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MK OT and entropic relaxation

po, p1 - probability densities on X = RY = .

c(x,y) = g(x — y), strictly convex, g >0, g(z) =0iff z=0.
M(po, p1) - set of couplings. Probabilities on X x V.
Monge-Kantorovich (MK) OT problem:

Walpo. 1) 1= inf v (g(x — ) = inf [ gx )

m Entropic relaxation (Cuturi, Peyré). For h > 0,

K = Jgfﬂ [v(g(x —y)) + hEnt(v)], Ent(v) = /V(X) log v(x)dx

Fast algorithms for h > 0. Want h — 0.



Entropic cost

An equivalent form of entropic relaxation.
Define “transition kernel:

plxn) = o0 (~ex-2)).

and joint distribution px(x,y) = po(x)pn(x,y).

H(v | p) = /Iog (Z:) dv.

m Define entropic cost

m Relative entropy:

Kh = inf H (1/ | /,Lh).

couplings(po,p1)

K, = K,g/h — Ent(po) + log Ap,



Example: quadratic Wasserstein

m Consider g(x — y) = % [[x — vl
m py(x, y) - transition of Brownian motion. h = temperature.

_ 1
prlxy) = 2n) ey (<3 x - 7).

m In general, there need not be a stochastic process for p,(x, y).

Theorem (Y. Brenier '87)

There exists unique convex ¢ such that T(x) = V¢(x) solves both
Monge and Kantorovich OT problems for (po, p1).



Schrédinger’s problem

m Brownian motion X - temperature h = 0

m “Condition” X ~ po, X1 ~ p1. Exponentially rare.

m On this rare event what do particles do?

m Schrodinger '31, Féllmer '88, Léonard '12.

m Particle initially at x moves close to V¢(x) (Brenier map).
m In fact, limy_ hK}, = %W%(pg,pl).
m True in general. For any g(x — y):

Jim hK, = We(po, p1)-

m Rate of convergence?



Pointwise convergence

Theorem (P. '19)

po, p1 compactly supported and continuous (+ smoothness etc.).
Kantorovich potential uniformly convex.

. 1 1
im- (Kh - Wi, p1>) — 2 (Ent(p) ~ Ent(so)).

m Complementary results known for gamma convergence. Pointwise
convergence left open.

m Adams, Dirr, Peletier, Zimmer '11 (1-d), Duong, Laschos, Renger
'13, Erbar, Maas, Renger '15 (multidimension, Fokker-Planck).



Divergence

m To state the result for a general g, need a new concept.

m For a convex function ¢, Bregman divergence:
Dly | z] = ¢(y) — é(2) = (y — 2) - V¢(z) = 0.
m If x* = Vo(x),

DIy | x] = 5 lly = x> = 6e(x) — 62()

where ¢, ¢% are c-concave functions:

bel) =5 IxIP = 00, 620) =5 Y1~ 6" ()

my x5, Dy | X & (y = x*)TAK)(y — x*), A(z) = V2™ (2).



Divergence

m Generalize to cost g. Monge solution given by (Gangbo - McCann)
X" =x—(Vg) oV,

for some c-concave function . Dual c-concave function *.

m Divergence

Dly | x*] = g(x —y) —¥(x) —¢*(y) > 0.

B y ~ x*, extract matrix A(x*) from the Taylor series.

m Divergence/ A(-) measures sensitivity of Monge map. Related to
cross-difference of Kim & McCann '10, McCann '12, Yang & Wong
'19.



Pointwise convergence

Theorem (P. '19)

po, p1 compactly supported, continuous (+ smoothness etc.). A(-)
“uniformly elliptic”.

_ 1 1 1 ,
i (o= 3s(m.00)) = 3 [ 1(y) log cer(Aly )y log et 9 0).

m For g(x —y) =[x — y|I* /2, log det V2g(0) = 0, for ¢ (Brenier)
%/pl(y) log det(A(y))dy = %/m(y) log det(V?¢* (v))dy,

which is 1 (Ent(p1) — Ent(po)) by simple calculation a la McCann.



The Dirichlet transport



Dirichlet transport, P.-Wong '16

A, - unit simplex {(p1,...,pn) 1 pi >0,>; pi =1}
A, is an abelian group. e = (1/n,...,1/n)
If p,g € A, then

Piqi 1/pi

(P@CI)i:ni, P_l = =
> =1 Piq; ) >-11/p;

m K-L divergence or relative entropy as “distance’:

H(q | p) Z qilog(qi/pi)-

Take X =Y = A,,.

1<~ g; 1 :
C(P;Q)_H(6|P1®q)—|og<nzq‘>—nZIogq‘>0.

i—1 Pi i=1 pi



Some economic motivation

Market weights for n stocks: = (p1, ..., in)-

m
m 1; = Proportion of the total capital that belongs to ith stock.
m Investment portfolio: m = (71,...,7,) € A,.

m

Portfolio weights:

m; = Proportion of the total value that belongs to ith stock.

Markovian investments 7 = 7w(u) : A, — A,

How to build robust portfolios that compare with an index, say, S&P
5007 ONLY solutions given by the Dirichlet transport.



Exponentially concave functions

m oA, - RU{—o0} is exponentially concave if e¥ is concave.
m x — % log x is e-concave, but not x — 2log x.
m Examples: p,re A,, 0 <A< L

1
:f§| ..
w(p) P ogp

©o(p) = log (Z rfPi) . plp) = % log (Z pf\> .

m (Fernholz '02, P. and Wong '15). Analog of Brenier's Theorem: If
(p, g = F(p)) is the Monge solution, then

p~!=Ve(q), Kantorovich potential.

m Smooth, MTW Khan & Zhang '19.



