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. The central problem

The Pick—Nevanlinna Interpolation Problem in general:
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. The central problem

The Pick—Nevanlinna Interpolation Problem in general:

(%) Qi C C™ are domains, k = 1,2. Given M distinct points z1,...,2yp € Q4,
and points wy, ..., wys in 9, find nec. & suff. conditions on

(Zla wl)a (Z2a ’LUQ), ey (ZMvw]\/I)v

such that there exists a holomorphic map F': ; — () satisfying
F(zj):wj, ].SJSM
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(%) Qi C C™ are domains, k = 1,2. Given M distinct points z1,...,2yp € Q4,
and points wy, ..., wys in 9, find nec. & suff. conditions on

(Zla wl)a (Z2a ’LUQ), ey (ZMvw]\/I)v

such that there exists a holomorphic map F': ; — () satisfying
F(zj):wj, ].SJSM

(%) derives its name from the solution to this problem for 21 = Qo = D given by
G. Pick & rediscovered by R. Nevanlinna.
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. The central problem

The Pick—Nevanlinna Interpolation Problem in general:

(%) Qi C C™ are domains, k = 1,2. Given M distinct points z1,...,2yp € Q4,
and points wy, ..., wys in 9, find nec. & suff. conditions on

(2’1, wl), (Z2a wz), ) (ZM,U)M).

such that there exists a holomorphic map F': ; — () satisfying
F(Zj):’w]', 1 S]SM

(%) derives its name from the solution to this problem for 21 = Qo = D given by
G. Pick & rediscovered by R. Nevanlinna.

Theorem (G. Pick, R. Nevanlinna).
Let zq, ...,z be distinct points in D and wy, ..., wy; € D. There exists
F € Hol(D; D) satisfying F(z;) = w;j, 1 < j < M, iff the matrix

1 —wpw; |
[ —wkw]]
1 =Zpay k=1
is positive semi-definite.

-—
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, Towards a necessary condition

How does one even guess such a condition?
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Gautam Bharali The Pick—Nevanlinna problem



, Towards a necessary condition

How does one even guess such a condition? Sarason gave the following
argument —which he says is implicit in Nevanlinna's approach:

@ Given a non-empty set S, a Hilbert function space on S is a complex Hilbert
space H with the following properties:

» elements of H are C-valued functions on S;

Gautam Bharali The Pick—Nevanlinna problem



, Towards a necessary condition

How does one even guess such a condition? Sarason gave the following
argument —which he says is implicit in Nevanlinna's approach:

@ Given a non-empty set S, a Hilbert function space on S is a complex Hilbert
space H with the following properties:

» elements of H are C-valued functions on S;
» eval, is a bounded linear functional Vx € S.
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, Towards a necessary condition

How does one even guess such a condition? Sarason gave the following
argument —which he says is implicit in Nevanlinna's approach:

@ Given a non-empty set S, a Hilbert function space on S is a complex Hilbert
space H with the following properties:

» elements of H are C-valued functions on S;
» eval, is a bounded linear functional Vx € S.

@ Equip C™ with a complex inner product. Define the vector space
Mult(H,HRC"):={¢: S —-C" | h¢p € HRC" Yh € H}
viewed as a subspace of B(H,H ® C").
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, Towards a necessary condition

How does one even guess such a condition? Sarason gave the following
argument —which he says is implicit in Nevanlinna's approach:

@ Given a non-empty set S, a Hilbert function space on S is a complex Hilbert
space H with the following properties:

» elements of H are C-valued functions on S;
» eval, is a bounded linear functional Vx € S.

@ Equip C™ with a complex inner product. Define the vector space
Mult(H, H®C"):={¢: S - C" | h¢p € HR C™ Vh € H}
viewed as a subspace of B(H,H ® C").
o If we write My(h) := h® ¢ (= h¢), h € H, then it's easy to show:

[Mpllop <1 <= (I — MyM}) is positive semi-definite.
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, Towards a necessary condition

How does one even guess such a condition? Sarason gave the following
argument —which he says is implicit in Nevanlinna's approach:

@ Given a non-empty set S, a Hilbert function space on S is a complex Hilbert
space H with the following properties:

» elements of H are C-valued functions on S;
» eval, is a bounded linear functional Vx € S.

