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Abstract:

Consider a stochastic matrix P for which the Perron-Frobenius

Eigenvalue has multiplicity larger than 1 and for ε > 0, let

Pε = (1− ε)P+ εQ

where Q is a stochastic matrix for which the Perron-Frobenius Eigenvalue

has multiplicity 1. Let πε be the Perron-Frobenius eigenfunction for Pε .

We will discuss behavior of πε as ε → 0.

This was an important ingredient in showing that if two players

repeatedly play Prisoner’s Dilemma, without knowing that they are

playing a game, and if they play rationally, they end up cooperating. We

will discuss this as well in the second half.

The talk will include required background on Markov chains.
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Let P = (pij) be a m×m matrix with pij ≥ 0 and ∑j pij = 1 for

all i , j . Clearly, λ = 1 is an eigenvalue of P with (1,1, . . . ,1)T

as an eigenvector. Such matrices are called Stochastic

matrices.

Perron-Frobenius theorem says that if pij > 0 for all i , j , then

multiplicity of eigenvalue 1 is 1, and the left-eigenvector π can

be chosen to have all entires positive with ∑j πj = 1. The

left-eigenvector so chosen is called Perron-Frobenius

eigenvector.

All other eigenvalues λk satisfy: |λk |< 1.
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In this case, (pij > 0 for all i , j), it follows that

(Pn)ij → πj for all i , j .

Strong connections with Markov Chains, which we will discuss

later. The Perron-Frobenius eigenvector is known as stationary

distribution for the Markov chain.
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A Stochastic matrix P is said to be irreducible if for all i , j ,

∃n ≥ 1 such that

(Pn)ij > 0.

A Stochastic matrix P is said to be primitive if ∃n ≥ 1 such

that

(Pn)ij > 0 for all i , j .

An irreducible P is primitive if and only if

g.c.d.{n ≥ 1 : (Pn)ii > 0}= 1.
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Perron-Frobenius theorem is valid verbatim for a primitive

stochastic matrix (in Markov chain context, this is called

irreducible aperiodic case).
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The question we will discuss:Let P ,Q be stochastic matrices

and let Q be primitive. For ε > 0, let

Pε = (1− ε)P + εQ.

Then Pε is primitive and let πε be its Perron-Frobenius

eigenvector.

Question : Does πε converge as ε ↓ 0 and if so, how do we

characterise the limit?

The answer is clear if P is also primitive. What can we say

when P is not primitive and geometric multiplicity of

eigenvalue 1 is 2 or more for P?
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In general, eigenvalues behave well under perturbation but

eigenvectors do not, specially in situation like the one here

where geometric multiplicity of eigenvalue 1 is 1 for Pε , ε > 0,

but for the limit the geometric multiplicity is bigger than 1.

The next result shows that indeed, πε converges.
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Theorem : Let A be an m×m stochastic matrix. There exist

(universal) polynomials u1,u2, . . .um of order m×m with

non-negative coefficients such that

vj = uj(a11,a12, . . . ,a1m,a21,a22, . . . ,a2m, . . . ,am1, . . . ,amm)

1≤ j ≤m, satisfy

∑
j

vjajk = vk for all k

Thus, if ∑j vj = α > 0, (this can be shown to be true for an

irreducible stochastic matrix A) then

πj =
1

α
vj

is the Perron-Frobenius eigenvector.
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Let S = {1,2, . . . ,m}. We will be considering directed graphs

G on S and for such a graph G , let

θ (G )(A) = ∏
(j 7→k)∈G

akj

Note that θ (G )(A) is a polynomial in matrix entries with

positive coefficients.
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A tree rooted at j is a directed connected spanning graph G

such that (i) there is no incoming edge into the vertex j , (ii)

the incoming degree for all vertices other than j is 1 and (iii)

there are no cycles. Let Γ(j) denote the set of all trees rooted

at j . Let

γj(A) = ∑
G∈Γ(j)

θ (G )(A)

Note that γj(A) is a polynomial in matrix entries with positive

coefficients.
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We will prove that

∑
i∈S ,i 6=j

γi (A)aij = γj(A)(1−ajj) ∀j ∈ S (1)

Since A is a stochastic matrix, this will yield

∑
i∈S

γi (A)aij = γj(A) ∀j ∈ S

showing that γi (A) are the required polynomials.
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Let us fix j and we will prove (1). Let Λ be the set of all

directed connected spanning graphs on S that have exactly

one cycle that contains the vertex j and such that every vertex

has incoming degree 1.

We are going to get two ways of computing ∑H∈Λ θ (H)(A) -

one method would yield LHS and the other RHS of (1).
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Look at the graph of an element of Λ :

(with S = {1,2,3,4,5,6,7,8,9,10} and j = 4) :

directed connected spanning graph on S that has exactly one

cycle that contains the vertex 4 and such that every vertex has

incoming degree 1.
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If we delete the incoming edge to 4, we get a tree rooted at 4.

