
Quantitative Diagonalizability

Part I: Three Measures of 
Nonnormality



𝜖 −pseudospectrum
Λ𝜖 𝑀 ≔ 𝑧 ∈ ℂ ∶ || 𝑧 − 𝑀 −1|| ≥ 𝜖−1



𝜖 −pseudospectrum
Λ𝜖 𝑀 ≔ 𝑧 ∈ ℂ ∶ || 𝑧 − 𝑀 −1|| ≥ 𝜖−1

= {𝑧 ∈ ℂ ∶ 𝜎𝑛 𝑧 − 𝑀 ≤ 𝜖 }

= {𝑧 ∈ ℂ: 𝑧 ∈ 𝑠𝑝𝑒𝑐 𝐴 + 𝐸 , ||𝐸|| ≤ 𝜖}



𝜖 −pseudospectrum
Λ𝜖 𝑀 ≔ 𝑧 ∈ ℂ ∶ || 𝑧 − 𝑀 −1|| ≥ 𝜖−1

For normal matrices, Λ𝜖 𝑀 = Λ0 𝑀 +𝐷 0, 𝜖



Pseudospectrum of Toeplitz Example



𝜖 −pseudospectrum
Λ𝜖 𝑀 ≔ 𝑧 ∈ ℂ ∶ || 𝑧 − 𝑀 −1|| ≥ 𝜖−1

e.g. discretization of pde from acoustics:



Λ𝜖 𝑀 ≔ 𝑧 ∈ ℂ ∶ || 𝑧 − 𝑀 −1|| ≥ 𝜖−1

= {𝑧 ∈ ℂ ∶ 𝜎𝑛 𝑧 − 𝑀 ≤ 𝜖 }

= 𝑧 ∈ ℂ: 𝑧 ∈ 𝑠𝑝𝑒𝑐 𝐴 + 𝐸 , ||𝐸|| ≤ 𝜖

[Bauer-Fike]: Λ𝜖 𝑀 ⊂ Λ0 𝑀 + 𝜅𝑒 𝑀 𝐷 0, 𝜖

For distinct eigs Λ𝜖 𝑀 = Λ0 𝑀 +∪𝑖 𝐷(𝜆𝑖 , 𝜅 𝜆𝑖 𝜖) + 𝑜(𝜖)

𝜖 −pseudospectrum



Part II: Davies’ Conjecture

(with Jess Banks, Archit Kulkarni, Satyaki Mukherjee)



Diagonalization
𝐴 ∈ ℂ𝑛×𝑛 is diagonalizable if 𝐴 = 𝑉𝐷𝑉−1 for invertible 𝑉, diagonal 𝐷.

Every matrix is a limit of diagonalizable matrices.

Let 𝜅𝑒 𝐴 ≔ ||𝑉|| ⋅ ||𝑉−1|| be the eigenvector condition number of 𝐴.

Question: Given a matrix 𝐴 and 𝛿 > 0 , what is min{𝜅𝑒 𝐴 + 𝐸 : ||𝐸|| ≤ 𝛿}?

𝜅𝑒 = ∞

𝜅𝑒 ≪ ∞
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Let 𝜅𝑒 𝐴 ≔ ||𝑉|| ⋅ ||𝑉−1|| be the eigenvector condition number of 𝐴.

Question: Given a matrix 𝐴 and 𝛿 > 0 , what is min{𝜅𝑒 𝐴 + 𝐸 : ||𝐸|| ≤ 𝛿}?

𝜅𝑒 = ∞

𝜅𝑒 ≪ ∞

𝜅𝑒 𝐴 = 1 for normal,
∞ for nondiagonalizable
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Problem. Compute 𝑓(𝐴) for analytic function 𝑓, e.g. 𝑓 𝑧 = 𝑒𝑧, 𝑧𝑝.

Naïve Approach. 𝑓 𝐴 = 𝑉𝑓 𝐷 𝑉−1. Highly unstable if 𝜅𝑒(𝐴) is big.

e.g. 𝑛 × 𝑛 Toeplitz:

Empirically: 𝐴 is close to a matrix with much better 𝜅𝑒 …

Motivation: Computing Matrix Functions

𝜅𝑒 𝐴 = 2𝑛−1 ≈ 1030

𝜅
𝑒
(𝐴

+
𝐸
)

∥ 𝐸 ∥

𝑛 = 100
𝐸~Gaussian
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Problem. Compute 𝑓(𝐴) for analytic function 𝑓, e.g. 𝑓 𝑧 = 𝑒𝑧, 𝑧𝑝.