@ Equip C™ with a complex inner product. Define the vector space
Mult(H, H®C"):={¢: S - C" | h¢p € HR C™ Vh € H}
viewed as a subspace of B(H,H ® C").
o If we write My(h) := h® ¢ (= h¢), h € H, then it's easy to show:

[Mpllop <1 <= (I — MyM}) is positive semi-definite.

Denote by K(-,x) € H the Riesz representative of eval,.
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, Towards a necessary condition

How does one even guess such a condition? Sarason gave the following
argument —which he says is implicit in Nevanlinna's approach:

@ Given a non-empty set S, a Hilbert function space on S is a complex Hilbert
space H with the following properties:

» elements of H are C-valued functions on S;
» eval, is a bounded linear functional Vx € S.

@ Equip C™ with a complex inner product. Define the vector space
Mult(H, H®C"):={¢: S - C" | h¢p € HR C™ Vh € H}
viewed as a subspace of B(H,H ® C").
o If we write My(h) := h® ¢ (= h¢), h € H, then it's easy to show:
[Mpllop <1 <= (I — MyM}) is positive semi-definite.
Denote by K(-,x) € H the Riesz representative of eval,.

With these constructs, we discover. ..
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, Towards a necessary condition, cont'd.

Proposition (Sarason).
Let S be a non-empty set and H a Hilbert function space on it. Fix (-,-) on C™.

Let x1,...,zp be distinct points in S and wy, ..., wy € C" s.t. |lw;|| <1,
1<5j<M.
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, Towards a necessary condition, cont'd.

Proposition (Sarason).
Let S be a non-empty set and H a Hilbert function space on it. Fix (-,-) on C™.

Let x1,...,zp be distinct points in S and wy, ..., wy € C" s.t. |lw;|| <1,
1 <j < M. It there exists a ¢ € Mult(H, H ® C™) with ||Myl|lop < 1 satisfying
o(z;) =w;, 1 < j < M, then the matrix

[(T— (- wy)(- wk)*)K(xjvxk)];\izl

is positive semi-definite.
v
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, Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and H a Hilbert function space on it. Fix (-,-) on C™.
Let x1,...,zp be distinct points in S and wy, ..., wy € C" s.t. |lw;|| <1,

1 <j < M. It there exists a ¢ € Mult(H, H ® C™) with ||Myl|lop < 1 satisfying
o(z;) =w;, 1 < j < M, then the matrix

[(I- ('wj)('wk)*)K(xjvxk)];\izl

is positive semi-definite.

Since computing adjoints of operators on H ® C™ takes time, we'll consider the
case n = 1.
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, Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and H a Hilbert function space on it. Fix (-,-) on C™.
Let x1,...,zp be distinct points in S and wy, ..., wy € C" s.t. |lw;|| <1,

1 <j < M. It there exists a ¢ € Mult(H, H ® C™) with ||Myl|lop < 1 satisfying
o(z;) =w;, 1 < j < M, then the matrix

[(I- ('wj)('wk)*)K(xjvxk)];\izl

is positive semi-definite.

Since computing adjoints of operators on H ® C™ takes time, we'll consider the
case n = 1. In this case

(g, MGK(-,x)) = (g, K(-,2)) = ¢(z)g(x) = ¢(z)(g, K (-, x)) Vg €N

= MZK(-,r) = ¢(x)K(-,z).
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, Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and H a Hilbert function space on it. Fix (-,-) on C™.
Let x1,...,zp be distinct points in S and wy, ..., wy € C" s.t. |lw;|| <1,

1 <j < M. It there exists a ¢ € Mult(H, H ® C™) with ||Myl|lop < 1 satisfying
o(z;) =w;, 1 < j < M, then the matrix

[(I- ('wj)('wk)*)K(xijk)];\izl

is positive semi-definite.

Since computing adjoints of operators on H ® C™ takes time, we'll consider the
case n = 1. In this case

= MJK(-,z) = ¢(x)K(-,z).
Testing the positivity of (I — M M) on the vector
hi=Y" K (-, x;) € H,

where vy, ..., vp € C gives. ..
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. Towards a necessary condition: Positivity

(T — MgM3) S ol Ok K (- k), Soimy 0K (- 7))

= (Xt (T — (k) W) K (-, 1), Sy UK (-, 25)) > 0
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. Towards a necessary condition: Positivity

(T — MgM3) S ol Ok K (- k), Soimy 0K (- 7))
= (Xt (T — (k) W) K (-, 1), Sy UK (-, 25)) > 0

= SV (L= wi) K (2, 2 vk = 0 Y(v1,...,v).
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. Towards a necessary condition: Positivity

(1= MyMy) Sl B K (- ), Y52, 0K (-, 2y)
= (Xt (T — (k) W) K (-, 1), Sy UK (-, 25)) > 0
= SV (L= wi) K (2, 2 vk = 0 Y(v1,...,v).

