The Pick–Nevanlinna problem: from metric geometry to matrix positivity

Gautam Bharali Indian Institute of Science

bharali@iisc.ac.in

Eigenfunction 2019 (with Apoorva Khare)

Indian Institute of Science

April 12, 2019

The Pick-Nevanlinna Interpolation Problem in general:

The Pick-Nevanlinna Interpolation Problem in general:

(*) $\Omega_k\subset\mathbb{C}^{n_k}$ are domains, k=1,2. Given M distinct points $z_1,\ldots,z_M\in\Omega_1$, and points w_1,\ldots,w_M in Ω_2 , find nec. & suff. conditions on

$$(z_1, w_1), (z_2, w_2), \ldots, (z_M, w_M),$$

such that there exists a holomorphic map $F:\Omega_1\to\Omega_2$ satisfying $F(z_j)=w_j$, $1\leq j\leq M$.

The Pick-Nevanlinna Interpolation Problem in general:

(*) $\Omega_k \subset \mathbb{C}^{n_k}$ are domains, k=1,2. Given M distinct points $z_1,\ldots,z_M\in\Omega_1$, and points w_1,\ldots,w_M in Ω_2 , find nec. & suff. conditions on

$$(z_1, w_1), (z_2, w_2), \ldots, (z_M, w_M),$$

such that there exists a holomorphic map $F:\Omega_1\to\Omega_2$ satisfying $F(z_j)=w_j$, $1\leq j\leq M$.

(*) derives its name from the solution to this problem for $\Omega_1=\Omega_2=\mathbb{D}$ given by G. Pick & rediscovered by R. Nevanlinna.

The Pick-Nevanlinna Interpolation Problem in general:

(*) $\Omega_k\subset\mathbb{C}^{n_k}$ are domains, k=1,2. Given M distinct points $z_1,\ldots,z_M\in\Omega_1$, and points w_1,\ldots,w_M in Ω_2 , find nec. & suff. conditions on

$$(z_1, w_1), (z_2, w_2), \ldots, (z_M, w_M),$$

such that there exists a holomorphic map $F:\Omega_1\to\Omega_2$ satisfying $F(z_j)=w_j,\ 1\leq j\leq M.$

(*) derives its name from the solution to this problem for $\Omega_1=\Omega_2=\mathbb{D}$ given by G. Pick & rediscovered by R. Nevanlinna.

Theorem (G. Pick, R. Nevanlinna).

Let z_1,\ldots,z_M be distinct points in $\mathbb D$ and $w_1,\ldots,w_M\in\mathbb D$. There exists $F\in\operatorname{Hol}(\mathbb D;\mathbb D)$ satisfying $F(z_j)=w_j$, $1\leq j\leq M$, iff the matrix

$$\left[\frac{1-\overline{w}_k w_j}{1-\overline{z}_k z_j}\right]_{j,k=1}^M$$

is positive semi-definite.

How does one even guess such a condition?

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

ullet Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space ${\mathcal H}$ with the following properties:

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

- Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space $\mathcal H$ with the following properties:
 - \blacktriangleright elements of \mathcal{H} are \mathbb{C} -valued functions on S;

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

- Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space $\mathcal H$ with the following properties:
 - \blacktriangleright elements of $\mathcal H$ are $\mathbb C$ -valued functions on S;
 - ▶ eval_x is a bounded linear functional $\forall x \in S$.

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

- Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space $\mathcal H$ with the following properties:
 - \blacktriangleright elements of \mathcal{H} are \mathbb{C} -valued functions on S;
 - ▶ **eval**_x is a bounded linear functional $\forall x \in S$.
- ullet Equip \mathbb{C}^n with a complex inner product. Define the vector space

$$\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n):=\{\phi:S\to\mathbb{C}^n\mid h\phi\in\mathcal{H}\otimes\mathbb{C}^n\ \forall h\in\mathcal{H}\}$$

viewed as a subspace of $\mathcal{B}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$.

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

- Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space $\mathcal H$ with the following properties:
 - \blacktriangleright elements of \mathcal{H} are \mathbb{C} -valued functions on S;
 - **eval**_x is a bounded linear functional $\forall x \in S$.
- ullet Equip \mathbb{C}^n with a complex inner product. Define the vector space

$$\operatorname{Mult}(\mathcal{H}, \mathcal{H} \otimes \mathbb{C}^n) := \{ \phi : S \to \mathbb{C}^n \mid h\phi \in \mathcal{H} \otimes \mathbb{C}^n \ \forall h \in \mathcal{H} \}$$

viewed as a subspace of $\mathcal{B}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$.

• If we write $M_{\phi}(h) := h \otimes \phi$ (= $h\phi$), $h \in \mathcal{H}$, then it's **easy** to show:

$$\|M_\phi\|_{\mathrm{op}} \leq 1 \iff (\mathbb{I} - M_\phi M_\phi^*)$$
 is positive semi-definite.

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

- Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space $\mathcal H$ with the following properties:
 - \blacktriangleright elements of \mathcal{H} are \mathbb{C} -valued functions on S;
 - **eval**_x is a bounded linear functional $\forall x \in S$.
- ullet Equip \mathbb{C}^n with a complex inner product. Define the vector space

$$\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n):=\{\phi:S\to\mathbb{C}^n\mid h\phi\in\mathcal{H}\otimes\mathbb{C}^n\ \forall h\in\mathcal{H}\}$$

viewed as a subspace of $\mathcal{B}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$.

• If we write $M_{\phi}(h) := h \otimes \phi$ (= $h\phi$), $h \in \mathcal{H}$, then it's **easy** to show:

$$\|M_\phi\|_{\mathrm{op}} \leq 1 \iff (\mathbb{I} - M_\phi M_\phi^*)$$
 is positive semi-definite.

Denote by $K(\cdot, x) \in \mathcal{H}$ the Riesz representative of **eval**_x.

How does one even guess such a condition? Sarason gave the following argument — which he says is implicit in Nevanlinna's approach:

- Given a non-empty set S, a *Hilbert function space* on S is a complex Hilbert space $\mathcal H$ with the following properties:
 - \blacktriangleright elements of \mathcal{H} are \mathbb{C} -valued functions on S;
 - **eval**_x is a bounded linear functional $\forall x \in S$.
- ullet Equip \mathbb{C}^n with a complex inner product. Define the vector space

$$\operatorname{Mult}(\mathcal{H}, \mathcal{H} \otimes \mathbb{C}^n) := \{ \phi : S \to \mathbb{C}^n \mid h\phi \in \mathcal{H} \otimes \mathbb{C}^n \ \forall h \in \mathcal{H} \}$$

viewed as a subspace of $\mathcal{B}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$.

• If we write $M_{\phi}(h) := h \otimes \phi$ (= $h\phi$), $h \in \mathcal{H}$, then it's **easy** to show:

$$||M_{\phi}||_{\text{op}} \leq 1 \iff (\mathbb{I} - M_{\phi}M_{\phi}^*)$$
 is positive semi-definite.

Denote by $K(\cdot, x) \in \mathcal{H}$ the Riesz representative of **eval**_x.

With these constructs, we discover...

³Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and $\mathcal H$ a Hilbert function space on it. Fix $\langle \cdot , \cdot \rangle$ on $\mathbb C^n$. Let x_1, \dots, x_M be distinct points in S and $w_1, \dots, w_M \in \mathbb C^n$ s.t. $\|w_j\| \leq 1$, $1 \leq j \leq M$.

