\Xi \in (1 \delta)\alpha$. Then T > 0 on M.
- Step-3: (Gao Chen's new idea) For c, let $E_c(T) = \{x \in M \mid \nu(T,x) > c\}$ be the Lelong sub-level set, which is analytic by Siu. Suppose $Z = E_c(T)$ is smooth for some c << 1. Induction hypothesis, implies that Z has a Kähler metric in $\omega_Z \in \alpha \Big|_Z$. Extend it to a Kähler metric $\omega_U = \omega_0 + \sqrt{-1}\partial\overline{\partial}\varphi_U$ to some neighbourhood of U. Then glue this to a regularization of T on $M \setminus U'$ where $\overline{U'} \subset U$. This can be done if the Lelong number c << 1.
- Step-4 In general Z is not smooth, and so take a resolution of singularities.



Outline of proof of mass concentration

- Y be cut-out by a section s of [Y], and let h be a hermitian metric on Y. Let $\chi_t = \chi + A^{-1}\sqrt{-1}\partial\overline{\partial}\log(|s|_h^2 + t^2) > \chi/2$. Note that χ_t concentrates near Y as $t \to 0$.
- (Yau) $(1+t)\alpha$ Kähler \Longrightarrow there exists a unique $\omega_t \in (1+t)\alpha$ such that $\omega_t^n = c_t \chi_t^n$, where $c_t \ge c_0 > 0$.
- $\omega_{t_i} \rightharpoonup \Theta$ for some non-negative current Θ .
- Then one can show that for any neighbourhood U, there exists $\beta_U > 0$ such that

$$\int_{U \cap \{|s|_h^2 < t^2\}} \omega_t \wedge \chi^{n-1} > \delta_U.$$

• Skoda extension + Support theorems from pluripotential theory $\implies \Theta \ge \beta_Y[Y]$ for some $\beta_Y > 0$.

Some remarks

- For non-projective case, Demailly Paun work on $\tilde{M}=M\times M$ and with Y as the diagonal $\Delta\subset \tilde{M}$ to obtain a (n,n) current $\tilde{\Theta}\in [\tilde{\alpha}^n]$, where $\tilde{\alpha}=\pi_1^*\alpha+\pi_2^*\alpha$, and then get the (1,1) K—'ahler current $\Theta=(\pi_1)_*(\tilde{\Theta}\wedge\pi_2^*\omega_0)$ on M. They then use an induction argument and a result from Paun's thesis If T is a Kähler current in α and α is Káhler on Z for every irreducible analytic set $Z\subset M$, then α is Kähler.
- By a result of Boucksom, one can show that if $\alpha + t\chi \in \mathcal{K}$ for all t > 0 and $\int_M \alpha > 0$, then there exists a Kähler current in α with analytic singularities.
- (Collins-Tosatti)

$$\Big\{ \text{Non K\"{a}hler locus of } \alpha \Big\} = \Big\{ \text{Null locus of } \alpha \Big\}.$$

The Kähler cone

Demailly-Paun criteria

Mabuchi functional and the cscK problem

A question of central interest in Kähler geometry is to contruct constant scalar curvature Kähler (cscK) metrics.

Conjecture

(Yau-Tian-Donaldson) Let $\alpha \in \mathcal{K}$. There exists a Kähler form $\omega \in \alpha$ whose scalar curvature \mathbf{s}_{ω} is constant if (and only if) the pair (M, α) is "stable".

• Let ω_0 be a reference metric in α , and let

$$\mathcal{H}_{\alpha} := \{ \varphi \in C^{\infty}(M, \mathbb{R}) \mid \omega_{\varphi} := \omega_{0} + \sqrt{-1} \partial \overline{\partial} \varphi > 0 \}.$$

• (Mabuchi energy, Chen) A metric ω_{φ} is cscK if and only if it is a smooth critical point of the functional

$$K(\varphi) = \int_{M} \log \left(\frac{\omega_{\varphi}^{n}}{\omega_{0}^{n}} \right) \frac{\omega_{\varphi}^{n}}{n!} + J_{-\mathrm{Ric}(\omega_{0})}(\varphi),$$

where for any closed, real (1,1) form χ , J_{χ} is defined by the variational formula

$$\delta J_{\chi}(\varphi) := \int_{M} \delta \varphi \Big(c_{n-1} \chi \wedge \frac{\omega_{\varphi^{n-1}}}{(n-1)!} - \frac{\omega_{\varphi}^{n}}{(n-1)!} \Big).$$

The *J*-equation

• From the previous slide:

$$\delta J_{\chi}(\varphi) := \int_{M} \delta \varphi \Big(c_{n-1} \chi \wedge \frac{\omega_{\varphi^{n-1}}}{(n-1)!} - \frac{\omega_{\varphi}^{n}}{(n-1)!} \Big).$$

• Clearly a metric ω_{φ} is a critical point if and only if it satisfies the so-called J-equation:

$$\omega_{\varphi}^{n}=c_{n-1}\chi\wedge\omega_{\varphi}^{n-1}.$$

- From now on we assume that $\chi > 0$. Then the above functional is "convex" on \mathcal{H}_{α} . Moreover, if there is a solution to the J-equation, then J_{χ} is "proper".
- In particular, studying the *J*-equation on manifolds of general type (so that one can choose ω_0 with $Ric(\omega_0) < 0$) helps in constructing cscK metrics.