This is precisely equivalent to saying that the matrix
_ M
[(1 = wiwg) K (x5, 2x)];

is positive semi-definite! [ |
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. Towards a necessary condition: Positivity

(1= MoMy) 3oL TRK (), 30500 K ()
= (Xt (T — (k) W) K (-, 1), Sy UK (-, 25)) > 0
= SV (L= wi) K (2, 2 vk = 0 Y(v1,...,v).
This is precisely equivalent to saying that the matrix
[(1 = wym) K (2, 28)] 3y

is positive semi-definite! [ |

Important remark: If n > 2 and (-,-) is the standard complex inner product,
then the conclusion of the above is that a certain matrix consisting of M2 n x n
blocks is positive semi-definite that implies:

[(1 = (wj,wy)) K (x5, m;g)]j.\j[k:l

is positive semi-definite.
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;A Pick—Nevanlinna interpolation theorem

The nec. cond’n. for a contractive multiplier in Mult(#H, H ® C™) that interpolates
allows us to prove a theorem of which the Pick—Nevanlinna result is a special case.
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;A Pick—Nevanlinna interpolation theorem

The nec. cond’n. for a contractive multiplier in Mult(#H, H ® C™) that interpolates
allows us to prove a theorem of which the Pick—Nevanlinna result is a special case.

Theorem.
Let z1, ...,z be distinct points in D and wy, ...,wys € B™. There exists

F € Hol(D; B™) satisfying F(z;) = w;, 1 < j < M, iff the matrix

[1—<wj,wk>}M
l—zjfk k=1

((-,-) being the std. complex inner product on C™) is positive semi-definite.
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;A Pick—Nevanlinna interpolation theorem

The nec. cond’n. for a contractive multiplier in Mult(#H, H ® C™) that interpolates
allows us to prove a theorem of which the Pick—Nevanlinna result is a special case.

Theorem.
Let z1, ...,z be distinct points in D and wy, ...,wys € B™. There exists
F € Hol(D; B™) satisfying F(z;) = w;, 1 < j < M, iff the matrix

[1 - <wj,w,c>}M
=22k |jh=1

((-,-) being the std. complex inner product on C™) is positive semi-definite.

Establishing the necessary cond’'n. We define the Hardy space H?(D):
H%(D) := {302 g avz": (ay)ven € (2(N)}.
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;A Pick—Nevanlinna interpolation theorem

The nec. cond’n. for a contractive multiplier in Mult(#H, H ® C™) that interpolates
allows us to prove a theorem of which the Pick—Nevanlinna result is a special case.

Theorem.
Let z1, ...,z be distinct points in D and wy, ...,wys € B™. There exists
F € Hol(D; B™) satisfying F(z;) = w;, 1 < j < M, iff the matrix

[1 - <wj,w,c>}M
=22k |jh=1

((-,-) being the std. complex inner product on C™) is positive semi-definite.

Establishing the necessary cond’'n. We define the Hardy space H?(D):
H%(D) := {302 g avz": (ay)ven € (2(N)}.
This is a Hilbert function space for which K(-,z) =1/(1 —%-) for any z € D
and —taking the standard inner product on C":
Mult(H,H® C") D {¢: D — C" | ¢ is holo. & bounded}, fthey are actually equal]
1My llop = 51D ()]
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sNecessity of positivity

Thus, to find a necessary condition for a B™-valued holomorphic function
mapping z; to w;, 1 < j < M, one views the latter as sitting in
Mult(H,H ® C™) and applies the Sarason(—Nevanlinna) proposition with:
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» S=Dand H=H*D);
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sNecessity of positivity

Thus, to find a necessary condition for a B™-valued holomorphic function
mapping z; to w;, 1 < j < M, one views the latter as sitting in
Mult(H,H ® C™) and applies the Sarason(—Nevanlinna) proposition with:

» S=Dand H=H*D);
» (-,:) =the std. inner product on C".

