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Entrywise functions preserving positivity

Definitions:

@ A real symmetric matrix A, «, is positive semidefinite if its quadratic
form is so: 2T Az > 0 for all z € R™. (Hence o(A) C [0,0).)

@ Givenn >1and I C R, let P,(I) denote the n X n positive
(semidefinite) matrices, with entries in I. (Say P, = P, (R).)
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Entrywise functions preserving positivity

Definitions:

@ A real symmetric matrix A, «, is positive semidefinite if its quadratic
form is so: 2T Az > 0 for all z € R™. (Hence o(A) C [0,0).)

@ Givenn >1and I C R, let P,(I) denote the n X n positive
(semidefinite) matrices, with entries in I. (Say P, = P, (R).)

@ A function f: I — R acts entrywise on a matrix A € I"*" via:
flA] = (f(ajk))?,kzl-
Problem: For which functions f : I — R is it true that

flA] € P, for all A € P,(I)?
@ (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says:
If A, B € Py, then sois Ao B := (a;irbji).
@ As a consequence, f(z) = z* (k > 0) preserves positivity on PP, for all n.

@ (P¢lya—Szegd, 1925): Taking sums and limits, if f(z) = 372 cxz” is
convergent and ¢, > 0, then f[—] preserves positivity.

Question: Anything else?
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Schoenberg's theorem

Interestingly, the answer is no, if we want to preserve positivity in all
dimensions:
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Schoenberg's theorem

Interestingly, the answer is no, if we want to preserve positivity in all
dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (—1,1) and f : I — R. The following are equivalent:
Q f[A] €P, forall A€ P,(I) and alln > 1.

@ f is analytic on I and has nonnegative Taylor coefficients.
In other words, f(z) =372, cxa®™ on (—1,1) with all ¢, > 0.

@ Schoenberg's result is the (harder) converse to that of his advisor: Schur.
@ Vasudeva (1979) proved a variant, over I = (0, c0).

@ Upshot: Preserving positivity in all dimensions is a rigid condition ~~
implies real analyticity, absolute monotonicity. . .
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Schoenberg's motivations: metric geometry

Endomorphisms of matrix spaces with positivity constraints related to:

matrix monotone functions (Loewner)
preservers of matrix properties (rank, inertia, ...)
real-stable/hyperbolic polynomials (Borcea, Branden, Liggett,

Marcus, Spielman, Srivastava...)

positive definite functions (von Neumann, Bochner, Schoenberg .. .)
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Schoenberg's motivations: metric geometry

Endomorphisms of matrix spaces with positivity constraints related to:
@ matrix monotone functions (Loewner)
@ preservers of matrix properties (rank, inertia, ...)

@ real-stable/hyperbolic polynomials (Borcea, Branden, Liggett,
Marcus, Spielman, Srivastava...)

@ positive definite functions (von Neumann, Bochner, Schoenberg . ..)

Definition

f:[0,00) — R is positive definite on a metric space (X, d) if
[f(d(zj,zk))]} k=1 € Pn, foralln>1andallzy,..., 2, € X.

Plan for rest of the talk: Discuss the path from metric geometry, through
positive definite functions, to Schoenberg's theorem.
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Distance geometry

How did the study of positivity and its preservers begin?
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Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. ..

@ Now ubiquitous in science (mathematics, physics, economics, statistics,

computer science. .. ).

@ Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with |X|=n+1,
then (X, d) isometrically embeds into (R", ).

@ This avenue of work led to the exploration of metric space embeddings.

Natural question: Which metric spaces isometrically embed into
Euclidean space?
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

@ Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.

@ Reformulated by Schoenberg, using. .. matrix positivity!

Theorem (Schoenberg, Ann. of Math. 1935)

Fix integers n,r > 1, and a finite set X = {xo,...,x,} together with a metric
d on X. Then (X,d) isometrically embeds into R" (with the Euclidean
distance/norm) but not into R"~" if and only if the n x n matrix

A= (d(zo,2;)* + d(zo, zx)” — d(zj, 1)) k=1
is positive semidefinite of rank r.