3 Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and $\mathcal H$ a Hilbert function space on it. Fix $\langle \cdot \, , \cdot \rangle$ on $\mathbb C^n$. Let x_1, \dots, x_M be distinct points in S and $w_1, \dots, w_M \in \mathbb C^n$ s.t. $\|w_j\| \leq 1$, $1 \leq j \leq M$. It there exists a $\phi \in \operatorname{Mult}(\mathcal H, \mathcal H \otimes \mathbb C^n)$ with $\|M_\phi\|_{\operatorname{op}} \leq 1$ satisfying $\phi(x_j) = w_j$, $1 \leq j \leq M$, then the matrix

$$\left[\left(\mathbb{I}-(\cdot w_j)(\cdot w_k)^*\right)K(x_j,x_k)\right]_{j,k=1}^M$$

is positive semi-definite.

3 Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and $\mathcal H$ a Hilbert function space on it. Fix $\langle \cdot \, , \cdot \rangle$ on $\mathbb C^n$. Let x_1, \dots, x_M be distinct points in S and $w_1, \dots, w_M \in \mathbb C^n$ s.t. $\|w_j\| \leq 1$, $1 \leq j \leq M$. It there exists a $\phi \in \operatorname{Mult}(\mathcal H, \mathcal H \otimes \mathbb C^n)$ with $\|M_\phi\|_{\operatorname{op}} \leq 1$ satisfying $\phi(x_j) = w_j$, $1 \leq j \leq M$, then the matrix

$$\left[\left(\mathbb{I}-(\cdot w_j)(\cdot w_k)^*\right)K(x_j,x_k)\right]_{j,k=1}^M$$

is positive semi-definite.

Since computing adjoints of operators on $\mathcal{H} \otimes \mathbb{C}^n$ takes time, we'll consider the case n=1.

³Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and $\mathcal H$ a Hilbert function space on it. Fix $\langle \cdot \, , \cdot \rangle$ on $\mathbb C^n$. Let x_1, \dots, x_M be distinct points in S and $w_1, \dots, w_M \in \mathbb C^n$ s.t. $\|w_j\| \leq 1$, $1 \leq j \leq M$. It there exists a $\phi \in \operatorname{Mult}(\mathcal H, \mathcal H \otimes \mathbb C^n)$ with $\|M_\phi\|_{\operatorname{op}} \leq 1$ satisfying $\phi(x_j) = w_j$, $1 \leq j \leq M$, then the matrix

$$\left[\left(\mathbb{I}-(\cdot w_j)(\cdot w_k)^*\right)K(x_j,x_k)\right]_{j,k=1}^M$$

is positive semi-definite.

Since computing adjoints of operators on $\mathcal{H}\otimes\mathbb{C}^n$ takes time, we'll consider the case n=1. In this case

$$\begin{split} \langle \, g, M_\phi^* K(\boldsymbol{\cdot}\,, x) \rangle &= \langle \phi g, K(\boldsymbol{\cdot}\,, x) \rangle = \phi(x) g(x) = \phi(x) \langle \, g, K(\boldsymbol{\cdot}\,, x) \rangle \ \, \forall g \in \mathcal{H} \\ &\Rightarrow M_\phi^* K(\boldsymbol{\cdot}\,, x) = \overline{\phi(x)} K(\boldsymbol{\cdot}\,, x). \end{split}$$

³Towards a necessary condition, cont'd.

Proposition (Sarason).

Let S be a non-empty set and $\mathcal H$ a Hilbert function space on it. Fix $\langle \cdot \, , \cdot \rangle$ on $\mathbb C^n$. Let x_1, \dots, x_M be distinct points in S and $w_1, \dots, w_M \in \mathbb C^n$ s.t. $\|w_j\| \leq 1$, $1 \leq j \leq M$. It there exists a $\phi \in \operatorname{Mult}(\mathcal H, \mathcal H \otimes \mathbb C^n)$ with $\|M_\phi\|_{\operatorname{op}} \leq 1$ satisfying $\phi(x_j) = w_j$, $1 \leq j \leq M$, then the matrix

$$\left[\left(\mathbb{I}-(\boldsymbol{\cdot} w_j)(\boldsymbol{\cdot} w_k)^*\right)K(x_j,x_k)\right]_{j,k=1}^M$$

is positive semi-definite.

Since computing adjoints of operators on $\mathcal{H}\otimes\mathbb{C}^n$ takes time, we'll consider the case n=1. In this case

$$\begin{split} \langle \, g, M_\phi^* K({\boldsymbol{\cdot}}\,, x) \rangle &= \langle \phi g, K({\boldsymbol{\cdot}}\,, x) \rangle = \phi(x) g(x) = \phi(x) \langle \, g, K({\boldsymbol{\cdot}}\,, x) \rangle \ \, \forall g \in \mathcal{H} \\ &\Rightarrow M_\phi^* K({\boldsymbol{\cdot}}\,, x) = \overline{\phi(x)} K({\boldsymbol{\cdot}}\,, x). \end{split}$$

Testing the positivity of $(\mathbb{I} - M_{\phi}M_{\phi}^*)$ on the vector

$$h := \sum_{k=1}^{M} \overline{v}_j K(\cdot, x_j) \in \mathcal{H},$$

where $v_1, \ldots, v_M \in \mathbb{C}$ gives...

4 Towards a necessary condition: Positivity

$$\langle (\mathbb{I} - M_{\phi} M_{\phi}^*) \sum_{k=1}^{M} \overline{v}_k K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle$$
$$= \langle \sum_{k=1}^{M} (\overline{v}_k - (\overline{v}_k \phi) \overline{w}_k) K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle \ge 0$$

⁴Towards a necessary condition: Positivity

$$\langle (\mathbb{I} - M_{\phi} M_{\phi}^*) \sum_{k=1}^{M} \overline{v}_k K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle$$

$$= \langle \sum_{k=1}^{M} (\overline{v}_k - (\overline{v}_k \phi) \overline{w}_k) K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle \ge 0$$

$$\Rightarrow \sum_{j,k=1}^{M} (1 - w_j \overline{w}_k) K(x_j, x_k) v_j \overline{v}_k \ge 0 \quad \forall (v_1, \dots, v_n).$$

4 Towards a necessary condition: Positivity

$$\langle (\mathbb{I} - M_{\phi} M_{\phi}^*) \sum_{k=1}^{M} \overline{v}_k K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle$$

$$= \langle \sum_{k=1}^{M} (\overline{v}_k - (\overline{v}_k \phi) \overline{w}_k) K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle \ge 0$$

$$\Rightarrow \sum_{j,k=1}^{M} (1 - w_j \overline{w}_k) K(x_j, x_k) v_j \overline{v}_k \ge 0 \quad \forall (v_1, \dots, v_n).$$

This is precisely equivalent to saying that the matrix

$$\left[(1 - w_j \overline{w}_k) K(x_j, x_k) \right]_{j,k=1}^M$$

is positive semi-definite!

4 Towards a necessary condition: Positivity

$$\langle (\mathbb{I} - M_{\phi} M_{\phi}^*) \sum_{k=1}^{M} \overline{v}_k K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle$$

$$= \langle \sum_{k=1}^{M} (\overline{v}_k - (\overline{v}_k \phi) \overline{w}_k) K(\cdot, x_k), \sum_{j=1}^{M} \overline{v}_j K(\cdot, x_j) \rangle \ge 0$$

$$\Rightarrow \sum_{j,k=1}^{M} (1 - w_j \overline{w}_k) K(x_j, x_k) v_j \overline{v}_k \ge 0 \quad \forall (v_1, \dots, v_n).$$

This is precisely equivalent to saying that the matrix

$$[(1 - w_j \overline{w}_k) K(x_j, x_k)]_{j,k=1}^M$$

is positive semi-definite!