In view of the remark following that proposition, we have:
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sNecessity of positivity

Thus, to find a necessary condition for a B™-valued holomorphic function
mapping z; to w;, 1 < j < M, one views the latter as sitting in
Mult(H,H ® C™) and applies the Sarason(—Nevanlinna) proposition with:

» S=0Dand = H?*D);

» (-,:) =the std. inner product on C".
In view of the remark following that proposition, we have:
If 3F € Hol(D; B™) with F(z;) = w;, 1 < j < M, then

[1 - <wj,wk>}M
=22k | =1

is positive semi-definite.
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,Geometry: transitive action

For a € B™ \ {0} let proj, be the orthogonal projection onto spans{a} and
Qo = idgn — proj,. Then

\I/a(z) — a— Pl’O_ja(Z) 1__(1<Z— C|L;L||2)1/2Qa(z) s e B

is a holomorphic B — B™ map with the properties:
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,Geometry: transitive action

For a € B™ \ {0} let proj, be the orthogonal projection onto spans{a} and
Qo = idgn — proj,. Then

\I/a(z) — a— Pl’O_ja(Z) 1__(1<Z— C|L;L||2)1/2Qa(z) s e B

is a holomorphic B — B™ map with the properties:
» U,(a) =0and ¥,(0)=0,
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,Geometry: transitive action

For a € B™ \ {0} let proj, be the orthogonal projection onto spans{a} and
Qo = idgn — proj,. Then

0= proj,(5) = (1= [al)2Qu() . _ g
1—{(z,a)

U,(z) :=

is a holomorphic B — B™ map with the properties:
» U,(a) =0and ¥,(0)=0,
> U, ,oW, =idgn.

In particular, ¥, € Aut(B") Va € B™\ {0}.
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,Geometry: transitive action

For a € B™ \ {0} let proj, be the orthogonal projection onto spans{a} and
Qo = idgn — proj,. Then

0= proj,(5) = (1= [al)2Qu() . _ g
1—{(z,a)

U,(z) :=

is a holomorphic B — B™ map with the properties:
» U,(a) =0and ¥,(0)=0,
> U, ,oW, =idgn.
In particular, ¥, € Aut(B") Va € B™\ {0}.
A very special case of this map is when n = 1, in which case we shall denote the
map by 9.
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,Geometry: transitive action

For a € B™ \ {0} let proj, be the orthogonal projection onto spans{a} and
Qo = idgn — proj,. Then

0= proj,(5) = (1= [al)2Qu() . _ g
1—{(z,a)

U,(z) :=

is a holomorphic B — B™ map with the properties:
» U,(a) =0and ¥,(0)=0,
> U, ,oW, =idgn.

In particular, ¥, € Aut(B") Va € B™\ {0}.

A very special case of this map is when n = 1, in which case we shall denote the
map by 1,. In this case, we get the (very familiar) map:

Yalz) = 2= VzeD.

1—az
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.Some metric geometry

The Kobayashi (pseudo)distance: Given a domain Q C C", the Kobayashi
pseudodistance on €} is:

Ko(z,w) == inf%{Z;.V:l p(0.6) < (fraeees fniCrs- - C) € %}
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.Some metric geometry

The Kobayashi (pseudo)distance: Given a domain Q C C", the Kobayashi
pseudodistance on €} is:

Ko(z,w) == mf%{z;v:l p(0.6) < (fraeees fniCrs- - C) € %}

where € is the collection of all chains (f1,..., fn;Ci,...Cn) of D — Q
analytic discs linking z to w: i.e., f1(0) =z, fn({ny) = w and
[i(G) = fi+1(0), 1<j <N -1
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.Some metric geometry

The Kobayashi (pseudo)distance: Given a domain Q C C", the Kobayashi
pseudodistance on €} is:

Ko(z,w) == inf%{Z;.V:l p(0.6) < (fraeees fniCrs- - C) € %}

where € is the collection of all chains (f1,..., fn;Ci,...Cn) of D — Q
analytic discs linking z to w: i.e., f1(0) =z, fn({ny) = w and
[i(G) = fi+1(0), 1<j <N -1
Obvious from construction (since the composition of holo. maps is holo.) that
given domains 1, Q5 and ¢ € Hol(24; Q2),
Kq, (qb(z),¢(w)) < Ko, (z,w) Vz,w € Q.
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.Some metric geometry