Connects metric geometry and matrix positivity.
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Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into (R", || - ||), then

d(zo, ;)% + d(zo, zk)” — d(zj, zk)°
= |lwo — ;1> + llwo — zx||” — [[(xo — 25) — (w0 — 1) ||

= 2{xo — T4,T0 — Tk)-

But then the matrix A above, is the Gram matrix of a set of vectors in R",
hence is positive semidefinite, of rank < r.
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Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into (R", || - ||), then
d(wo, x5)* + d(wo, xx)* — d(z;, x1)*
= lleo — z;|1* + llzo — @il — lI(z0 — z5) — (w0 — z)|*
= 2{xo — T4,T0 — Tk)-

But then the matrix A above, is the Gram matrix of a set of vectors in R",
hence is positive semidefinite, of rank < r. In fact the rank is exactly 7. O

@ Also observe: the matrix A := (d(zo, ;) + d(z0, xx)* — d(z;, Tk)?)} k=1
is positive semidefinite,

if and only if the matrix A{,, 1)y (ny1) i= (—d(zj, 2%)?)} 10 is

conditionally positive semidefinite: uT A'u > 0 whenever > ui =0.
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Sketch of one implication: If (X, d) isometrically embeds into (R", || - ||), then
d(wo, x5)* + d(wo, xx)* — d(z;, x1)*
= lleo — z;|1* + llzo — @il — lI(z0 — z5) — (w0 — z)|*
= 2{xo — T4,T0 — Tk)-

But then the matrix A above, is the Gram matrix of a set of vectors in R",
hence is positive semidefinite, of rank < r. In fact the rank is exactly 7. O

@ Also observe: the matrix A := (d(zo, ;) + d(z0, xx)* — d(z;, Tk)?)} k=1
is positive semidefinite,

if and only if the matrix A{,, 1)y (ny1) i= (—d(zj, 2%)?)} 10 is

conditionally positive semidefinite: uT A'u > 0 whenever > ui =0.

@ This is how positive / conditionally positive matrices emerged from
metric geometry.
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Distance transforms: positive definite functions

As we saw, applying the function —z2 entrywise sends any distance matrix
from Euclidean space, to a conditionally positive semidefinite matrix A’.

What operations send distance matrices to positive semidefinite matrices?
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As we saw, applying the function —z? entrywise sends any distance matrix
from Euclidean space, to a conditionally positive semidefinite matrix A’.

What operations send distance matrices to positive semidefinite matrices?
These are the positive definite functions. Example: Gaussian kernel:

Theorem (Schoenberg, Trans. AMS 1938)

The function f(z) = exp(—2?) is positive definite on R, for all r > 1.

Schoenberg showed this using Bochner’s theorem on R", and the fact that the
Gaussian function is its own Fourier transform (up to constants).
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Distance transforms: positive definite functions

As we saw, applying the function —z2 entrywise sends any distance matrix
from Euclidean space, to a conditionally positive semidefinite matrix A’.

What operations send distance matrices to positive semidefinite matrices?
These are the positive definite functions. Example: Gaussian kernel:

Theorem (Schoenberg, Trans. AMS 1938)

The function f(z) = exp(—2?) is positive definite on R, for all r > 1.

Schoenberg showed this using Bochner’s theorem on R", and the fact that the
Gaussian function is its own Fourier transform (up to constants).

Alternate proof (K.):

(1) An observation of Gantmakher and Krein(?): Generalized Vandermonde
matrices are totally positive. In other words, if 0 < y1 < --- < ¥y, and

x1 < -+ < @y in R, then det(y;*)} ,—; is positive.

(2) A result by Pélya: The Gaussian kernel is positive definite on R'. Indeed,
n . _z2 n . _z2
(exp(—(a:j — mk)2))j’k:1 = diag(e” ") x (exp(ija:k))j‘kzl x diag(e™ “*).
(3) A result of Schur: The Schur product theorem implies the result for R™. [J
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Metric embeddings via the Gaussian kernel

This implies the ‘only if' part of the following result:

Theorem (Schoenberg, Trans. AMS 1938)

A finite metric space (X,d) with X = {xo,...,xn} embeds isometrically into
R" for some r > 0 (which turns out to be at most n), if and only if for all
A >0, the (n + 1) x (n+ 1) matrix X with (j,k) entry

(X2)j.k o= exp(=Nd(z;, zx)?), 0<jk<n

is positive semidefinite. (l.e., exp(—\>x?) is positive definite on X.)