Important remark: If $n \geq 2$ and $\langle \cdot, \cdot \rangle$ is the standard complex inner product, then the conclusion of the above is that a certain matrix consisting of M^2 $n \times n$ blocks is positive semi-definite that implies:

$$\left[\left(1-\langle w_j, w_k\rangle\right)K(x_j, x_k)\right]_{j,k=1}^M$$

is positive semi-definite.

5A Pick-Nevanlinna interpolation theorem

The nec. cond'n. for a contractive multiplier in $\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$ that interpolates allows us to prove a theorem of which the Pick–Nevanlinna result is a special case.

₅A Pick-Nevanlinna interpolation theorem

The nec. cond'n. for a contractive multiplier in $\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$ that interpolates allows us to prove a theorem of which the Pick–Nevanlinna result is a special case.

Theorem.

Let z_1, \ldots, z_M be distinct points in $\mathbb D$ and $w_1, \ldots, w_M \in \mathbb B^n$. There exists $F \in \operatorname{Hol}(\mathbb D; \mathbb B^n)$ satisfying $F(z_j) = w_j$, $1 \le j \le M$, iff the matrix

$$\left[\frac{1 - \langle w_j, w_k \rangle}{1 - z_j \overline{z}_k}\right]_{j,k=1}^M$$

 $(\langle \cdot, \cdot \rangle$ being the std. complex inner product on \mathbb{C}^n) is positive semi-definite.

₅A Pick–Nevanlinna interpolation theorem

The nec. cond'n. for a contractive multiplier in $\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$ that interpolates allows us to prove a theorem of which the Pick–Nevanlinna result is a special case.

Theorem.

Let z_1, \ldots, z_M be distinct points in $\mathbb D$ and $w_1, \ldots, w_M \in \mathbb B^n$. There exists $F \in \operatorname{Hol}(\mathbb D; \mathbb B^n)$ satisfying $F(z_j) = w_j$, $1 \le j \le M$, iff the matrix

$$\left[\frac{1 - \langle w_j, w_k \rangle}{1 - z_j \overline{z}_k}\right]_{j,k=1}^M$$

 $(\langle \cdot, \cdot \rangle)$ being the std. complex inner product on \mathbb{C}^n is positive semi-definite.

Establishing the necessary cond'n. We define the *Hardy space* $H^2(\mathbb{D})$:

$$H^2(\mathbb{D}) := \left\{ \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} : (a_{\nu})_{\nu \in \mathbb{N}} \in \ell^2(\mathbb{N}) \right\}.$$

A Pick-Nevanlinna interpolation theorem

The nec. cond'n. for a contractive multiplier in $\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$ that interpolates allows us to prove a theorem of which the Pick-Nevanlinna result is a special case.

Theorem.

Let z_1, \ldots, z_M be distinct points in \mathbb{D} and $w_1, \ldots, w_M \in \mathbb{B}^n$. There exists $F \in \operatorname{Hol}(\mathbb{D}; \mathbb{B}^n)$ satisfying $F(z_j) = w_j$, $1 \le j \le M$, iff the matrix

$$\left[\frac{1 - \langle w_j, w_k \rangle}{1 - z_j \overline{z}_k}\right]_{j,k=1}^M$$

 $(\langle \cdot, \cdot \rangle)$ being the std. complex inner product on \mathbb{C}^n is positive semi-definite.

Establishing the necessary cond'n. We define the *Hardy space* $H^2(\mathbb{D})$:

$$H^2(\mathbb{D}) := \left\{ \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} : (a_{\nu})_{\nu \in \mathbb{N}} \in \ell^2(\mathbb{N}) \right\}.$$

This is a Hilbert function space for which $K(\cdot,x)=1/(1-\overline{x}\cdot)$ for any $x\in\mathbb{D}$ and — taking the standard inner product on \mathbb{C}^n :

$$\mathrm{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)\supseteq\{\phi:\mathbb{D}\to\mathbb{C}^n\mid\phi\text{ is holo. \& bounded}\},\text{ [they are actually equal]}\\ \|M_\phi\|_{\mathsf{op}}=\sup_{z\in\mathbb{D}}\|\phi(z)\|.$$

Thus, to find a necessary condition for a \mathbb{B}^n -valued *holomorphic* function mapping z_j to w_j , $1 \leq j \leq M$, one views the latter as sitting in $\operatorname{Mult}(\mathcal{H}, \mathcal{H} \otimes \mathbb{C}^n)$ and applies the Sarason(–Nevanlinna) proposition with:

Thus, to find a necessary condition for a \mathbb{B}^n -valued holomorphic function mapping z_j to w_j , $1 \leq j \leq M$, one views the latter as sitting in $\operatorname{Mult}(\mathcal{H}, \mathcal{H} \otimes \mathbb{C}^n)$ and applies the Sarason(–Nevanlinna) proposition with:

 $ightharpoonup S=\mathbb{D}$ and $\mathcal{H}=H^2(\mathbb{D})$;

Thus, to find a necessary condition for a \mathbb{B}^n -valued holomorphic function mapping z_j to w_j , $1 \leq j \leq M$, one views the latter as sitting in $\operatorname{Mult}(\mathcal{H}, \mathcal{H} \otimes \mathbb{C}^n)$ and applies the Sarason(–Nevanlinna) proposition with:

- $ightharpoonup S=\mathbb{D}$ and $\mathcal{H}=H^2(\mathbb{D});$
- $ightharpoonup \langle \cdot, \cdot \rangle$ = the std. inner product on \mathbb{C}^n .

Thus, to find a necessary condition for a \mathbb{B}^n -valued holomorphic function mapping z_j to w_j , $1 \leq j \leq M$, one views the latter as sitting in $\operatorname{Mult}(\mathcal{H}, \mathcal{H} \otimes \mathbb{C}^n)$ and applies the Sarason(–Nevanlinna) proposition with:

- $ightharpoonup S=\mathbb{D}$ and $\mathcal{H}=H^2(\mathbb{D});$
- $\langle \cdot, \cdot \rangle$ = the std. inner product on \mathbb{C}^n .

In view of the remark following that proposition, we have:

Thus, to find a necessary condition for a \mathbb{B}^n -valued *holomorphic* function mapping z_j to w_j , $1 \leq j \leq M$, one views the latter as sitting in $\operatorname{Mult}(\mathcal{H},\mathcal{H}\otimes\mathbb{C}^n)$ and applies the Sarason(–Nevanlinna) proposition with:

- $ightharpoonup S=\mathbb{D}$ and $\mathcal{H}=H^2(\mathbb{D});$
- $ightharpoonup \langle \cdot, \cdot \rangle$ = the std. inner product on \mathbb{C}^n .

In view of the remark following that proposition, we have:

If
$$\exists F \in \operatorname{Hol}(\mathbb{D};\mathbb{B}^n)$$
 with $F(z_j) = w_j$, $1 \leq j \leq M$, then

$$\left[\frac{1 - \langle w_j, w_k \rangle}{1 - z_j \overline{z}_k}\right]_{j,k=1}^M$$

is positive semi-definite.