Back to the Dirichlet transport

m What is the corresponding probabilistic picture for the cost function

c(p,gq)=H (e Ipto q) on the unit simplex A,?
m Symmetric Dirichlet distribution Dir(\):

n
density o H pjf\/"fl.
j=1

m Probability distribution on the unit simplex. If U ~ Dir(+),

E(U)=e, Var(U)=0 <i> .



Dirichlet transition

m Haar measure on (A,,®) is Dir (0), v(p) = [, p;
m Consider transition probability: p € A,, U ~ Dir(\), Q =p e U.

fr(p,q) = cv(q) exp (= Ac(p,q)), (P.-Wong '18).

1
m Temperature: h = 3. Let

pu(p; ) = fi/n(p, q)-

m As h — 0+, p» — 6p. As h — 0o, Q — Dir(0), Haar measure.



Multiplicative Schrédinger problem

Fix po, p1. Let un(p, q) = po(p)pn(p; q)-
Recall relative entropy: H(v | u) = [log(dv/dp)dp.

Entropic cost
K, = inf H(v | pr)

couplings(po,p1)
m For p density on A, let

Ento(p) = H (p | Dir(0)).

Relative entropy w.r.t. Haar measure.



Pointwise convergence

Theorem (P. '19)

po, p1 are compactly supported + exponentially concave potential is
“uniformly convex”.

i (K6~ (5~ 3) Clmup)) = 5 (Butalpn) ~ Buto(so)).

h—0+

C (po, p1) is the optimal cost of transport with cost c.
Not a metric, but a divergence. Not symmetric in (po, p1).
AFAIK, the only such example known.

Related to Erbar '14 (jump processes), and Maas '11 (Markov
chains).



Idea of the proof: approximate Schrodinger bridge



|dea of the proof: Brownian case

m Recall, want to condition Brownian motion to have marginals pg, p1.

m py(x,y) Brownian transition density at time h.

wn(x,¥) = po(x)pn(x,y), joint distribution.

m If | can “guess’ this conditional distribution v, then

Kh = inf  H(v | pn) = H(in | pn)-

couplings(po,p1)

m Can approximately do so for small h by a Taylor expansion in h.



|dea of the proof: Brownian case

m It is known (Riischendorf) that /i, must be of the form

fin(x,y) = &) uy(x, y) oc exp (—zg(x —y)+a(x) + b()/)) :
m ¢ - convex function from Brenier map.
09 = 2 (5 509} +hu00. 500 = 2 (2~ 60 ) +hentr)
- h 2 h ) y)= h 2 y hY)s

Ch, &n are O(1).



|dea of the proof
m Thus, up to lower order terms,
_ 1 1 1,
Fn(x,y) oc po(x) exp { = g(x = y) + 4 dc(x) + 4 0c(v)
1 .
= po(x)exp | = Dly [x7] ).
m If y — x* is large, it gets penalized exponentially. Hence
2h

Fin(x. ) 5 po(x) exp (—l(y N x*))

m Gaussian transition kernel with mean x* and covariance

h (V26 (x*))



|dea of the proof

m For h =~ 0, the Schrédinger bridge is approximately Gaussian.
Sample X ~ pg, generate Y ~ N (X*, h (Vng*(x*))fl).

Lr(x,y) =~ po(x ! mh)~9/?
fin(x,y) ~ po(x) det(V2¢*(x*))(2 )=

b (=55 = X)TTR LNy 5 )

m Y is not exactly p;. Lower order corrections.

m Nevertheless,

H (n | pen) /det V2¢* (x*) po(x)dx = ! (Ent(pl) — Ent(po)) .



Gradient flow of entropy

Ambrosio-Gigli-Savaré; recent survey by Santambrogio.

Consider the Cauchy problem in R™:

x'(t) = =VF(x(t)), x(0)= xo.

Gradient flow with potential F.

m Euler discretization: fix small step parameter h > 0.

xf+1 = argmin, [H — Xk”

m FOC:

h h
Xper1 — Xk

p = —VF(x"), converges to gradient flow as h — 0+.



Heat equation as a gradient flow of entropy

m Start with p(0) = po density. Fix h > 0.

. 1
P = argmin, | W(p, o) + Bnt(p)

m Define interpolation

p'(t)=pR),  kh<t < (k+1)h

m Jordan-Kinderlehrer-Otto (JKO) '98: p"(t) “converges” to heat
equation.
op  %p B
Er p(0,x) = po.

m Gradient flow of entropy in Wasserstein metric space.



Entropic cost to gradient flow

How does entropic cost imply gradient flow for the heat equation?

Brownian motion starting from pg.

p(t) - density at time t. Obviously,

pn = argminKu(po, p),  P(ks1)n = argmin, Ku(pkn, p)-

Relative entropy is minimized by the exact transition density.
m But

1 1
In(po; p) = 5 W3(po, p) + 5 (Ent(p) — Ent(po))

m This "morally” implies gradient flow of entropy.



Gradient flow without a metric?

m Dirichlet transport has a similar structure.

n

Ka(p. o) ~ (,1, - 2) Clro.r) + 5 (Ento(p) — Ento(po)).

m Hence, successively multiplying ® by symmetric Dirichlet should be
a gradient flow of entropy.

BUT ... C(po, p) is not a metric. No such theory exists.
Is there even a stochastic process?
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