Note again the connection between metric geometry and matrix positivity.
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(X2)j.k o= exp(=Nd(z;, zx)?), 0<jk<n

is positive semidefinite. (l.e., exp(—\>x?) is positive definite on X.)

Note again the connection between metric geometry and matrix positivity.

Proof of ‘if’ part:
We only need that X is conditionally positive. If Zj>0 u; = 0, then expanding

uTXyu > 0 as a power series in A2 < 1, the first two leading terms are:

AO zn: UjUE = (ZUJ‘)Q = 0, —)\2 zn: ujukd(xj,xk)z.

J,k=0 j=0 j,k=0
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This implies the ‘only if' part of the following result:

Theorem (Schoenberg, Trans. AMS 1938)

A finite metric space (X,d) with X = {xo,...,xn} embeds isometrically into
R" for some r > 0 (which turns out to be at most n), if and only if for all
A >0, the (n + 1) x (n+ 1) matrix X with (j,k) entry
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is positive semidefinite. (l.e., exp(—\>x?) is positive definite on X.)

Note again the connection between metric geometry and matrix positivity.

Proof of ‘if’ part:
We only need that X is conditionally positive. If ijo u; = 0, then expanding
uTXyu > 0 as a power series in A2 < 1, the first two leading terms are:
AO E UjUE = (Z Uj)2 = 0, —)\2 Z Ujukd(xj,xk)z.
J:k=0 Jj=0 7, k=0
Thus the leading coefficient (of A?) is non-negative, so A’ = (—d(z;, zx)*)} k-0
is conditionally positive. Now apply Schoenberg’s 1935 result. O
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Spherical embeddings, via positive definite maps

The previous result says: Euclidean spaces R", or their direct limit R> (called
Hilbert space by Schoenberg) are characterized by the property that the maps

exp(—\°z?), A€ (0,€)

are all positive definite on each (finite) metric subspace.
(As we saw, such a characterization holds for each ¢ > 0.)

Apoorva Khare, 1ISc Bangalore 10 / 14



Spherical embeddings, via positive definite maps

The previous result says: Euclidean spaces R", or their direct limit R> (called
Hilbert space by Schoenberg) are characterized by the property that the maps

exp(—\°z?), A€ (0,€)

are all positive definite on each (finite) metric subspace.
(As we saw, such a characterization holds for each ¢ > 0.)
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Spherical embeddings, via positive definite maps

The previous result says: Euclidean spaces R", or their direct limit R> (called
Hilbert space by Schoenberg) are characterized by the property that the maps

exp(—\°z?), A€ (0,€)

are all positive definite on each (finite) metric subspace.
(As we saw, such a characterization holds for each ¢ > 0.)

What about distinguished subsets of R™ or of R*? Can one find similar
families of functions for them?

Schoenberg explored this question for spheres: S™~1 € R” and S C R*°.
It turns out, the characterization now involves a single function!

This is the cosine function.
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Spherical embeddings via cosines

Notice that the Hilbert sphere S> (hence every subspace such as S"') has a
rotation-invariant distance — arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), z,y € S.
Hence applying cos[—] entrywise to any distance matrix on S°° yields:
cos((d(z;, xx))jk=0] = ({x3, 2k))j k>0,

and this is a Gram matrix, so positive semidefinite.
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rotation-invariant distance — arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), z,y € S.
Hence applying cos[—] entrywise to any distance matrix on S°° yields:
cos((d(z;, xx))jk=0] = ({x3, 2k))j k>0,

and this is a Gram matrix, so positive semidefinite. Moreover, if X < S then
X must have diameter at most diam S°° = 7. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S
if and only if (a) cos(z) is positive definite on X, and (b) diam X < 7.
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Spherical embeddings via cosines

Notice that the Hilbert sphere S> (hence every subspace such as S"') has a
rotation-invariant distance — arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), z,y € S.
Hence applying cos[—] entrywise to any distance matrix on S°° yields:
cos((d(z;, xx))jk=0] = ({x3, 2k))j k>0,

and this is a Gram matrix, so positive semidefinite. Moreover, if X < S then
X must have diameter at most diam S°° = 7. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S
if and only if (a) cos(z) is positive definite on X, and (b) diam X < 7.

