On entropic cost

optimal transport cost

Soumik Pal University of Washington, Seattle arxiv:1905.12206

Eigenfunctions seminar @ IISc Bangalore, August 30, 2019

MK OT and entropic relaxation

- $ho_0,
 ho_1$ probability densities on $\mathcal{X} = \mathbb{R}^d = \mathcal{Y}$.
- c(x,y) = g(x-y), strictly convex, $g \ge 0$, g(z) = 0 iff z = 0.
- $\Pi(\rho_0, \rho_1)$ set of couplings. Probabilities on $\mathcal{X} \times \mathcal{Y}$.
- Monge-Kantorovich (MK) OT problem:

$$\mathbb{W}_{g}(\rho_{0},\rho_{1}):=\inf_{\nu\in\Pi}\nu\left(g(x-y)\right)=\inf_{\nu\in\Pi}\int g(x-y)d\nu.$$

■ Entropic relaxation (Cuturi, Peyré). For h > 0,

$$K'_h := \inf_{\nu \in \Pi} \left[\nu(g(x-y)) + h \operatorname{Ent}(\nu) \right], \ \operatorname{Ent}(\nu) = \int \nu(x) \log \nu(x) dx$$

■ Fast algorithms for h > 0. Want $h \to 0$.

Entropic cost

- An equivalent form of entropic relaxation.
- Define "transition kernel":

$$p_h(x,y) = \frac{1}{\Lambda_h} \exp\left(-\frac{1}{h}g(x-y)\right),$$

and joint distribution $\mu_h(x,y) = \rho_0(x)p_h(x,y)$.

■ Relative entropy:

$$H(\nu \mid \mu) = \int \log \left(\frac{d\nu}{d\mu}\right) d\nu.$$

■ Define **entropic cost**

$$K_h = \inf_{\text{couplings}(\rho_0, \rho_1)} H(\nu \mid \mu_h).$$

• $K_h = K'_h/h - \operatorname{Ent}(\rho_0) + \log \Lambda_h$

Example: quadratic Wasserstein

- Consider $g(x y) = \frac{1}{2} ||x y||^2$.
- $p_h(x, y)$ transition of Brownian motion. h = temperature.

$$p_h(x,y) = (2\pi h)^{-d/2} \exp\left(-\frac{1}{2h} \|x - y\|^2\right).$$

■ In general, there need not be a stochastic process for $p_h(x, y)$.

Theorem (Y. Brenier '87)

There exists unique convex ϕ such that $T(x) = \nabla \phi(x)$ solves both Monge and Kantorovich OT problems for (ρ_0, ρ_1) .

Schrödinger's problem

- Brownian motion X temperature $h \approx 0$
- "Condition" $X_0 \sim \rho_0$, $X_1 \sim \rho_1$. Exponentially rare.
- On this rare event what do particles do?
- Schrödinger '31, Föllmer '88, Léonard '12.
- Particle initially at x moves close to $\nabla \phi(x)$ (Brenier map).
- In fact, $\lim_{h\to 0} hK_h = \frac{1}{2} \mathbb{W}_2^2(\rho_0, \rho_1)$.
- True in general. For any g(x y):

$$\lim_{h\to 0} hK_h = \mathbb{W}_g(\rho_0, \rho_1).$$

■ Rate of convergence?

Pointwise convergence

Theorem (P. '19)

 ρ_0, ρ_1 compactly supported and continuous (+ smoothness etc.). Kantorovich potential uniformly convex.

$$\lim_{h\to 0+} \left(K_h - \frac{1}{2h} \mathbb{W}_2^2(\rho_0, \rho_1) \right) = \frac{1}{2} \left(\operatorname{Ent}(\rho_1) - \operatorname{Ent}(\rho_0) \right).$$

- Complementary results known for gamma convergence. Pointwise convergence left open.
- Adams, Dirr, Peletier, Zimmer '11 (1-d), Duong, Laschos, Renger '13, Erbar, Maas, Renger '15 (multidimension, Fokker-Planck).

Divergence

- To state the result for a general g, need a new concept.
- For a convex function ϕ , Bregman divergence:

$$D[y \mid z] = \phi(y) - \phi(z) - (y - z) \cdot \nabla \phi(z) \ge 0.$$

 $\blacksquare \text{ If } x^* = \nabla \phi(x),$

$$D[y \mid x^*] = \frac{1}{2} \|y - x\|^2 - \phi_c(x) - \phi_c^*(y),$$

where ϕ_c, ϕ_c^* are c-concave functions:

$$\phi_c(x) = \frac{1}{2} \|x\|^2 - \phi(x), \quad \phi_c^*(y) = \frac{1}{2} \|y\|^2 - \phi^*(y).$$

 $y \approx x^*$, $D[y \mid x^*] \approx (y - x^*)^T A(x^*)(y - x^*)$, $A(z) = \nabla^2 \phi^*(z)$.