For $a\in\mathbb{B}^n\setminus\{0\}$ let proj_a be the orthogonal projection onto $\mathrm{span}_{\mathbb{C}}\{a\}$ and $Q_a=\mathrm{id}_{\mathbb{C}^n}-\mathrm{proj}_a$. Then

$$\Psi_a(z) := \frac{a - \operatorname{proj}_a(z) - (1 - \|a\|^2)^{1/2} Q_a(z)}{1 - \langle z, a \rangle} \quad \forall z \in \mathbb{B}^n$$

is a holomorphic $\mathbb{B}^n \to \mathbb{B}^n$ map with the properties:

For $a\in\mathbb{B}^n\setminus\{0\}$ let proj_a be the orthogonal projection onto $\mathrm{span}_{\mathbb{C}}\{a\}$ and $Q_a=\mathrm{id}_{\mathbb{C}^n}-\mathrm{proj}_a$. Then

$$\Psi_a(z) := \frac{a - \operatorname{proj}_a(z) - (1 - \|a\|^2)^{1/2} Q_a(z)}{1 - \langle z, a \rangle} \quad \forall z \in \mathbb{B}^n$$

is a holomorphic $\mathbb{B}^n \to \mathbb{B}^n$ map with the properties:

$$\blacktriangleright \ \Psi_a(a)=0 \ {\rm and} \ \Psi_a(0)=0,$$

For $a\in\mathbb{B}^n\setminus\{0\}$ let proj_a be the orthogonal projection onto $\mathrm{span}_{\mathbb{C}}\{a\}$ and $Q_a=\mathrm{id}_{\mathbb{C}^n}-\mathrm{proj}_a$. Then

$$\Psi_a(z) := \frac{a - \operatorname{proj}_a(z) - (1 - \|a\|^2)^{1/2} Q_a(z)}{1 - \langle z, a \rangle} \quad \forall z \in \mathbb{B}^n$$

is a holomorphic $\mathbb{B}^n \to \mathbb{B}^n$ map with the properties:

- $\Psi_a(a) = 0 \text{ and } \Psi_a(0) = 0$,
- $\blacktriangleright \ \Psi_a \circ \Psi_a = \mathsf{id}_{\mathbb{B}^n}.$

In particular, $\Psi_a \in \operatorname{Aut}(\mathbb{B}^n) \ \forall a \in \mathbb{B}^n \setminus \{0\}.$

For $a\in\mathbb{B}^n\setminus\{0\}$ let proj_a be the orthogonal projection onto $\mathrm{span}_{\mathbb{C}}\{a\}$ and $Q_a=\mathrm{id}_{\mathbb{C}^n}-\mathrm{proj}_a$. Then

$$\Psi_a(z) := \frac{a - \operatorname{proj}_a(z) - (1 - \|a\|^2)^{1/2} Q_a(z)}{1 - \langle z, a \rangle} \quad \forall z \in \mathbb{B}^n$$

is a holomorphic $\mathbb{B}^n \to \mathbb{B}^n$ map with the properties:

- $\Psi_a(a) = 0 \text{ and } \Psi_a(0) = 0$,
- $\blacktriangleright \ \Psi_a \circ \Psi_a = \mathsf{id}_{\mathbb{B}^n}.$

In particular, $\Psi_a \in \operatorname{Aut}(\mathbb{B}^n) \ \forall a \in \mathbb{B}^n \setminus \{0\}.$

A very special case of this map is when n=1, in which case we shall denote the map by ψ_a .

7Geometry: transitive action

For $a\in\mathbb{B}^n\setminus\{0\}$ let proj_a be the orthogonal projection onto $\mathrm{span}_{\mathbb{C}}\{a\}$ and $Q_a=\mathrm{id}_{\mathbb{C}^n}-\mathrm{proj}_a$. Then

$$\Psi_a(z) := \frac{a - \operatorname{proj}_a(z) - (1 - \|a\|^2)^{1/2} Q_a(z)}{1 - \langle z, a \rangle} \quad \forall z \in \mathbb{B}^n$$

is a holomorphic $\mathbb{B}^n \to \mathbb{B}^n$ map with the properties:

- $\Psi_a(a) = 0 \text{ and } \Psi_a(0) = 0,$
- $\blacktriangleright \ \Psi_a \circ \Psi_a = \mathsf{id}_{\mathbb{B}^n}.$

In particular, $\Psi_a \in \operatorname{Aut}(\mathbb{B}^n) \ \forall a \in \mathbb{B}^n \setminus \{0\}.$

A very special case of this map is when n=1, in which case we shall denote the map by ψ_a . In this case, we get the (**very** familiar) map:

$$\psi_a(z) := \frac{a-z}{1-\overline{a}z} \ \forall z \in \mathbb{D}.$$

Some metric geometry

The Kobayashi (pseudo)distance: Given a domain $\Omega \subset \mathbb{C}^n$, the Kobayashi pseudodistance on Ω is:

$$K_{\Omega}(z,w) := \inf_{\mathscr{C}} \left\{ \sum_{j=1}^{N} \rho_{\mathbb{D}}(0,\zeta_{j}) : (f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N}) \in \mathscr{C} \right\}$$

₈Some metric geometry

The Kobayashi (pseudo)distance: Given a domain $\Omega \subset \mathbb{C}^n$, the Kobayashi pseudodistance on Ω is:

$$\begin{split} K_{\Omega}(z,w) := \inf_{\mathscr{C}} \left\{ \sum_{j=1}^{N} \rho_{\mathbb{D}}(0,\zeta_{j}) : (f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N}) \in \mathscr{C} \right\} \\ \text{where } \mathscr{C} \text{ is the collection of all chains } (f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N}) \text{ of } \mathbb{D} \to \Omega \\ \text{analytic discs linking } z \text{ to } w \text{: i.e., } f_{1}(0) = z \text{, } f_{N}(\zeta_{N}) = w \text{ and} \\ f_{j}(\zeta_{j}) = f_{j+1}(0), \ 1 \leq j \leq N-1. \end{split}$$

₈Some metric geometry

The Kobayashi (pseudo)distance: Given a domain $\Omega \subset \mathbb{C}^n$, the Kobayashi pseudodistance on Ω is:

$$\begin{split} K_{\Omega}(z,w) := \inf_{\mathscr{C}} \left\{ \sum_{j=1}^{N} \rho_{\mathbb{D}}(0,\zeta_{j}) : (f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N}) \in \mathscr{C} \right\} \\ \text{where } \mathscr{C} \text{ is the collection of all chains } (f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N}) \text{ of } \mathbb{D} \to \Omega \\ \text{analytic discs linking } z \text{ to } w \text{: i.e., } f_{1}(0) = z, f_{N}(\zeta_{N}) = w \text{ and} \\ f_{j}(\zeta_{j}) = f_{j+1}(0), \ 1 \leq j \leq N-1. \end{split}$$

Obvious from construction (since the composition of holo. maps is holo.) that given domains Ω_1 , Ω_2 and $\phi \in \operatorname{Hol}(\Omega_1; \Omega_2)$,

$$K_{\Omega_2}(\phi(z), \phi(w)) \le K_{\Omega_1}(z, w) \ \forall z, w \in \Omega_1.$$

₈Some metric geometry

The Kobayashi (pseudo)distance: Given a domain $\Omega \subset \mathbb{C}^n$, the Kobayashi pseudodistance on Ω is:

$$K_{\Omega}(z,w) := \inf_{\mathscr{C}} \left\{ \sum_{j=1}^{N} \rho_{\mathbb{D}}(0,\zeta_{j}) : (f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N}) \in \mathscr{C} \right\}$$
 where \mathscr{C} is the collection of all chains $(f_{1},\ldots,f_{N};\zeta_{1},\ldots\zeta_{N})$ of $\mathbb{D} \to \Omega$ analytic discs linking z to w : i.e., $f_{1}(0) = z$, $f_{N}(\zeta_{N}) = w$ and

$$f_j(\zeta_j) = f_{j+1}(0), \ 1 \le j \le N-1.$$

Obvious from construction (since the composition of holo. maps is holo.) that given domains Ω_1 , Ω_2 and $\phi \in \operatorname{Hol}(\Omega_1; \Omega_2)$,

$$K_{\Omega_2}(\phi(z), \phi(w)) \le K_{\Omega_1}(z, w) \ \forall z, w \in \Omega_1.$$