Proof of ‘if” part: If A := (cosd(z;,zr))] r—o is positive semidefinite, write
A = BT B for some By (n+1) of rank 7 = rank(A).

@ Let 9o,...,yn denote the columns of B. Then y; € S~ C §=.
@ Now check that 2; > y; is an isometric embedding : X < S™ %, O
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Positive definite functions on spheres

These results characterize R™ and S in terms of positive definite functions.

At the same time (1930s), Bochner proved his famous theorem classifying all
positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary
locally compact abelian groups.
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At the same time (1930s), Bochner proved his famous theorem classifying all
positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary
locally compact abelian groups.

After understanding that cos(-) is positive definite on S°°, Schoenberg was
interested in classifying positive definite functions on spheres.
This is the main result — and the title! — of his 1942 paper:
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Positive definite functions on spheres

These results characterize R™ and S in terms of positive definite functions.

At the same time (1930s), Bochner proved his famous theorem classifying all
positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary
locally compact abelian groups.

After understanding that cos(-) is positive definite on S°°, Schoenberg was
interested in classifying positive definite functions on spheres.
This is the main result — and the title! — of his 1942 paper:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—=1,1] — R is continuous, and r > 2. Then f(cos-)
is positive definite on the unit sphere S~ C R" if and only if

r—2
o= ZakC’,iT)(-) for some ay > 0,
k>0
where C,(j‘)(-) are the ultraspherical / Gegenbauer / Chebyshev polynomials.
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At the same time (1930s), Bochner proved his famous theorem classifying all
positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary
locally compact abelian groups.

After understanding that cos(-) is positive definite on S°°, Schoenberg was
interested in classifying positive definite functions on spheres.
This is the main result — and the title! — of his 1942 paper:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—=1,1] — R is continuous, and r > 2. Then f(cos-)
is positive definite on the unit sphere S~ C R" if and only if
r—2
fG) = ZakC,i 2 )() for some ay, > 0,

k>0
where C,(j‘)(-) are the ultraspherical / Gegenbauer / Chebyshev polynomials.

Also follows from Bochner's work on compact homogeneous spaces [Ann. of
Math. 1941] — but Schoenberg proved it directly with less ‘heavy’ machinery.
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From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S""! is the same as
. T n .
a rank < 7 correlation matrix A = (a;x)} k=1, i.€.,

T
"o « — o/ |
A= 1 — - o T i) X
B * 1 N | | | = ((zj, Tk))j k=1
1 I
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From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S""! is the same as
. T n .
a rank < 7 correlation matrix A = (a;x)} k=1, i.€.,
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@ So,

f(cos ) positive definite on S"' <= (f(cosd(z;, Tk))) k=1 € Pn
= (f((@j, k) jk=1 € Pn
= (flajr)jr=1 €Pn Yn =1,

i.e., f preserves positivity on correlation matrices of rank < r.
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@ If instead r = oo, such a result would classify the entrywise positivity
preservers on all correlation matrices.
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@ So,

f(cos ) positive definite on S"' <= (f(cosd(z;, Tk))) k=1 € Pn
= (f((@j, k) jk=1 € Pn
= (flajr)jr=1 €Pn Yn =1,

i.e., f preserves positivity on correlation matrices of rank < r.

@ If instead r = oo, such a result would classify the entrywise positivity
preservers on all correlation matrices. Interestingly, 70 years later the
subject has acquired renewed interest because of its immediate impact in
high-dimensional covariance estimation, in several applied fields.
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Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from "' to S°°:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R if and only if

(cos ) Z Ck COS 0

k>0

where ¢ > 0 Vk are such that >, cx < oco.
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And indeed, Schoenberg did make the leap from "' to S°°:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R if and only if

(cos ) Z Ck COS 0

k>0

where ¢ > 0 Vk are such that >, cx < oco.

Notice that cos® 6 is positive definite on S for each k > 0, by the Schur
product theorem.

Freeing this result from the sphere context, one obtains Schoenberg’s theorem
on entrywise positivity preservers.
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For more information: A panorama of positivity — available on arXiv.
(Dec. 2018 survey by A. Belton, D. Guillot, A.K., and M. Putinar.)
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