The Kobayashi (pseudo)distance: Given a domain Q C C", the Kobayashi
pseudodistance on €} is:
KQ(va) = Hlf% { Z;\le pD(OaCj) : (fla e '7fN;C1»' . CN) € (f}
where € is the collection of all chains (f1,..., fn;Ci,...Cn) of D — Q
analytic discs linking z to w: i.e., f1(0) =z, fn({ny) = w and
[i(G) = fi+1(0), 1<j <N -1
Obvious from construction (since the composition of holo. maps is holo.) that
given domains 1, Q5 and ¢ € Hol(24; Q2),
Kq, (qb(z),¢(w)) < Ko, (z,w) Vz,w € Q.

Examples: Both these are relevant to us:

21 — 22
)

K = = tanh ™'
(21, 22) = pp (21, 22) = tan -

(Iwi |2 + f[w2 |2 — 2Re(wr, wa) + (| (w1, wa)[? — [lwy |2 Jw]|?)) "/

|1 — (w1, w2)]

Gautam Bharali The Pick—Nevanlinna problem
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., I he deflation trick

A key conclusion from the last slide

¢ : (D,0) — (B™,0) holomorphic = ||¢(2)] < |z| Vz € D!

Write 2 := {¢ : D — B" | ¢ is holomorphic}.
With z1,...,zp € D and wy,...,wy € B™ as given:
3F € # st. F interpolates {(z1,w1), ..., (zar, war)} <= IF € B
s.t. ﬁ interPOIates {(,wZM(Zl)v\Ij’LUM(wl))""7(wZM(ZM—l)v\II’LUM(wM—l))v(070)}'



., I he deflation trick

A key conclusion from the last slide

¢ : (D,0) — (B™,0) holomorphic = ||¢(2)] < |z| Vz € D! )

Write 2 := {¢ : D — B" | ¢ is holomorphic}.
With z1,...,zp € D and wy,...,wy € B™ as given:
3F € # st. F interpolates {(z1,w1), ..., (zar, war)} <= IF € B
st. F interpolates { (1 (21), Wawyy (w1)), -+, (Y20 (2a1-1), Waopy (war-1)), (0,00}

Furthermore:
3F € % st. Finterpolates { (2, (21), Wuyy (w1)), - -+ (Wzpy (2a0—1), Waopy (war—1)), (0,0) }.
>
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., I he deflation trick

A key conclusion from the last slide

¢ : (D,0) — (B™,0) holomorphic = ||¢(2)] < |z| Vz € D! )

Write 2 := {¢ : D — B" | ¢ is holomorphic}.
With z1,...,zp € D and wy,...,wy € B™ as given:
3F € # st. F interpolates {(z1,w1), ..., (zar, war)} <= IF € B
st. F interpolates { (1 (21), Wawyy (w1)), -+, (Y20 (2a1-1), Waopy (war-1)), (0,00}

Furthermore:

3F € % st. Finterpolates { (2, (21), Wuyy (w1)), - -+ (Wzpy (2a0—1), Waopy (war—1)), (0,0) }.
<= dF* € # s.t. F* interpolates

{(sz (Zl)’ Yanr (Zl)il‘lle (wl))’ T (sz (ZM—l)’ Yz (ZMfl)il\I’wM (wM—l))}
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., I he deflation trick

A key conclusion from the last slide

¢ : (D,0) — (B™,0) holomorphic = ||¢(2)] < |z| Vz € D! )

Write 2 := {¢ : D — B" | ¢ is holomorphic}.
With z1,...,zp € D and wy,...,wy € B™ as given:
3F € # st. F interpolates {(z1,w1), ..., (zar, war)} <= IF € B
s.t. F interpolates {Wzps (21), Ceopy (w1)), - - o, (Wzpy (a1—1), Yoy (War—1)), (0,0) }.