Examples: Both these are relevant to us:

$$\begin{split} K_{\mathbb{D}}(z_1,z_2) &= \rho_{\mathbb{D}}(z_1,z_2) = \tanh^{-1} \left| \frac{z_1 - z_2}{1 - \overline{z}_2 z_1} \right|, \\ K_{\mathbb{B}^n}(w_1,w_2) &= \tanh^{-1} \frac{\left(\|w_1\|^2 + \|w_2\|^2 - 2\text{Re}\langle w_1,w_2 \rangle + (\,|\langle w_1,w_2 \rangle|^2 - \|w_1\|^2 \|w_2\|^2) \right)^{1/2}}{|1 - \langle w_1,w_2 \rangle|}. \end{split}$$

⁹The deflation trick

A key conclusion from the last slide

A key conclusion from the last slide

$$\phi:(\mathbb{D},0)\to(\mathbb{B}^n,0) \text{ holomorphic } \Rightarrow \|\phi(z)\|\leq |z| \ \, \forall z\in\mathbb{D}!$$

A key conclusion from the last slide

$$\phi: (\mathbb{D},0) \to (\mathbb{B}^n,0) \text{ holomorphic } \Rightarrow \|\phi(z)\| \leq |z| \ \, \forall z \in \mathbb{D}!$$

Write $\mathscr{B} := \{ \phi : \mathbb{D} \to \overline{\mathbb{B}^n} \mid \phi \text{ is holomorphic} \}.$

A key conclusion from the last slide

$$\phi:(\mathbb{D},0) \to (\mathbb{B}^n,0)$$
 holomorphic $\Rightarrow \|\phi(z)\| \leq |z| \ \forall z \in \mathbb{D}!$

Write $\mathscr{B} := \{ \phi : \mathbb{D} \to \overline{\mathbb{B}^n} \mid \phi \text{ is holomorphic} \}.$

With $z_1,\ldots,z_M\in\mathbb{D}$ and $w_1,\ldots,w_M\in\mathbb{B}^n$ as given:

$$\exists F \in \mathscr{B} \text{ s.t. } F \text{ interpolates } \{(z_1, w_1), \dots, (z_M, w_M)\} \iff \exists \widetilde{F} \in \mathscr{B}$$

 $\text{s.t. } \widetilde{F} \text{ interpolates } \big\{ (\psi_{z_M}(z_1), \Psi_{w_M}(w_1)), \ldots, (\psi_{z_M}(z_{M-1}), \Psi_{w_M}(w_{M-1})), (0,0) \big\}.$

A key conclusion from the last slide

$$\phi:(\mathbb{D},0)\to(\mathbb{B}^n,0) \text{ holomorphic } \Rightarrow \|\phi(z)\|\leq |z| \ \, \forall z\in\mathbb{D}!$$

Write $\mathscr{B} := \{ \phi : \mathbb{D} \to \overline{\mathbb{B}^n} \mid \phi \text{ is holomorphic} \}.$

With $z_1, \ldots, z_M \in \mathbb{D}$ and $w_1, \ldots, w_M \in \mathbb{B}^n$ as given:

$$\exists F \in \mathscr{B} \text{ s.t. } F \text{ interpolates } \{(z_1, w_1), \dots, (z_M, w_M)\} \iff \exists \widetilde{F} \in \mathscr{B}$$

$$\text{s.t. } \widetilde{F} \text{ interpolates } \big\{(\psi_{z_M}(z_1),\Psi_{w_M}(w_1)),\ldots,(\psi_{z_M}(z_{M-1}),\Psi_{w_M}(w_{M-1})),(0,0)\big\}.$$

Furthermore:

$$\exists \widetilde{F} \in \mathscr{B} \text{ s.t. } \widetilde{F} \text{ interpolates } \big\{ (\psi_{z_M}(z_1), \Psi_{w_M}(w_1)), \ldots, (\psi_{z_M}(z_{M-1}), \Psi_{w_M}(w_{M-1})), (0,0) \big\}.$$

A key conclusion from the last slide

$$\phi: (\mathbb{D},0) \to (\mathbb{B}^n,0) \text{ holomorphic } \Rightarrow \|\phi(z)\| \leq |z| \ \forall z \in \mathbb{D}!$$

Write $\mathscr{B} := \{ \phi : \mathbb{D} \to \overline{\mathbb{B}^n} \mid \phi \text{ is holomorphic} \}.$

With $z_1, \ldots, z_M \in \mathbb{D}$ and $w_1, \ldots, w_M \in \mathbb{B}^n$ as given:

$$\exists F \in \mathscr{B} \text{ s.t. } F \text{ interpolates } \{(z_1, w_1), \dots, (z_M, w_M)\} \iff \exists \widetilde{F} \in \mathscr{B}$$

$$\text{s.t. } \widetilde{F} \text{ interpolates } \big\{(\psi_{z_M}(z_1),\Psi_{w_M}(w_1)),\ldots,(\psi_{z_M}(z_{M-1}),\Psi_{w_M}(w_{M-1})),(0,0)\big\}.$$

Furthermore:

$$\exists \widetilde{F} \in \mathscr{B} \text{ s.t. } \widetilde{F} \text{ interpolates } \big\{ (\psi_{z_M}(z_1), \Psi_{w_M}(w_1)), \ldots, (\psi_{z_M}(z_{M-1}), \Psi_{w_M}(w_{M-1})), (0,0) \big\}.$$

$$\iff \exists F^{\bullet} \in \mathscr{B} \text{ s.t. } F^{\bullet} \text{ interpolates}$$

$$\left\{ (\psi_{z_M}(z_1), \psi_{z_M}(z_1)^{-1} \Psi_{w_M}(w_1)), \dots, (\psi_{z_M}(z_{M-1}), \psi_{z_M}(z_{M-1})^{-1} \Psi_{w_M}(w_{M-1})) \right\}$$

A key conclusion from the last slide

$$\phi: (\mathbb{D},0) \to (\mathbb{B}^n,0) \text{ holomorphic } \Rightarrow \|\phi(z)\| \leq |z| \ \, \forall z \in \mathbb{D}!$$

Write $\mathscr{B} := \{ \phi : \mathbb{D} \to \overline{\mathbb{B}^n} \mid \phi \text{ is holomorphic} \}.$

With $z_1, \ldots, z_M \in \mathbb{D}$ and $w_1, \ldots, w_M \in \mathbb{B}^n$ as given:

$$\exists F \in \mathscr{B} \text{ s.t. } F \text{ interpolates } \{(z_1, w_1), \dots, (z_M, w_M)\} \Longleftrightarrow \exists \widetilde{F} \in \mathscr{B}$$
 s.t. $\widetilde{F} \text{ interpolates } \{(\psi_{z_M}(z_1), \Psi_{w_M}(w_1)), \dots, (\psi_{z_M}(z_{M-1}), \Psi_{w_M}(w_{M-1})), (0, 0)\}.$

Furthermore:

$$\begin{split} &\exists \widetilde{F} \in \mathscr{B} \text{ s.t. } \widetilde{F} \text{ interpolates } \big\{ (\psi_{z_M}(z_1), \Psi_{w_M}(w_1)), \dots, (\psi_{z_M}(z_{M-1}), \Psi_{w_M}(w_{M-1})), (0,0) \big\}. \\ &\iff \exists F^{\bullet} \in \mathscr{B} \text{ s.t. } F^{\bullet} \text{ interpolates} \\ &\big\{ (\psi_{z_M}(z_1), \psi_{z_M}(z_1)^{-1} \Psi_{w_M}(w_1)), \dots, (\psi_{z_M}(z_{M-1}), \psi_{z_M}(z_{M-1})^{-1} \Psi_{w_M}(w_{M-1})) \big\} \end{split}$$

Here, $F^{\bullet}:=z^{-1}\widetilde{F}(z)$. Its holomorphicity would follow from Riemann's RST if we can show that $F^{\bullet}|_{\mathbb{D}\setminus\{0\}}$ is bounded.

