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Entrywise functions preserving positivity
Definitions:

1 A real symmetric matrix An×n is positive semidefinite if its quadratic
form is so: xTAx ≥ 0 for all x ∈ Rn. (Hence σ(A) ⊂ [0,∞).)

2 Given n ≥ 1 and I ⊂ R, let Pn(I) denote the n× n positive
(semidefinite) matrices, with entries in I. (Say Pn = Pn(R).)

3 A function f : I → R acts entrywise on a matrix A ∈ In×n via:
f [A] := (f(ajk))

n
j,k=1.

Problem: For which functions f : I → R is it true that

f [A] ∈ Pn for all A ∈ Pn(I)?

(Long history!) The Schur Product Theorem [Schur, Crelle 1911] says:
If A,B ∈ Pn, then so is A ◦B := (ajkbjk).

As a consequence, f(x) = xk (k ≥ 0) preserves positivity on Pn for all n.

(Pólya–Szegö, 1925): Taking sums and limits, if f(x) =
∑∞
k=0 ckx

k is
convergent and ck ≥ 0, then f [−] preserves positivity.
Question: Anything else?
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Schoenberg’s theorem

Interestingly, the answer is no, if we want to preserve positivity in all
dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ Pn for all A ∈ Pn(I) and all n ≥ 1.

2 f is analytic on I and has nonnegative Taylor coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck ≥ 0.

Schoenberg’s result is the (harder) converse to that of his advisor: Schur.

Vasudeva (1979) proved a variant, over I = (0,∞).

Upshot: Preserving positivity in all dimensions is a rigid condition  
implies real analyticity, absolute monotonicity. . .
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Schoenberg’s motivations: metric geometry

Endomorphisms of matrix spaces with positivity constraints related to:

matrix monotone functions (Loewner)

preservers of matrix properties (rank, inertia, . . . )

real-stable/hyperbolic polynomials (Borcea, Branden, Liggett,
Marcus, Spielman, Srivastava. . . )

positive definite functions (von Neumann, Bochner, Schoenberg . . . )

Definition

f : [0,∞)→ R is positive definite on a metric space (X, d) if
[f(d(xj , xk))]

n
j,k=1 ∈ Pn, for all n ≥ 1 and all x1, . . . , xn ∈ X.

Plan for rest of the talk: Discuss the path from metric geometry, through
positive definite functions, to Schoenberg’s theorem.
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Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. . .

Now ubiquitous in science (mathematics, physics, economics, statistics,
computer science. . . ).

Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with |X| = n+ 1,
then (X, d) isometrically embeds into (Rn, `∞).

This avenue of work led to the exploration of metric space embeddings.
Natural question: Which metric spaces isometrically embed into
Euclidean space?
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.

Reformulated by Schoenberg, using. . . matrix positivity!

Theorem (Schoenberg, Ann. of Math. 1935)

Fix integers n, r ≥ 1, and a finite set X = {x0, . . . , xn} together with a metric
d on X. Then (X, d) isometrically embeds into Rr (with the Euclidean
distance/norm) but not into Rr−1 if and only if the n× n matrix

A := (d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)2)nj,k=1

is positive semidefinite of rank r.

Connects metric geometry and matrix positivity.
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Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into (Rr, ‖ · ‖), then

d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)2

= ‖x0 − xj‖2 + ‖x0 − xk‖2 − ‖(x0 − xj)− (x0 − xk)‖2

= 2〈x0 − xj , x0 − xk〉.

But then the matrix A above, is the Gram matrix of a set of vectors in Rr,
hence is positive semidefinite, of rank ≤ r.

In fact the rank is exactly r.

Also observe: the matrix A := (d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)2)nj,k=1

is positive semidefinite,
if and only if the matrix A′(n+1)×(n+1) := (−d(xj , xk)2)nj,k=0 is

conditionally positive semidefinite: uTA′u ≥ 0 whenever
∑n
j=0 uj = 0.

This is how positive / conditionally positive matrices emerged from
metric geometry.
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Distance transforms: positive definite functions

As we saw, applying the function −x2 entrywise sends any distance matrix
from Euclidean space, to a conditionally positive semidefinite matrix A′.

What operations send distance matrices to positive semidefinite matrices?

These are the positive definite functions. Example: Gaussian kernel:

Theorem (Schoenberg, Trans. AMS 1938)

The function f(x) = exp(−x2) is positive definite on Rr, for all r ≥ 1.

Schoenberg showed this using Bochner’s theorem on Rr, and the fact that the
Gaussian function is its own Fourier transform (up to constants).

Alternate proof (K.):
(1) An observation of Gantmakher and Krein(?): Generalized Vandermonde
matrices are totally positive. In other words, if 0 < y1 < · · · < yn and
x1 < · · · < xn in R, then det(y

xk
j )nj,k=1 is positive.

(2) A result by Pólya: The Gaussian kernel is positive definite on R1. Indeed,(
exp(−(xj − xk)2)

)n
j,k=1

= diag(e−x
2
j )×

(
exp(2xjxk)

)n
j,k=1

× diag(e−x
2
k ).