Furthermore:
3F € % st. Finterpolates { (2, (21), Wuyy (w1)), - -+ (Wzpy (2a0—1), Waopy (war—1)), (0,0) }.
<= dF* € # s.t. F* interpolates

{(wZM (Zl)’ LZ3Y: (Zl)il‘lle (wl))’ ) (sz (ZM—l)a Yy (szl)il\I’wM (wM—l))}

Here, F* := 2~ F(z). Its holomorphicity would follow from Riemann’s RST if we
can show that F'*|p) {0} is bounded.
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., I he deflation trick

A key conclusion from the last slide

¢ : (D,0) — (B™,0) holomorphic = ||¢(2)] < |z| Vz € D! )

Write 2 := {¢ : D — B" | ¢ is holomorphic}.
With z1,...,zp € D and wy,...,wy € B™ as given:
3F € # st. F interpolates {(z1,w1), ..., (zar, war)} <= IF € B
st. F interpolates { (1 (21), Wawyy (w1)), -+, (Y20 (2a1-1), Waopy (war-1)), (0,00}

Furthermore:
3F € % st. Finterpolates { (2, (21), Wuyy (w1)), - -+ (Wzpy (2a0—1), Waopy (war—1)), (0,0) }.
<= dF* € # s.t. F* interpolates

{(wZM (Zl)a Yap (Zl)il‘IIwM (wl))’ sy (sz (ZM—l)a Yy (szl)il\I’wM (wM—l))}

Here, F* := 2~ F(z). Its holomorphicity would follow from Riemann’s RST if we
FE)|/ll <1

can show that F'*|p foy is bounded. By above inequality,
Vz € D\{0}, so F'* € A!
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. I he first step towards proving sufficiency of positivity

The deflation trick reduces our problem to that of characterising existence of a
2-point interpolant:



. I he first step towards proving sufficiency of positivity

The deflation trick reduces our problem to that of characterising existence of a
2-point interpolant:

(zpm>wnm)}

Jinterpolant for {(251) s wgl)) ..... (25\/11),1; wg\}[ll)}

@Q:

TJinterpolant for {(ngiz) s ngiz)), (zéM72) s wéM72>)}



. I he first step towards proving sufficiency of positivity

The deflation trick reduces our problem to that of characterising existence of a
2-point interpolant:

Jinterpolant for {(z1,w1), ..., (zar,war)}

)))) (z(l) (1) )}

Finterpolant for {(zgl),wl M—1"Yrr—1

Jinterpolant for {(ngiz) R ngiz)), (zéM72) s wéMﬁz))}

d
where zj(o) =z and wj(-o) =w;, 1<j<M,
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. I he first step towards proving sufficiency of positivity

The deflation trick reduces our problem to that of characterising existence of a
2-point interpolant:

Jinterpolant for {(z1,w1), ..., (zar,war)}

(1) (1)

Finterpolant for {(zgl),wl ..... (a1 war 1)}

=

Jinterpolant for {(ngiz) R ngiz)), (zéM72) s wéMﬁz))}

&
where zj(o) =z and wj(-o) =w;, 1<j<M,
z;kJrl) = wz(k) (zﬁk)) and wj(.kJrl) = gy (zj(.’“))*llIl ) (w}k)), 1<j<M-k-1
M—k FM—k WMk
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. The link to a positive semi-definite matrix

Suppose {(a1, B1), (a2, B2)}, a; € D, B; € B" satisfy
(.) K]Bgn (Bl, Bg) § K]D)((],l, (1,2).
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. The link to a positive semi-definite matrix

Suppose {(a1, B1), (a2, B2)}, a; € D, B; € B" satisfy
(o) Kpn (B, B2) < Kpl(ay,as). This is equivalent to

B =V, (B1)| < [tay(ar)] =: cv.
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. The link to a positive semi-definite matrix

Suppose {(a1, B1), (a2, B2)}, a; € D, B; € B" satisfy
(o) Kpn (B, B2) < Kpl(ay,as). This is equivalent to

B = (1, (B[l < [¢a,(a1)] =: .
Pick a unitary matrix U and a # € R s.t.
U\I]Bz(Bl) = ||\I]Bz(Bl>||€1 and ewd)tw(al) = W}az(al)"
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. The link to a positive semi-definite matrix

Suppose {(a1, B1), (a2, B2)}, a; € D, B; € B" satisfy
(o) Kpn (B, B2) < Kpl(ay,as). This is equivalent to
B = VB, (B1)| < |thay(a1)] =: .
Pick a unitary matrix U and a # € R s.t.
U5, (B1) = [|¥5,(B1)ller and e, (ar) = [ya, (a1)].
Clearly