Some necessary conditions

Recall the *J*-equation:

$$\omega_{\varphi}^{n}=c_{n-1}\chi\wedge\omega_{\varphi}^{n-1}.$$

A trivial necessary condition is obtained by integrating both sides, ie.

$$c_{n-1} = \frac{\int_M \omega_0^n}{\int_M \chi \wedge \omega_0^{n-1}}.$$

• If n = 2, then the completing squares, the equation is equivalent to

$$\left(\omega_0 - \frac{c_1}{2}\chi + \sqrt{-1}\partial\overline{\partial}\varphi\right)^2 = \chi^2.$$

• By Yau's solution to the Calabi conjecture a necessary condition is that $[\omega_0]-\frac{c_1}{2}[\chi]>0$, that is if we can choose a metric $\omega_0\in[\omega_0]$ such that $\omega_0-\frac{c_1}{2}\chi>0$.

20 / 28

A necessary and sufficient condition

• More generally, if $0 < \lambda_1 \cdots < \lambda_n$ are the eigenvalues of $\chi^{-1}\omega_{\varphi}$, the equation is

$$\frac{1}{\lambda_1}+\cdots+\frac{1}{\lambda_n}=\frac{n}{c_{n-1}}.$$

• So a necessary condition is that for any j,

$$\sum_{i\neq j}\frac{1}{\lambda_i}<\frac{n}{c_{n-1}}\iff n\omega_{\varphi}^{n-1}-c_{n-1}(n-1)\chi\wedge\omega_{\varphi}^{n-2}>0.$$

Theorem 3.1 (Song-Weinkove [5], 2009)

Let (M,χ) be a Kähler manifold and ω_0 another Kähler metric and $c_{n-1}=\frac{\int_M \omega_0^n}{\int_M \chi \wedge \omega_0^{n-1}}$. TFAE.

• There exists a Kähler metric $\omega_{\varphi} = \omega_0 + \sqrt{-1}\partial \overline{\partial} \varphi$ such that

$$\begin{cases} \omega_{\varphi}^{n} = c_{n-1}\chi \wedge \omega_{\varphi}^{n-1} \\ n\omega_{\varphi}^{n-1} - c_{n-1}(n-1)\chi \wedge \omega_{\varphi}^{n-2} > 0. \end{cases}$$

$$(3.1)$$

1 There exists a Kähler metric $\hat{\omega}_0 \in [\omega_0]$ satisfying the cone condition

$$n\hat{\omega}_0^{n-1} - c_{n-1}(n-1)\chi \wedge \hat{\omega}_0^{n-2} > 0.$$

A numerical criteria, a la Demailly-Paun

Theorem 3.2 (Gao Chen [1])

Let (M^n,χ) be a Kähler manifold and ω_0 another Kähler metric. Let $c_{n-1}=\frac{\int_M \omega_0^n}{\int_M \chi \wedge \omega_0^{n-1}}$. TFAE.

• There exists a Kähler metric $\omega_{\varphi} = \omega_0 + \sqrt{-1}\partial\overline{\partial}\varphi$ satisfying

$$\begin{cases} \omega_{\varphi}^{n} = c_{n-1}\chi \wedge \omega_{\varphi}^{n-1} \\ n\omega^{n-1} - c_{n-1}(n-1)\chi \wedge \omega_{\varphi}^{n-2} > 0. \end{cases}$$

$$(3.2)$$

① There exists a Kähler metric $\hat{\Omega} \in [\Omega_0]$ satisfying the cone condition

$$n\hat{\omega}_0^{n-1} - c_{n-1}(n-1)\chi \wedge \hat{\omega}_0^{n-2} > 0.$$

1 There exists an $\varepsilon > 0$ such that for any p-dimensional sub-variety $V \subset X$,

$$\int_{V} \left(n\omega_{0}^{p} - c_{n-1}p\chi \wedge \omega_{0}^{p-1} \right) > \varepsilon \int_{V} n\omega_{0}^{p}.$$

Note that the final condition only depends on the cohomology classes $[\omega_0]$ and $[\chi]$.