A key conclusion from the last slide

$$\phi: (\mathbb{D},0) \to (\mathbb{B}^n,0) \text{ holomorphic } \Rightarrow \|\phi(z)\| \leq |z| \ \, \forall z \in \mathbb{D}!$$

Write $\mathscr{B} := \{ \phi : \mathbb{D} \to \overline{\mathbb{B}^n} \mid \phi \text{ is holomorphic} \}.$

With $z_1, \ldots, z_M \in \mathbb{D}$ and $w_1, \ldots, w_M \in \mathbb{B}^n$ as given:

$$\exists F \in \mathscr{B} \text{ s.t. } F \text{ interpolates } \{(z_1,w_1),\ldots,(z_M,w_M)\} \Longleftrightarrow \exists \widetilde{F} \in \mathscr{B}$$
 s.t. $\widetilde{F} \text{ interpolates } \{(\psi_{z_M}(z_1),\Psi_{w_M}(w_1)),\ldots,(\psi_{z_M}(z_{M-1}),\Psi_{w_M}(w_{M-1})),(0,0)\}.$

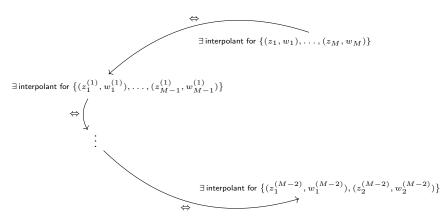
Furthermore:

$$\begin{split} &\exists \tilde{F} \in \mathcal{B} \text{ s.t. } \tilde{F} \text{ interpolates } \big\{ (\psi_{z_M}(z_1), \Psi_{w_M}(w_1)), \dots, (\psi_{z_M}(z_{M-1}), \Psi_{w_M}(w_{M-1})), (0, 0) \big\}. \\ &\iff \exists F^\bullet \in \mathcal{B} \text{ s.t. } F^\bullet \text{ interpolates} \\ &\big\{ (\psi_{z_M}(z_1), \psi_{z_M}(z_1)^{-1} \Psi_{w_M}(w_1)), \dots, (\psi_{z_M}(z_{M-1}), \psi_{z_M}(z_{M-1})^{-1} \Psi_{w_M}(w_{M-1})) \big\} \end{split}$$

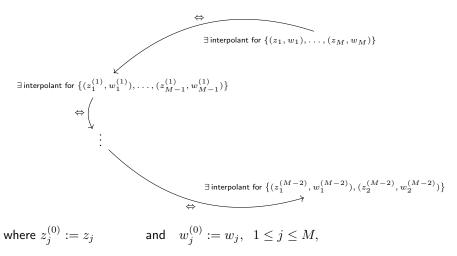
Here, $F^{\bullet}:=z^{-1}\widetilde{F}(z)$. Its holomorphicity would follow from Riemann's RST if we can show that $F^{\bullet}|_{\mathbb{D}\setminus\{0\}}$ is bounded. By above inequality, $\|\widetilde{F}(z)\|/|z|\leq 1$ $\forall z\in\mathbb{D}\setminus\{0\}$, so $F^{\bullet}\in\mathscr{B}!$

The deflation trick reduces our problem to that of characterising existence of a 2-point interpolant:

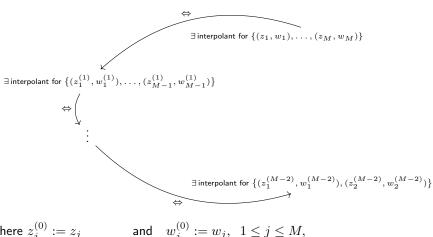
The deflation trick reduces our problem to that of characterising existence of a 2-point interpolant:



The deflation trick reduces our problem to that of characterising existence of a 2-point interpolant:



The deflation trick reduces our problem to that of characterising existence of a 2-point interpolant:



where
$$z_j^{(0)} := z_j$$
 and $w_j^{(0)} := w_j$, $1 \le j \le M$,
$$z_j^{(k+1)} := \psi_{z_{M-k}^{(k)}}(z_j^{(k)}) \text{ and } w_j^{(k+1)} := \psi_{z_{M-k}^{(k)}}(z_j^{(k)})^{-1} \Psi_{w_{M-k}^{(k)}}(w_j^{(k)}), \ 1 \le j \le M-k-1.$$

The link to a positive semi-definite matrix

Suppose $\{(a_1,B_1),(a_2,B_2)\}$, $a_j\in\mathbb{D}$, $B_j\in\mathbb{B}^n$ satisfy (ullet) $K_{\mathbb{B}^n}(B_1,B_2)\leq K_{\mathbb{D}}(a_1,a_2)$.

The link to a positive semi-definite matrix

Suppose $\{(a_1,B_1),(a_2,B_2)\}$, $a_j\in\mathbb{D}$, $B_j\in\mathbb{B}^n$ satisfy (ullet) $K_{\mathbb{B}^n}(B_1,B_2)\leq K_{\mathbb{D}}(a_1,a_2)$. This is equivalent to

$$\beta := \|\Psi_{B_2}(B_1)\| \le |\psi_{a_2}(a_1)| =: \alpha.$$

Suppose $\{(a_1, B_1), (a_2, B_2)\}$, $a_j \in \mathbb{D}$, $B_j \in \mathbb{B}^n$ satisfy (\bullet) $K_{\mathbb{B}^n}(B_1, B_2) \leq K_{\mathbb{D}}(a_1, a_2)$. This is equivalent to

$$\beta := \|\Psi_{B_2}(B_1)\| \le |\psi_{a_2}(a_1)| =: \alpha.$$

Pick a unitary matrix U and a $\theta \in \mathbb{R}$ s.t.

$$\mathsf{U}\Psi_{B_2}(B_1) = \|\Psi_{B_2}(B_1)\| \pmb{\epsilon}_1 \ \ \text{and} \ \ e^{i\theta}\psi_{a_2}(a_1) = |\psi_{a_2}(a_1)|.$$

Suppose $\{(a_1, B_1), (a_2, B_2)\}$, $a_j \in \mathbb{D}$, $B_j \in \mathbb{B}^n$ satisfy (\bullet) $K_{\mathbb{B}^n}(B_1, B_2) \leq K_{\mathbb{D}}(a_1, a_2)$. This is equivalent to

$$\beta := \|\Psi_{B_2}(B_1)\| \le |\psi_{a_2}(a_1)| =: \alpha.$$

Pick a unitary matrix U and a $\theta \in \mathbb{R}$ s.t.

$$\mathsf{U}\Psi_{B_2}(B_1) = \|\Psi_{B_2}(B_1)\| \pmb{\epsilon}_1 \ \ \text{and} \ \ e^{i\theta}\psi_{a_2}(a_1) = |\psi_{a_2}(a_1)|.$$

Clearly

$$\phi(z):=\Psi_{B_2}^{-1}\Big(\mathsf{U}^{-1}\Big(\frac{\beta}{\alpha}(e^{i\theta}\psi_{a_2}(z))\pmb{\epsilon}_1\Big)\Big),\ z\in\mathbb{D}$$

takes values in \mathbb{B}^n and $\phi(a_j) = B_j$, $1 \leq j \leq 2!$

Suppose $\{(a_1, B_1), (a_2, B_2)\}$, $a_j \in \mathbb{D}$, $B_j \in \mathbb{B}^n$ satisfy (\bullet) $K_{\mathbb{B}^n}(B_1, B_2) \leq K_{\mathbb{D}}(a_1, a_2)$. This is equivalent to

$$\beta := \|\Psi_{B_2}(B_1)\| \le |\psi_{a_2}(a_1)| =: \alpha.$$

Pick a unitary matrix U and a $\theta \in \mathbb{R}$ s.t.