() i= U (ufl (g(ewz/}a2 (z))q)), €D
takes values in B™ and ¢(a;) = B;, 1 < j < 2!
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. The link to a positive semi-definite matrix

Suppose {(a1, B1), (a2, B2)}, a; € D, B; € B" satisfy
(o) Kpn (B, B2) < Kpl(ay,as). This is equivalent to

B = VB, (B1)| < |thay(a1)] =: .
Pick a unitary matrix U and a # € R s.t.
UW, (B1) = |5, (B1)ller and e“9a,(a1) = [ay (a1)].
Clearly

—w-1(y-1(P e
6() = V5t (U1 (S(e"un(2))er) ), z€D
takes values in B™ and ¢(a;) = B;j, 1 < j < 2! The condition (e) is equivalent to
a; — a9 2

— tanh (Kgn (b1, b2))° > 0,

1-— Qaoa1

in which the L.H.S. just happens to be
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. The link to a positive semi-definite matrix

Suppose {(a1, B1), (a2, B2)}, a; € D, B; € B" satisfy
(o) Kpn (B, B2) < Kpl(ay,as). This is equivalent to

B = VB, (B1)| < |thay(a1)] =: .
Pick a unitary matrix U and a # € R s.t.
UW, (B1) = |5, (B1)ller and e“9a,(a1) = [ay (a1)].
Clearly

—w-1(y-1(P e
6() = V5t (U1 (S(e"un(2))er) ), z€D
takes values in B™ and ¢(a;) = B;j, 1 < j < 2! The condition (e) is equivalent to
a; — a9 2

— tanh (Kgn (b1, b2))° > 0,

1-— Qaoa1
in which the L.H.S. just happens to be the determinant of

{1—<bj»bk>]2 |

L—ajar |;r—
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. The link to a positive semi-definite matrix

This fits into the last diagram as follows:
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. The link to a positive semi-definite matrix

This fits into the last diagram as follows:

Jinterpolant for {(z1, w1), ..., (zpr,wpar)}

Finterpolant for {(zgl), wgl))7 AN (zg\}) (1 )}

—1Whm—1
<:><

wM—2)  (M—2) 2
) Jwy

1—( )
j )
{41_2(1\472)? M—2), } is p-s.d
J

jok=1
v

{(ngfm , ngfz))’ (Zé]%—2)7wélw—2))}

Jinterpolant for
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Loufficiency of positivity

Establishing the sufficient cond’n. Let aq,...,ay be distinct points in D, and
let by,...,bx be points in B™, N > 3. Consider the two Hermitian forms:
N
1-—
H[alv"'7aN;b17~"7bN](§) = Z b]7bk> on (CNv
Pyt 1—ajay
. 1= (S (@) Wy (b)), by () W (B1)) , =
Hfai,...,an;b1,...,bN]() := 133"

1 1= tay (a5)Yay (ak)

gk

on CN-L,
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Loufficiency of positivity

Establishing the sufficient cond’n. Let aq,...,ay be distinct points in D, and
let by,...,bx be points in B™, N > 3. Consider the two Hermitian forms:
N
H[alv"'7aN;b17~"7bN](§) = Z L= b]7bk> on (CNv
1—ajay
7,k=1
. 1= (S (@) Wy (b)), by () W (B1)) , =
Hfai,...,an;b1,...,bN]() := 133"
j,k=1 1 7wa1\7 (aj)waz\f (ak)
on CN—1,
It would suffice to prove that B
Hfay,...,an;b1,...,bx] > 0= Hfay,...,an;b1,...,bx] > 0 to establish our

theorem.
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Loufficiency of positivity

Establishing the sufficient cond’n. Let aq,...,ay be distinct points in D, and
let by,...,bx be points in B™, N > 3. Consider the two Hermitian forms:
N
1-—
H[alv"'7aN;b17~"7bN](§) = Z b]7bk> on (CNv
Pyt 1—ajay
. 1= (S (@) Wy (b)), by () W (B1)) , =
Hfai,...,an;b1,...,bN]() := — " 133"

1-— waN (aj)waz\f (ak)

S
E
Il
-

on CN—1,
It would suffice to prove that

Hfay,...,an;b1,...,bn] > 0= f[[al.,...,aN;bh...,bN]z 0 to establish our
theorem. We compute:

1—a§_1)mk _ VI—lan? V/I- Jan|? _

— — — Qjag,
1 —aja l—-ana; 1—anag
1— <b(_1) b(1>> 5 5
) VTP VI TeNT? _
1 — (b, br) 1—(bj,bn) 1—(bn,bx) Ik
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Loufficiency of positivity

Establishing the sufficient cond’n. Let aq,...,ay be distinct points in D, and
let by,...,bx be points in B™, N > 3. Consider the two Hermitian forms:
N
1-—
H[alv"'7aN;b17~"7bN](§) = Z b]7bk> on (CNv
Pyt 1—ajay
. 1= (S (@) Wy (b)), by () W (B1)) , =
Hfai,...,an;b1,...,bN]() := — " 133"

1-— waN (aj)waz\f (ak)

S
E
Il
-

on CN—1,
It would suffice to prove that

Hfay,...,an;b1,...,bn] > 0= f[[al.,...,aN;bh...,bN]z 0 to establish our
theorem. We compute:

1—a§_1)mk _ VI—lan? V/I- Jan|? _

— — — Qjag,
1 —aja l—-ana; 1—anag
1— <b(_1) b(1>> 5 5
) VTP VI TeNT? _
1 — (b, br) 1—(bj,bn) 1—(bn,bx) o

This computation gives. . .



LSufficiency of positivity, cont'd.

Hfa", ... aly 0,00, 05 L 0]()

= H[al,....,aN;bl,...,bN](Diag(Bl/al,...,BN/QN)f)
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LSufficiency of positivity, cont'd.

Hfa", ... aly 0,00, 05 L 0]()

:H[al,....,aN;bl,...,bN](Diag(Bl/al,...,BN/OcN)f)
Hence, the form on the L.H.S. is non-negative if Hfaq,...,an;b1,...,bn]> 0.
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LSufficiency of positivity, cont'd.
b2/ R I Y AN AN 1) (3

Hfay,...,an;b1,... ,bN](Diag(‘Bl/al, . ,BN/(MN)f)
Hence, the form on the L.H.S. is non-negative if Hfaq,...,an;b1,...,bn]> 0.
We now invoke the following:

Result (Schur). Let K be a complex inner-product space with inner product

(-]). Leter,...,en—1 € D\{0} and set ¢y :=0. Let By,...,By_1 € K with
|Bjllx <1 and set By := 0. If the quadratic form

1-(B;| B _
Q&) == Z M@Sk on CN

1-— C]'Ek

is conditionally positive,
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LSufficiency of positivity, cont'd.
Hia$V, . al 000 e o))

Hfaq,...,an;b1,. bN]( Diag(f1/a1, ..., b)N/(YN)f)
Hence, the form on the L.H.S. is non-negative if Hfaq,...,an;b1,...,bn]> 0.
We now invoke the following:

Result (Schur). Let K be a complex inner-product space with inner product

(-]). Leter,...,en—1 € D\{0} and set ¢y :=0. Let By,...,By_1 € K with
|Bjllx <1 and set By := 0. If the quadratic form

N
- (B | Bk) N
A= j’zkzl B

is conditionally positive, then the quadratic form

Q©) = Nf L— (' Bi | Br)

iyt 1—cjeg

gjék onCN—1

is positive semi-definite on CN~L.
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LSufficiency of positivity, cont'd.
Hia$V, . al 000 e o))

Hfaq,...,an;b1,. bN]( Diag(f1/a1, ..., b)N/(YN)f)
Hence, the form on the L.H.S. is non-negative if Hfaq,...,an;b1,...,bn]> 0.
We now invoke the following:

Result (Schur). Let K be a complex inner-product space with inner product

(-]). Leter,...,en—1 € D\{0} and set ¢y :=0. Let By,...,By_1 € K with
|Bjllx <1 and set By := 0. If the quadratic form

Q(f) = Z M on CN

1—cjcg

is conditionally positive, then the quadratic form

_ N-19_ (¢:'B; |c 'By) _
Q(§) = Z (C] il e k)fjfk on CN-1

iyt 1—cjeg

is positive semi-definite on CN~L.

Just set ¢; = agl) and B; = b;l), 1< j < N, and we're done! [ |
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