More general inverse Hessian equations

More generally, Szekelyhidi, and others before him, considered the equation

$$\omega_{\varphi}^{n}=c_{k}\chi^{n-k}\wedge\omega_{\varphi}^{k},$$

and proved that a solution exists if and only if the cone condition is met for some $\hat{\omega} \in [\omega_0]$,

$$n\hat{\omega}^n - c_k k \chi^{n-k} \wedge \hat{\omega}^{k-1} > 0$$

is satisfied. Szekelyhidi then made the following conjecture:

Conjecture (Szekelyhidi [6])

The above equation has a solution if and only if for every subvariety V of codimension $n-k \le p \le n-1$, the following inequality holds.

$$\int_{V} \binom{n}{p} [\omega_0]^{n-p} - \int_{V} c \binom{k}{p} \chi^k [\omega_0]^{n-p-k} > 0.$$

Generalized inverse Hessian equations

Let c_1, \cdots, c_{n-1} be non-negative real numbers, such that at least one is positive. Suppose

$$\int_{M} \omega_{\varphi}^{n} = \int_{M} \sum_{k=1}^{n-1} c_{k} \chi^{n-k} \omega_{\varphi}^{k}.$$

S

Theorem (D.-Pingali [4], 2020)

Let M be a projective manifold, and χ, ω_0 be Kähler forms. TFAE:

1 The generalised Monge-Ampère equation has a solution $\omega_{\varphi}=\omega_0+\sqrt{-1}\partial\overline{\partial}\varphi$ satisfying

$$\begin{cases} \omega_{\varphi}^{n} = \sum_{k=1}^{n-1} c_{k} \chi^{n-k} \omega_{\varphi}^{k}, \\ n \omega_{\varphi}^{n-1} - \sum_{k=1}^{n-1} c_{k} k \chi^{n-k} \omega_{\varphi}^{k-1} > 0. \end{cases}$$
(3.3)

② (Cone condition) There exists a Kähler metric $\hat{\omega}_0 \in [\omega_0]$ satisfying the cone condition, i.e.,

$$n\hat{\omega}_0^{n-1} - \sum_{k=1}^{n-1} c_k k \chi^{n-k} \hat{\omega}_0^{k-1} > 0.$$

(Uniform stability condition) There exists a constant $\varepsilon > 0$ such that for all G-invariant subvarieties $V \subset M$ of co-dimension p, we have

$$\int_{V} \left(\binom{n}{p} \omega_0^{n-p} - \sum_{k=p}^{n-1} c_k \binom{k}{p} \chi^{n-k} \wedge \omega_0^{k-p} \right) > \varepsilon \binom{n}{p} \int_{V} \omega_0^{n-p}.$$

Some remarks

- We obtain an equivariant version. In particular, for toric manifolds, one needs to
 only check the numerical criteria on torus invariant sub-varieties. For *J*-equation,
 this recovers results of Collins-Szekelyhidi.
- We believe that the uniformity can be relaxed (ie. we can prove the same theorem with $\varepsilon=0$), and this is a work in progress.

Future directions

- **①** One can try to prove this theorem for non-projective Kähler manifolds. The problem is that one needs to solve an appropriate PDE on $M \times M$. In our case, it is not clear what this PDE should be.
- **②** One can instead also look at Hessian equations (ie. $\omega_{\varphi}^k \wedge \chi^{n-k} = a_k \chi^n$).
 - Here Kähler condition may have to be relaxed (think of the simplest case where ${\rm tr}_X\omega_{\varphi}=a_1$, this is equivalent to solving $\Delta_X\varphi=a_1-{\rm tr}_X\omega_0$, and then even if ω_0 is Kähler, ω_{φ} need not be Kähler).
 - But one can come up with some obstructions in terms of cone conditions and numerical criteria, and there are corresponding conjectures (for Laplace equation this is simply $n \int \omega_0 \wedge \chi^{n-1} = a_1$).
- One can attempt to obtain a Collins-Tosatti type theorem.
 - For instance, the null locus can be defined to be the "smallest" set where the cone
 condition fails. Then a natural question is whether this is an analytic set, and if so, is
 it the "largest" set on which the numerical criteria fails.
 - For this, maybe one has to obtain an analog of the Boucksom result, which itself might be hard at this point. That is, if α is Kähler and $\alpha+t\chi$ has a metric satisfying the cone condition, then is there a current $T\in\alpha$ satisfying the cone condition, but having "mild singularities".

26/28

Thank You for your attention!

Select references

G. Chen. On J-equation. arXiv: 1905.10222.

Collins, T. and Tosatti, V. "Kähler currents and null loci", Invent. Math., n.0 3. (2015): 1167–1198

Datar, V. and Pingali, V A numerical criterion for generalised Monge-Ampere equations on projective manifolds, arXiv:2006.01530.

Demailly, J-P and Paun, M. "Numerical characterization of the Kähler cone of a compact Kähler manifold". Ann. Math. (2004): 1247-1274.

J. Song, and B. Weinkove. "The degenerate J-flow and the Mabuchi energy on minimal surfaces of general type." Univ. lagellonicae Acta Math. 50: 89-106.

G. Székelyhidi. "Fully non-linear elliptic equations on compact Hermitian manifolds."

J. Differential Geom. 109(2)(2018): 337-378.