Divergence

■ Generalize to cost g. Monge solution given by (Gangbo - McCann)

$$x^* = x - (\nabla g)^{-1} \circ \nabla \psi,$$

for some c-concave function ψ . Dual c-concave function ψ^* .

Divergence

$$D[y \mid x^*] = g(x - y) - \psi(x) - \psi^*(y) \ge 0.$$

- $y \approx x^*$, extract matrix $A(x^*)$ from the Taylor series.
- Divergence/ A(·) measures sensitivity of Monge map. Related to cross-difference of Kim & McCann '10, McCann '12, Yang & Wong '19.

Pointwise convergence

Theorem (P. '19)

 ρ_0, ρ_1 compactly supported, continuous (+ smoothness etc.). $A(\cdot)$ "uniformly elliptic".

$$\lim_{h\to 0+} \left(K_h - \frac{1}{h}\mathbb{W}_g(\rho_0,\rho_1)\right) = \frac{1}{2}\int \rho_1(y)\log\det(A(y))dy - \frac{1}{2}\log\det\nabla^2 g(0).$$

■ For $g(x - y) = ||x - y||^2 / 2$, $\log \det \nabla^2 g(0) = 0$, for ϕ (Brenier)

$$\frac{1}{2}\int \rho_1(y)\log\det(A(y))dy = \frac{1}{2}\int \rho_1(y)\log\det(\nabla^2\phi^*(y))dy,$$

which is $\frac{1}{2} \left(\operatorname{Ent}(\rho_1) - \operatorname{Ent}(\rho_0) \right)$ by simple calculation a la McCann.

The Dirichlet transport

Dirichlet transport, P.-Wong '16

- $lack \Delta_n$ unit simplex $\{(p_1,\ldots,p_n):\ p_i>0,\sum_i p_i=1\}.$
- lacksquare Δ_n is an abelian group. $e=(1/n,\ldots,1/n)$
- If $p, q \in \Delta_n$, then

$$(p \odot q)_i = \frac{p_i q_i}{\sum_{j=1}^n p_j q_j}, \quad (p^{-1})_i = \frac{1/p_i}{\sum_{j=1}^n 1/p_j}.$$

■ K-L divergence or relative entropy as "distance":

$$H(q \mid p) = \sum_{i=1}^{n} q_i \log(q_i/p_i).$$

■ Take $\mathcal{X} = \mathcal{Y} = \Delta_n$.

$$c(p,q) = H(e \mid p^{-1} \odot q) = \log\left(\frac{1}{n}\sum_{i=1}^{n}\frac{q_i}{p_i}\right) - \frac{1}{n}\sum_{i=1}^{n}\log\frac{q_i}{p_i} \ge 0.$$

Some economic motivation

- Market weights for *n* stocks: $\mu = (\mu_1, \dots, \mu_n)$.
- μ_i = Proportion of the total capital that belongs to *i*th stock.
- Investment portfolio: $\pi = (\pi_1, \dots, \pi_n) \in \Delta_n$.
- Portfolio weights:

 π_i = Proportion of the total value that belongs to *i*th stock.

- Markovian investments $\pi = \pi(\mu) : \Delta_n \to \Delta_n$.
- How to build robust portfolios that compare with an index, say, S&P 500? ONLY solutions given by the Dirichlet transport.

Exponentially concave functions

- $ullet \varphi: \Delta_n \to \mathbb{R} \cup \{-\infty\}$ is exponentially concave if e^{φ} is concave.
- $\blacksquare x \mapsto \frac{1}{2} \log x$ is e-concave, but not $x \mapsto 2 \log x$.
- Examples: $p, r \in \Delta_n$, $0 < \lambda < 1$.

$$\varphi(p) = \frac{1}{n} \sum_{i} \log p_{i}.$$

$$\varphi(p) = \log \left(\sum_i r_i p_i \right), \quad \varphi(p) = \frac{1}{\lambda} \log \left(\sum_i p_i^{\lambda} \right).$$

■ (Fernholz '02, P. and Wong '15). Analog of Brenier's Theorem: If (p, q = F(p)) is the Monge solution, then

$$p^{-1} = \widetilde{\nabla} \varphi(q)$$
, Kantorovich potential.