$$\mathsf{U}\Psi_{B_2}(B_1) = \|\Psi_{B_2}(B_1)\|\epsilon_1 \text{ and } e^{i\theta}\psi_{a_2}(a_1) = |\psi_{a_2}(a_1)|.$$

Clearly

$$\phi(z) := \Psi_{B_2}^{-1} \Big(\mathsf{U}^{-1} \Big(\frac{\beta}{\alpha} (e^{i\theta} \psi_{a_2}(z)) \epsilon_1 \Big) \Big), \ z \in \mathbb{D}$$

takes values in \mathbb{B}^n and $\phi(a_j)=B_j,\ 1\leq j\leq 2!$ The condition (ullet) is equivalent to

$$\left|\frac{a_1-a_2}{1-\overline{a}_2a_1}\right|^2-\tanh\left(K_{\mathbb{B}^n}(b_1,b_2)\right)^2\geq 0,$$

in which the L.H.S. just happens to be

Suppose $\{(a_1,B_1),(a_2,B_2)\}$, $a_j\in\mathbb{D}$, $B_j\in\mathbb{B}^n$ satisfy (\bullet) $K_{\mathbb{B}^n}(B_1,B_2)\leq K_{\mathbb{D}}(a_1,a_2)$. This is equivalent to

$$\beta := \|\Psi_{B_2}(B_1)\| \le |\psi_{a_2}(a_1)| =: \alpha.$$

Pick a unitary matrix U and a $\theta \in \mathbb{R}$ s.t.

$$\mathsf{U}\Psi_{B_2}(B_1) = \|\Psi_{B_2}(B_1)\| \epsilon_1 \ \text{ and } \ e^{i\theta}\psi_{a_2}(a_1) = |\psi_{a_2}(a_1)|.$$

Clearly

$$\phi(z) := \Psi_{B_2}^{-1} \Big(\mathsf{U}^{-1} \Big(\frac{\beta}{\alpha} (e^{i\theta} \psi_{a_2}(z)) \epsilon_1 \Big) \Big), \ z \in \mathbb{D}$$

takes values in \mathbb{B}^n and $\phi(a_j)=B_j,\ 1\leq j\leq 2!$ The condition (ullet) is equivalent to

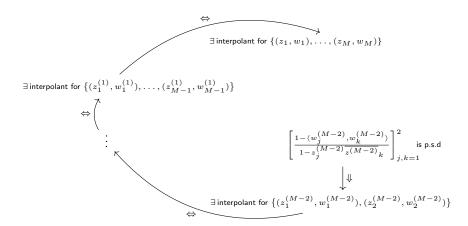
$$\left|\frac{a_1-a_2}{1-\overline{a}_2a_1}\right|^2-\tanh\left(K_{\mathbb{B}^n}(b_1,b_2)\right)^2\geq 0,$$

in which the L.H.S. just happens to be the determinant of

$$\left[\frac{1-\langle b_j, b_k \rangle}{1-a_j \overline{a}_k}\right]_{j,k=1}^2!$$

This fits into the last diagram as follows:

This fits into the last diagram as follows:



₁₂Sufficiency of positivity

Establishing the sufficient cond'n. Let a_1, \ldots, a_N be distinct points in \mathbb{D} , and let b_1, \ldots, b_N be points in \mathbb{B}^n , $N \geq 3$. Consider the two Hermitian forms:

$$\begin{split} H[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^N \frac{1 - \langle b_j,b_k \rangle}{1 - a_j \overline{a}_k} \xi_j \overline{\xi}_k \quad \text{on } \mathbb{C}^N, \\ \tilde{H}[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^{N-1} \frac{1 - \langle \psi_{a_N}(a_j)^{-1} \Psi_{b_N}(b_j), \psi_{a_N}(a_k)^{-1} \Psi_{b_N}(b_k) \rangle}{1 - \psi_{a_N}(a_j) \overline{\psi_{a_N}(a_k)}} \xi_j \overline{\xi}_k \end{split}$$

₁₂Sufficiency of positivity

Establishing the sufficient cond'n. Let a_1, \ldots, a_N be distinct points in \mathbb{D} , and let b_1, \ldots, b_N be points in \mathbb{B}^n , $N \geq 3$. Consider the two Hermitian forms:

$$\begin{split} H[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^N \frac{1 - \langle b_j,b_k \rangle}{1 - a_j \overline{a}_k} \xi_j \overline{\xi}_k \quad \text{on } \mathbb{C}^N, \\ \widetilde{H}[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^{N-1} \frac{1 - \langle \psi_{a_N}(a_j)^{-1} \Psi_{b_N}(b_j), \psi_{a_N}(a_k)^{-1} \Psi_{b_N}(b_k) \rangle}{1 - \psi_{a_N}(a_j) \overline{\psi_{a_N}(a_k)}} \xi_j \overline{\xi}_k \end{split}$$

It would suffice to prove that

 $H[a_1,\ldots,a_N;b_1,\ldots,b_N] \geq 0 \Rightarrow \widetilde{H}[a_1,\ldots,a_N;b_1,\ldots,b_N] \geq 0$ to establish our theorem.

₁₂Sufficiency of positivity

Establishing the sufficient cond'n. Let a_1, \ldots, a_N be distinct points in \mathbb{D} , and let b_1, \ldots, b_N be points in \mathbb{B}^n , $N \geq 3$. Consider the two Hermitian forms:

$$\begin{split} H[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^N \frac{1 - \langle b_j,b_k \rangle}{1 - a_j \overline{a}_k} \xi_j \overline{\xi}_k \quad \text{on } \mathbb{C}^N, \\ \widetilde{H}[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^{N-1} \frac{1 - \langle \psi_{a_N}(a_j)^{-1} \Psi_{b_N}(b_j), \psi_{a_N}(a_k)^{-1} \Psi_{b_N}(b_k) \rangle}{1 - \psi_{a_N}(a_j) \overline{\psi_{a_N}(a_k)}} \xi_j \overline{\xi}_k \end{split}$$

It would suffice to prove that

 $H[a_1,\ldots,a_N;b_1,\ldots,b_N]\geq 0 \Rightarrow \widetilde{H}[a_1,\ldots,a_N;b_1,\ldots,b_N]\geq 0$ to establish our theorem. We compute:

$$\begin{split} \frac{1-a_{j}^{(1)}\overline{a^{(1)}}_{k}}{1-a_{j}\overline{a}_{k}} &= \frac{\sqrt{1-|a_{N}|^{2}}}{1-\overline{a}_{N}a_{j}} \, \frac{\sqrt{1-|a_{N}|^{2}}}{1-a_{N}\overline{a}_{k}} \equiv \, \alpha_{j}\overline{\alpha}_{k}, \\ \frac{1-\langle b_{j}^{(1)},b_{k}^{(1)}\rangle}{1-\langle b_{j},b_{k}\rangle} &= \frac{\sqrt{1-\|b_{N}\|^{2}}}{1-\langle b_{j},b_{N}\rangle} \, \frac{\sqrt{1-\|b_{N}\|^{2}}}{1-\langle b_{N},b_{k}\rangle} \equiv \, \beta_{j}\overline{\beta}_{k}. \end{split}$$