(3) A result of Schur: The Schur product theorem implies the result for Rr.
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Metric embeddings via the Gaussian kernel

This implies the ‘only if’ part of the following result:

Theorem (Schoenberg, Trans. AMS 1938)

A finite metric space (X, d) with X = {x0, . . . , xn} embeds isometrically into
Rr for some r > 0 (which turns out to be at most n), if and only if for all
λ > 0, the (n+ 1)× (n+ 1) matrix Xλ with (j, k) entry

(Xλ)j,k := exp(−λ2d(xj , xk)
2), 0 ≤ j, k ≤ n

is positive semidefinite. (I.e., exp(−λ2x2) is positive definite on X.)

Note again the connection between metric geometry and matrix positivity.

Proof of ‘if’ part:
We only need that Xλ is conditionally positive. If

∑
j≥0 uj = 0, then expanding

uTXλu ≥ 0 as a power series in λ2 � 1, the first two leading terms are:

λ0
n∑

j,k=0

ujuk =
(∑
j≥0

uj
)2

= 0, −λ2
n∑

j,k=0

ujukd(xj , xk)
2.

Thus the leading coefficient (of λ2) is non-negative, so A′ = (−d(xj , xk)2)nj,k=0

is conditionally positive. Now apply Schoenberg’s 1935 result.
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Spherical embeddings, via positive definite maps

The previous result says: Euclidean spaces Rr, or their direct limit R∞ (called
Hilbert space by Schoenberg) are characterized by the property that the maps

exp(−λ2x2), λ ∈ (0, ε)

are all positive definite on each (finite) metric subspace.
(As we saw, such a characterization holds for each ε > 0.)

What about distinguished subsets of Rr or of R∞? Can one find similar
families of functions for them?

Schoenberg explored this question for spheres: Sr−1 ⊂ Rr and S∞ ⊂ R∞.
It turns out, the characterization now involves a single function!

This is the cosine function.
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Spherical embeddings via cosines

Notice that the Hilbert sphere S∞ (hence every subspace such as Sr−1) has a
rotation-invariant distance – arc-length along a great circle:

d(x, y) := ^(x, y) = arccos〈x, y〉, x, y ∈ S∞.

Hence applying cos[−] entrywise to any distance matrix on S∞ yields:

cos[(d(xj , xk))j,k≥0] = (〈xj , xk〉)j,k≥0,

and this is a Gram matrix, so positive semidefinite.

Moreover, if X ↪→ S∞ then
X must have diameter at most diam S∞ = π. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S∞

if and only if (a) cos(x) is positive definite on X, and (b) diam X ≤ π.

Proof of ‘if’ part: If A := (cos d(xj , xk))
n
j,k=0 is positive semidefinite, write

A = BTB for some Br×(n+1) of rank r = rank(A).

Let y0, . . . , yn denote the columns of B. Then yj ∈ Sr−1 ⊂ S∞.

Now check that xj 7→ yj is an isometric embedding : X ↪→ Sr−1.
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Positive definite functions on spheres

These results characterize R∞ and S∞ in terms of positive definite functions.

At the same time (1930s), Bochner proved his famous theorem classifying all
positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary
locally compact abelian groups.

After understanding that cos(·) is positive definite on S∞, Schoenberg was
interested in classifying positive definite functions on spheres.
This is the main result – and the title! – of his 1942 paper:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous, and r ≥ 2. Then f(cos ·)
is positive definite on the unit sphere Sr−1 ⊂ Rr if and only if

f(·) =
∑
k≥0

akC
( r−2

2
)

k (·) for some ak ≥ 0,

where C(λ)
k (·) are the ultraspherical / Gegenbauer / Chebyshev polynomials.

Also follows from Bochner’s work on compact homogeneous spaces [Ann. of
Math. 1941] – but Schoenberg proved it directly with less ‘heavy’ machinery.
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From spheres to correlation matrices

Any Gram matrix of vectors xj ∈ Sr−1 is the same as
a rank ≤ r correlation matrix A = (ajk)

n
j,k=1, i.e.,

= (〈xj , xk〉)nj,k=1.

So,

f(cos ·) positive definite on Sr−1 ⇐⇒ (f(cos d(xj , xk)))
n
j,k=1 ∈ Pn

⇐⇒ (f(〈xj , xk〉))nj,k=1 ∈ Pn
⇐⇒ (f(ajk))

n
j,k=1 ∈ Pn ∀n ≥ 1,

i.e., f preserves positivity on correlation matrices of rank ≤ r.

If instead r =∞, such a result would classify the entrywise positivity
preservers on all correlation matrices. Interestingly, 70 years later the
subject has acquired renewed interest because of its immediate impact in
high-dimensional covariance estimation, in several applied fields.
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Schoenberg’s theorem on positivity preservers

And indeed, Schoenberg did make the leap from Sr−1 to S∞:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous. Then f(cos ·) is positive definite on the
Hilbert sphere S∞ ⊂ R∞ if and only if

f(cos θ) =
∑
k≥0

ck cos
k θ,

where ck ≥ 0 ∀k are such that
∑
k ck <∞.

Notice that cosk θ is positive definite on S∞ for each k ≥ 0, by the Schur
product theorem.

Freeing this result from the sphere context, one obtains Schoenberg’s theorem
on entrywise positivity preservers.

For more information: A panorama of positivity – available on arXiv.
(Dec. 2018 survey by A. Belton, D. Guillot, A.K., and M. Putinar.)
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