Naïve Approach. 𝑓 𝐴 = 𝑉𝑓 𝐷 𝑉−1. Highly unstable if 𝜅𝑒(𝐴) is big.

e.g. 𝑛 × 𝑛 Toeplitz, n=100:

Motivation: Computing Matrix Functions

𝜅𝑒 𝐴 = 2𝑛−1 ≈ 1030
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experiment by M. Embree
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Idea. Approximate 𝑓(𝐴) by 𝑓 𝐴 + 𝐸 for some small 𝐸.

e.g.𝑓 𝐴 = 𝐴

E = randn(n)*delta

[V,D]=eig(A+E) 

S = V*D.^(1/2)*inv(V)

𝛿

𝛿
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Idea. Approximate 𝑓(𝐴) by 𝑓 𝐴 + 𝐸 for some small 𝐸.

e.g.𝑓 𝐴 = 𝐴

E = randn(n)*delta

[V,D]=eig(A+E) 

S = V*D.^(1/2)*inv(V)

𝛿

𝛿

experiment by M. Embree



Approximate Diagonalization
Theorem. [Davies’06] For every 𝐴 ∈ ℂ𝑛×𝑛 with ||𝐴|| ≤ 1 and 𝛿 ∈ (0,1)
there is a perturbation 𝐸 such that

𝜅𝑒 𝐴 + 𝐸 ≤ 𝐶
𝑛

𝛿

𝑛−1

Conjecture. For every 𝐴 ∈ ℂ𝑛×𝑛 with ||𝐴|| ≤ 1 and 𝛿 ∈ (0,1) there is a 
perturbation 𝐸 such that

𝜅𝑒 𝐴 + 𝐸 ≤
𝐶𝑛
𝛿

[Davies’06]: true for 𝑛 = 3 and for special case 𝐴 = 𝐽𝑛, with 𝐶𝑛 = 2.
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Main Result
Theorem A. For every 𝐴 ∈ ℂ𝑛×𝑛 with ||𝐴|| ≤ 1 and 𝛿 ∈ (0,1) there is a 
perturbation 𝐸 such that

𝜅𝑒 𝐴 + 𝐸 ≤
4𝑛3/2

𝛿

Implies every matrix has a 1/𝑝𝑜𝑙𝑦(𝑛) perturbation with 𝜅𝑒 ≤ 𝑝𝑜𝑙𝑦(𝑛)

Implied by a stronger probabilistic result on condition number of 
eigenvalues.
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Implied by a stronger probabilistic result on eigenvalue condition 
numbers.



Probabilistic Analysis of 𝜅𝑖
Theorem B. Assume ||𝐴|| ≤ 1 and let 𝐺 have i.i.d. complex standard 
Gaussian entries. Let 𝜆1, … 𝜆𝑛 be the eigenvalues of 𝐴 + 𝛾𝐺. 



Probabilistic Analysis of 𝜅𝑖
Theorem B. Assume ||𝐴|| ≤ 1 and let 𝐺 have i.i.d. complex standard 
Gaussian entries. Let 𝜆1, … 𝜆𝑛 be the eigenvalues of 𝐴 + 𝛾𝐺. 

𝑧 = 𝑥 + 𝑖𝑦 where 𝑥, 𝑦~𝑁 0,
1

2



Probabilistic Analysis of 𝜅𝑖
Theorem B. Assume ||𝐴|| ≤ 1 and let 𝐺 have i.i.d. complex standard 
Gaussian entries. Let 𝜆1, … 𝜆𝑛 be the eigenvalues of 𝐴 + 𝛾𝐺. Then for 
any open ball 𝐵 ⊂ ℂ:

𝔼 ෍

𝜆𝑖∈𝐵

𝜅2 𝜆𝑖 ≤
𝑛

𝜋𝛾2
⋅ 𝑣𝑜𝑙(𝐵)

𝜆1

𝜆2
𝜆3

𝜆4
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Implication B->A
Theorem B. Assume ||𝐴|| ≤ 1 and let 𝐺 have i.i.d. complex standard 
Gaussian entries. Let 𝜆1, … 𝜆𝑛 be the eigenvalues of 𝐴 + 𝛾𝐺. Then for any 
open ball 𝐵 ⊂ ℂ:
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𝜅2 𝜆𝑖 ≤
𝑛
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⋅ 𝑣𝑜𝑙(𝐵)

Proof of Theorem A. Let 𝛾 < 1/ 𝑛. whp ||𝐴 + 𝛾𝐺|| ≤ 3 so all 𝜆𝑖 ∈ 𝐵 =
𝐷(0,3).

𝜅𝑒 𝐴 + 𝛾𝐺 ≤ 𝑛 ⋅ ෍

𝜆𝑖∈𝐵
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𝛾
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𝜆2 𝜆3
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Proof of Theorem B



1. Area of the pseudospectrum
Lemma 1: If 𝑀 has distinct eigenvalues then for every open 𝐵:
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2. Real Anticoncentration
Theorem[Sankar-Spielman-Teng’06]: For any real 𝑛 × 𝑛 matrix 𝑀, and 
G with i.i.d. real 𝑁(0,1) entries:

ℙ 𝜎𝑛 𝑀 + 𝛾𝐺 ≤ 𝜖 ≤ 𝐶 𝑛𝜖/𝛾

Proof Idea:

Let 𝑀 + 𝛾𝐺 have columns 𝑚𝑖 + 𝛾𝑔𝑖 ,

Let 𝑆 = 𝑠𝑝𝑎𝑛 𝑚𝑖 + 𝛾𝑔𝑖 𝑖>2

ℙ 𝑑𝑖𝑠𝑡(𝑚1 + 𝛾𝑔1, 𝑆) ≤ 𝜖 = ℙ 𝑚1 + 𝛾𝑔1, 𝑤 ≤ 𝜖
= ℙ 𝑚1, 𝑤 − 𝛾𝑔 ≤ 𝜖 ≤ 𝜖/𝛾

𝑚1 + 𝛾𝑔1

𝑤

Orthogonal invariance anticoncentration

<bo
<board>
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𝑤



2’. Complex Anticoncentration
Lemma 2. For any complex 𝑛 × 𝑛 matrix 𝑀, and G with i.i.d. complex
𝑁(0,1ℂ) entries:

ℙ 𝜎𝑛 𝑀 + 𝛾𝐺 ≤ 𝜖 ≤ 𝑛𝜖2/𝛾2

Proof Idea:
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𝑤

Unitary invariance anticoncentration
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Cf. [Edelman’88] M=0



3. Expected Area of the Pseudospectrum
Lemma 2. For any complex 𝑛 × 𝑛 matrix 𝑀, complex Gaussian 𝐺:

ℙ 𝜎𝑛 𝑀 + 𝛾𝐺 ≤ 𝜖 ≤ 𝑛𝜖2/𝛾2

Applied to 𝑀 = 𝑧 − 𝐴 − 𝛾𝐺 says :

ℙ 𝑧 ∈ Λ𝜖 𝐴 + 𝛾𝐺 = ℙ[𝜎𝑛 𝑧 − 𝐴 − 𝛾𝐺 ≤ 𝜖] ≤ 𝑛𝜖2/𝛾2

So for every fixed ball 𝐵, for every 𝜖 > 0:

𝔼𝑣𝑜𝑙 Λ𝜖 𝐴 + 𝛾𝐺 ∩ 𝐵 = න
𝐵

ℙ 𝑧 ∈ Λ𝜖 𝐴 + 𝛾𝐺 𝑑𝑧 ≤
𝑛𝜖2

𝛾2
⋅ 𝑣𝑜𝑙(𝐵)



3. Expected Area of the Pseudospectrum
Lemma 2. For any complex 𝑛 × 𝑛 matrix 𝑀, complex Gaussian 𝐺:

ℙ 𝜎𝑛 𝑀 + 𝛾𝐺 ≤ 𝜖 ≤ 𝑛𝜖2/𝛾2

Lemma 3. For every fixed ball 𝐵, for every 𝜖 > 0:
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<board>



4. Expected Limiting Area of the Pseudospectrum

Define the function
𝑓𝜖 𝐺 ≔ 𝑣𝑜𝑙(Λ𝜖 𝐴 + 𝛾𝐺 ∩ 𝐵)/𝜖2

Lemma 2 shows that 
lim inf
𝜖→0

𝔼𝑓𝜖 𝐺 ≤ 𝑛/𝛾2

By Fatou’s lemma, 
𝔼 lim inf

𝜖→0
𝑓𝜖 𝐺 ≤ 𝑛/𝛾2

So by Lemma 1: 

𝔼 𝜋 ෍

𝜆𝑖∈𝐵

𝜅2 𝜆𝑖 = 𝔼 lim inf
𝜖→ 0

𝑓𝜖(𝐺) ≤
𝑛

𝛾2
⋅ 𝑣𝑜𝑙(𝐵)
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Recap of the Proof
Let 𝑀 = 𝐴 + 𝛾𝐺 and 𝐵 = 𝐷 0,3 .

𝔼 ෍

𝜆𝑖∈𝐵

𝜅 𝜆𝑖
2 =

1

𝜋
⋅ 𝔼 lim inf

𝜖→0

𝑣𝑜𝑙 Λ𝜖 𝑀 ∩ 𝐵

𝜖2

≤
1

𝜋
⋅ lim inf

𝜖→0
𝔼
𝑣𝑜𝑙 Λ𝜖 𝑀 ∩𝐵

𝜖2

≤
9max
𝑧∈𝐵

ℙ 𝑧∈Λ𝜖 𝑀

𝜖2

≤ 9𝑛/𝛾2



Phenomenon behind the result



Summary and Questions

Three related notions of spectral stability (𝜅𝑒, 𝜅(𝜆𝑖), Λ𝜖)

Can control global quantities by local singular values 𝜎𝑛(𝑧 − 𝑀)

Exploited invariance and anticoncentration of complex Gaussian



Summary and Questions

Three related notions of spectral stability (𝜅𝑒, 𝜅(𝜆𝑖), Λ𝜖)

Can control global quantities by local singular values 𝜎𝑛(𝑧 − 𝑀)

Exploited invariance and anticoncentration of complex Gaussian

• Does a real Gaussian fail?

• Dimension dependence in Theorem A. Dimension free bound?

• Derandomization of the perturbation

• Non-gaussian perturbations