₁₃Sufficiency of positivity

Establishing the sufficient cond'n. Let a_1, \ldots, a_N be distinct points in \mathbb{D} , and let b_1, \ldots, b_N be points in \mathbb{B}^n , $N \geq 3$. Consider the two Hermitian forms:

$$\begin{split} H[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^N \frac{1 - \langle b_j,b_k \rangle}{1 - a_j \overline{a}_k} \xi_j \overline{\xi}_k \quad \text{on } \mathbb{C}^N, \\ \widetilde{H}[a_1,\dots,a_N;b_1,\dots,b_N](\xi) &:= \sum_{j,k=1}^{N-1} \frac{1 - \langle \psi_{a_N}(a_j)^{-1} \Psi_{b_N}(b_j), \psi_{a_N}(a_k)^{-1} \Psi_{b_N}(b_k) \rangle}{1 - \psi_{a_N}(a_j) \overline{\psi_{a_N}(a_k)}} \xi_j \overline{\xi}_k \end{split}$$

It would suffice to prove that

 $H[a_1,\ldots,a_N;b_1,\ldots,b_N] \ge 0 \Rightarrow \widetilde{H}[a_1,\ldots,a_N;b_1,\ldots,b_N] \ge 0$ to establish our theorem. We compute:

$$\begin{split} \frac{1-a_{j}^{(1)}\overline{a^{(1)}}_{k}}{1-a_{j}\overline{a}_{k}} &= \frac{\sqrt{1-|a_{N}|^{2}}}{1-\overline{a}_{N}a_{j}} \, \frac{\sqrt{1-|a_{N}|^{2}}}{1-a_{N}\overline{a}_{k}} \, \equiv \, \alpha_{j}\overline{\alpha}_{k}, \\ \frac{1-\langle b_{j}^{(1)},b_{k}^{(1)}\rangle}{1-\langle b_{j},b_{k}\rangle} &= \frac{\sqrt{1-\|b_{N}\|^{2}}}{1-\langle b_{j},b_{N}\rangle} \, \frac{\sqrt{1-\|b_{N}\|^{2}}}{1-\langle b_{N},b_{k}\rangle} \, \equiv \, \beta_{j}\overline{\beta}_{k}. \end{split}$$

This computation gives...

¹³Sufficiency of positivity, cont'd.

$$H[a_1^{(1)}, \dots, a_{N-1}^{(1)}, 0; b_1^{(1)}, \dots, b_{N-1}^{(1)}, 0](\xi)$$

= $H[a_1, \dots, a_N; b_1, \dots, b_N](\operatorname{Diag}(\beta_1/\alpha_1, \dots, \beta_N/\alpha_N) \xi)$

₁₃Sufficiency of positivity, cont'd.

$$H[a_1^{(1)}, \dots, a_{N-1}^{(1)}, 0; b_1^{(1)}, \dots, b_{N-1}^{(1)}, 0](\xi)$$

$$= H[a_1, \dots, a_N; b_1, \dots, b_N](\operatorname{Diag}(\beta_1/\alpha_1, \dots, \beta_N/\alpha_N) \xi)$$

Hence, the form on the L.H.S. is non-negative if $H[a_1,\ldots,a_N;b_1,\ldots,b_N] \geq 0$.

¹³Sufficiency of positivity, cont'd.

$$H[a_1^{(1)}, \dots, a_{N-1}^{(1)}, 0; b_1^{(1)}, \dots, b_{N-1}^{(1)}, 0](\xi)$$

$$= H[a_1, \dots, a_N; b_1, \dots, b_N](\operatorname{Diag}(\beta_1/\alpha_1, \dots, \beta_N/\alpha_N)\xi)$$

Hence, the form on the L.H.S. is non-negative if $H[a_1, \ldots, a_N; b_1, \ldots, b_N] \ge 0$. We now invoke the following:

Result (Schur). Let \mathcal{K} be a complex inner-product space with inner product $(\cdot \mid \cdot)$. Let $c_1, \ldots, c_{N-1} \in \mathbb{D} \setminus \{0\}$ and set $c_N := 0$. Let $B_1, \ldots, B_{N-1} \in \mathcal{K}$ with $\|B_j\|_{\mathcal{K}} < 1$ and set $B_N := 0$. If the quadratic form

$$Q(\xi) := \sum_{j:k=1}^N rac{1-ig(B_j\mid B_kig)}{1-c_jar c_k} \xi_jar \xi_k$$
 on \mathbb{C}^N

is conditionally positive,

₁₃Sufficiency of positivity, cont'd.

$$H[a_1^{(1)}, \dots, a_{N-1}^{(1)}, 0; b_1^{(1)}, \dots, b_{N-1}^{(1)}, 0](\xi)$$

$$= H[a_1, \dots, a_N; b_1, \dots, b_N](\operatorname{Diag}(\beta_1/\alpha_1, \dots, \beta_N/\alpha_N) \xi)$$

Hence, the form on the L.H.S. is non-negative if $H[a_1, \ldots, a_N; b_1, \ldots, b_N] \ge 0$. We now invoke the following:

Result (Schur). Let \mathcal{K} be a complex inner-product space with inner product $(\cdot \mid \cdot)$. Let $c_1, \ldots, c_{N-1} \in \mathbb{D} \setminus \{0\}$ and set $c_N := 0$. Let $B_1, \ldots, B_{N-1} \in \mathcal{K}$ with $\|B_j\|_{\mathcal{K}} < 1$ and set $B_N := 0$. If the quadratic form

$$Q(\xi) := \sum_{j,k=1}^N rac{1-ig(B_j\mid B_kig)}{1-c_jar{c}_k} \xi_jar{\xi}_k \quad ext{on } \mathbb{C}^N$$

is conditionally positive, then the quadratic form

$$\widetilde{Q}(\xi) := \sum_{j,k=1}^{N-1} \frac{1 - \left(c_j^{-1}B_j \mid c_k^{-1}B_k\right)}{1 - c_j\overline{c}_k} \xi_j\overline{\xi}_k \quad \text{on } \mathbb{C}^{N-1}$$

is positive semi-definite on \mathbb{C}^{N-1} .

"Sufficiency of positivity, cont'd.

$$H[a_1^{(1)}, \dots, a_{N-1}^{(1)}, 0; b_1^{(1)}, \dots, b_{N-1}^{(1)}, 0](\xi)$$

$$= H[a_1, \dots, a_N; b_1, \dots, b_N](\operatorname{Diag}(\beta_1/\alpha_1, \dots, \beta_N/\alpha_N) \xi)$$

Hence, the form on the L.H.S. is non-negative if $H[a_1,\ldots,a_N;b_1,\ldots,b_N]\geq 0$. We now invoke the following:

Result (Schur). Let K be a complex inner-product space with inner product $(\cdot \mid \cdot)$. Let $c_1, \ldots, c_{N-1} \in \mathbb{D} \setminus \{0\}$ and set $c_N := 0$. Let $B_1, \ldots, B_{N-1} \in \mathcal{K}$ with $||B_i||_{\mathcal{K}} < 1$ and set $B_N := 0$. If the quadratic form

$$Q(\xi) := \sum_{j,k=1}^N rac{1-\left(B_j\mid B_k
ight)}{1-c_jar{c}_k} \xi_jar{\xi}_k \quad ext{on } \mathbb{C}^N$$

is conditionally positive, then the quadratic form

$$\widetilde{Q}(\xi):=\sum_{j,k=1}^{N-1}\frac{1-\left(c_j^{-1}B_j\mid c_k^{-1}B_k\right)}{1-c_j\bar{c}_k}\xi_j\overline{\xi}_k\quad\text{on }\mathbb{C}^{N-1}$$

is positive semi-definite on \mathbb{C}^{N-1} .

Just set $c_j = a_i^{(1)}$ and $B_j = b_i^{(1)}$, $1 \le j \le N$, and we're done!