■ Smooth, MTW Khan & Zhang '19.

Back to the Dirichlet transport

■ What is the corresponding probabilistic picture for the cost function

$$c(p,q) = H(e \mid p^{-1} \odot q)$$
 on the unit simplex Δ_n ?

■ Symmetric Dirichlet distribution $Dir(\lambda)$:

density
$$\propto \prod_{j=1}^n p_j^{\lambda/n-1}$$
.

■ Probability distribution on the unit simplex. If $U \sim \mathrm{Dir}(\cdot)$,

$$E(U) = e$$
, $Var(U_i) = O\left(\frac{1}{\lambda}\right)$.

Dirichlet transition

- Haar measure on (Δ_n, \odot) is $\operatorname{Dir}(0)$, $\nu(p) = \prod_{i=1}^n p_i^{-1}$.
- Consider transition probability: $p \in \Delta_n$, $U \sim \text{Dir}(\lambda)$, $Q = p \odot U$.

$$f_{\lambda}(p,q) = c\nu(q) \exp\left(-\lambda c(p,q)\right), \quad \text{(P.-Wong '18)}.$$

■ Temperature: $h = \frac{1}{\lambda}$. Let

$$p_h(p,q)=f_{1/h}(p,q).$$

■ As $h \to 0+$, $p_h \to \delta_p$. As $h \to \infty$, $Q \to \mathrm{Dir}(0)$, Haar measure.

Multiplicative Schrödinger problem

- Fix ρ_0, ρ_1 . Let $\mu_h(p, q) = \rho_0(p)p_h(p, q)$.
- Recall relative entropy: $H(\nu \mid \mu) = \int \log(d\nu/d\mu)d\mu$.
- Entropic cost

$$K_h = \inf_{\text{couplings}(\rho_0, \rho_1)} H(\nu \mid \mu_h)$$

■ For ρ density on Δ_n , let

$$\operatorname{Ent}_{0}(\rho) = H(\rho \mid \operatorname{Dir}(0)).$$

Relative entropy w.r.t. Haar measure.

Pointwise convergence

Theorem (P. '19)

 ρ_0, ρ_1 are compactly supported + exponentially concave potential is "uniformly convex".

$$\lim_{h\to 0+} \left(\mathcal{K}_h - \left(\frac{1}{h} - \frac{n}{2}\right) \mathbf{C}\left(\rho_0, \rho_1\right) \right) = \frac{1}{2} \left(\mathrm{Ent}_0(\rho_1) - \mathrm{Ent}_0(\rho_0) \right).$$

- **C** (ρ_0, ρ_1) is the optimal cost of transport with cost c.
- Not a metric, but a divergence. Not symmetric in (ρ_0, ρ_1) .
- AFAIK, the only such example known.
- Related to Erbar '14 (jump processes), and Maas '11 (Markov chains).

Idea of the proof: approximate Schrödinger bridge

Idea of the proof: Brownian case

- Recall, want to condition Brownian motion to have marginals ρ_0, ρ_1 .
- $p_h(x,y)$ Brownian transition density at time h.

$$\mu_h(x,y) = \rho_0(x)p_h(x,y)$$
, joint distribution.

■ If I can "guess" this conditional distribution ν_h , then

$$K_h = \inf_{\text{couplings}(\rho_0, \rho_1)} H(\nu \mid \mu_h) = H(\widetilde{\mu}_h \mid \mu_h).$$

 \blacksquare Can approximately do so for small h by a Taylor expansion in h.

Idea of the proof: Brownian case

■ It is known (Rüschendorf) that $\widetilde{\mu}_h$ must be of the form

$$\widetilde{\mu}_h(x,y) = \mathrm{e}^{a(x)+b(y)}\mu_h(x,y) \propto \exp\left(-\frac{1}{h}g(x-y) + a(x) + b(y)\right).$$

lacktriangledown ϕ - convex function from Brenier map.

$$a(x) = \frac{1}{h} \left(\frac{\|x\|^2}{2} - \phi(x) \right) + h\zeta_h(x), \ b(y) = \frac{1}{h} \left(\frac{|y|^2}{2} - \phi^*(y) \right) + h\xi_h(y),$$

 ζ_h, ξ_h are O(1).

Idea of the proof

■ Thus, up to lower order terms,

$$\widetilde{\mu}_h(x,y) \propto \rho_0(x) \exp\left(-\frac{1}{h}g(x-y) + \frac{1}{h}\phi_c(x) + \frac{1}{h}\phi_c^*(y)\right)$$

$$= \rho_0(x) \exp\left(-\frac{1}{h}D[y \mid x^*]\right).$$

■ If $y - x^*$ is large, it gets penalized exponentially. Hence

$$\widetilde{\mu}_h(x,y) \propto \rho_0(x) \exp\left(-\frac{1}{2h}(y-x^*)^T \nabla^2 \phi^*(x^*)(y-x^*)\right)$$

■ Gaussian transition kernel with mean x^* and covariance $h\left(\nabla^2\phi^*(x^*)\right)^{-1}$.

Idea of the proof

■ For $h \approx 0$, the Schrödinger bridge is approximately Gaussian. Sample $X \sim \rho_0$, generate $Y \sim N\left(x^*, h\left(\nabla^2 \phi^*(x^*)\right)^{-1}\right)$.

$$\widetilde{\mu}_h(x,y) \approx \rho_0(x) \frac{1}{\sqrt{\det(\nabla^2 \phi^*(x^*))}} (2\pi h)^{-d/2} \times \exp\left(-\frac{1}{2h} (y - x^*)^T \nabla^2 \phi^*(x^*) (y - x^*)\right).$$

- Y is not exactly ρ_1 . Lower order corrections.
- Nevertheless,

$$H(\widetilde{\mu}_h \mid \mu_h) = \frac{1}{2} \int \det \nabla^2 \phi^*(x^*) \rho_0(x) dx = \frac{1}{2} \left(\operatorname{Ent}(\rho_1) - \operatorname{Ent}(\rho_0) \right).$$

Gradient flow of entropy

- Ambrosio-Gigli-Savaré; recent survey by Santambrogio.
- Consider the Cauchy problem in \mathbb{R}^n :

$$x'(t) = -\nabla F(x(t)), \quad x(0) = x_0.$$

- Gradient flow with potential *F*.
- Euler discretization: fix small step parameter h > 0.

$$x_{k+1}^h = \operatorname{argmin}_x \left[\frac{\left\| x - x_k^h \right\|^2}{2h} + F(x) \right].$$

FOC:

$$\frac{x_{k+1}^h - x_k^h}{h} = -\nabla F(x_k^h)$$
, converges to gradient flow as $h \to 0+$.

Heat equation as a gradient flow of entropy

■ Start with $\rho(0) = \rho_0$ density. Fix h > 0.

$$\rho^{(k+1)} = \operatorname{argmin}_{\rho} \left[\frac{1}{2h} \mathbb{W}_2^2(\rho, \rho^k) + \operatorname{Ent}(\rho) \right].$$

■ Define interpolation

$$\rho^h(t) = \rho^{(k)}, \quad kh \le t < (k+1)h.$$

■ Jordan-Kinderlehrer-Otto (JKO) '98: $\rho^h(t)$ "converges" to heat equation.

$$\frac{\partial \rho}{\partial t} = \frac{\partial^2 \rho}{\partial x^2}, \quad \rho(0, x) = \rho_0.$$

■ Gradient flow of entropy in Wasserstein metric space.

Entropic cost to gradient flow

- How does entropic cost imply gradient flow for the heat equation?
- Brownian motion starting from ρ_0 .
- $lackbox{}{\hspace{-0.1cm}} \rho(t)$ density at time t. Obviously,

$$\rho_h = \operatorname{argmin} K_h(\rho_0, \rho), \quad \rho_{(k+1)h} = \operatorname{argmin}_{\rho} K_h(\rho_{kh}, \rho).$$

Relative entropy is minimized by the exact transition density.

But

$$J_h(\rho_0,\rho) \approx \frac{1}{2h} \mathbb{W}_2^2(\rho_0,\rho) + \frac{1}{2} \left(\mathrm{Ent}(\rho) - \mathrm{Ent}(\rho_0) \right).$$

■ This "morally" implies gradient flow of entropy.

Gradient flow without a metric?

■ Dirichlet transport has a similar structure.

$$K_h(\rho, \rho_0) \approx \left(\frac{1}{h} - \frac{n}{2}\right) \mathbf{C}(\rho_0, \rho) + \frac{1}{2} \left(\operatorname{Ent}_0(\rho) - \operatorname{Ent}_0(\rho_0)\right).$$

- Hence, successively multiplying ⊙ by symmetric Dirichlet should be a gradient flow of entropy.
- BUT ... $\mathbf{C}(\rho_0, \rho)$ is not a metric. No such theory exists.
- Is there even a stochastic process?

Thank you very much for your attention

arxiv math.PR:1905.12206