If we delete the outgoing edge from 4, we get a tree rooted at

the other end of the deleted edge, here 5.
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Also, if we take the tree rooted at 4 and add an edge from any

of the other nodes, we will get an element of Λ- a directed

connected spanning graph on S that has exactly one cycle that

contains the vertex 4 and such that every vertex has incoming

degree 1.
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Also, if we take any tree, say rooted at 1, as in next slide, and

add an edge from 4 to 1 we will get an element of Λ- a

directed connected spanning graph on S that has exactly one

cycle that contains the vertex 4 and such that every vertex has

incoming degree 1.
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This discussion leads to :

The mapping f from ∪k∈S ,k 6=jΓ(k) into Λ defined by:

f (G ) = G ∪{j 7→ k} for G ∈ Γ(k)

(i.e. take k 6= j , G ∈ Γ(k) and add the directed edge j 7→ k to

G)

is one-one onto Λ.
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The mapping g from Γ(j)× (S− j) into Λ defined by: for

g(G ,k) = G ∪{k 7→ j} G ∈ Γ(j) and k ∈ (S− j)

(i.e. take G ∈ Γ(j), k ∈ (S−{j}) and add the directed edge

k 7→ j to G )

is one-one onto Λ.
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Thus

∑
H∈Λ

θ (H)(A) = ∑
k∈S ,k 6=j

(
∑

G∈Γ(k)

θ (f (G ))(A)

)

= ∑
k∈S ,k 6=j

(
∑

G∈Γ(k)

θ (G )(A)akj

)
= ∑

k∈S ,k 6=j

γk(A)akj

The RHS above is the LHS of (1)
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and

∑
H∈Λ

θ (H)(A) = ∑
k∈S ,k 6=j

(
∑

G∈Γ(j)

θ (g(G ,k))(A)

)

= ∑
k∈S ,k 6=j

(
∑

G∈Γ(j)

θ (G )(A)ajk

)
= ∑

k∈S ,k 6=j

γj(A)ajk

= γj(A)(1−ajj)

The RHS above is the RHS of (1). This completes the proof.
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Returning to Pε = (1− ε)P + εQ we see that each γj(P
ε) is a

polynomial in ε with positive coefficients. Hence in

π
ε =

γj(P
ε)

∑k γk(Pε)

the smallest power of ε with non-zero coefficient in the

numerator is larger than the the smallest power of ε with

non-zero coefficient in the denominator. Thus

lim
ε→0

π
ε exists.
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How does one characterize the limit π∗ of πε? It is clearly one

of the eigenvectors of P corresponding to eigenvalue 1 since

π
∗P = π

∗.
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Introduction to Markov chains:

Given a m×m stochastic matrix P = ((pij) and a 1×m vector

a = (a1,a2, . . .am), we can construct a stochastic process Xk

with values in S = {1,2, . . . ,m} such that:

Prob(X0 = i0,X1 = i1,X2 = i2, . . .Xn = in) = ai0pi0i1pi1i2 . . .pin−1in .

Here, a is the initial distribution, or distribution of X0 , and P

is called the transition probability matrix since

Prob(Xk+1 = j | Xk = i) = pij for i , j ∈ S
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Moreover,

Prob(Xk+1 = j | (X0,X1, . . . ,Xk−1) ∈ B ,Xk = i) = pij

for any B ⊆ Sk . This is called the Markov property of the

process {Xn}, which is called a Markov Chain. It can be seen

that

Prob(Xk+n = j | Xk = i) = (Pn)ij
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If πP = π and we construct the chain with π as the initial

distribution, then

Prob(Xn = j) = πj

for all n ≥ 1, for all j ∈ S . Thus the distribution of Xn is

stationary and thus π is also called stationary initial

distribution.
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P is irreducible here means that for all i , j ∈ S , ∃n ≥ 1 such

that

Prob(Xn = j | X0 = i) > 0.

The period di of i ∈ S is defined as

di = g.c.d. {n ≥ 1 : (Pn)ii > 0.

For an irreducible chain, di = dj for all i , j ∈ S . The chain is

called aperiodic if di = 1 for all i .
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For an irreducible aperiodic chain (when P matrix is primitive),

lim
n→∞

Prob(Xn = j | X0 = i) = lim
n→∞

(Pn)ij = πj .

and as a consequence

lim
n→∞

Prob(Xn = j) = lim
n→∞

∑
i∈S

ai (P
n)ij = πj .

Thus irrespective of the initial distribution, the distribution of

Xn converges to π.
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Heuristics: Returning to Pε = (1− ε)P + εQ

Consider the case where Pn converges to a matrixR and Qn

converges to S . Both R and S are stochastic matrices. Let

Bε = (1− ε)R + εQ

C ε = (1− ε)P + εS

Dε = (1− ε)R + εS

and let θ ε , ξ ε and ηε be the Perron-Frobenious eigenvectors

for Bε , C ε , Dε respectively.

Through extensive numerical computation, I discovered that

limits π∗ of πε and θ ∗ of θ ε are the same and limits xi∗ of ξ ε

and η∗ of ηε are the same, while in general π∗ 6= ξ ∗.
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Using the large number of examples, I kept coming up with

conjectures to characterize π∗.

Led me to a conjecture that if RQR is irreducible and

aperiodic (or primitive) and thus has a unique stationary

distribution (Perron-Frobenius eigenvector) π̃, then

π
∗ = π̃.

I also had a probabilistic proof, justifying the intuitive

reasoning.
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But then my Economist friend told me that this was the toy

case and their real interest is when P is the probability

transition kernel for [0,1]-valued Markov Chain (in discrete

time).

The Theory of Markov Chains in discrete time with an

uncountable set as its state space is not that well studied.
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Restatement of the problem:

Suppose the state space S is a compact metric space.

A probability transition kernel Γ on S is a mapping from

S×B(S) into [0,1] such that

For each A ∈B(S), x 7→ Γ(x ,A) is a Borel measurable

function on S

For each x ∈ S , A 7→ Γ(x ,A) is a probability measure on

(S ,B(S)).

A probability measure µ on S is an invariant measure for P if∫
Γ(x ,A)dµ(x) = µ(A) ∀A ∈B(S).
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Suppose P ,Q are probability transition kernels on S and

Pε = (1− ε)P + εQ.

Suppose that for 0 < ε < 1, Pε admits a unique invariant

measure, πε . Then does πε converge, and if it does converge

to π∗, how does one characterize π∗?

Let me give a proof of the discrete state space case which can

be scaled to the compact state space case under appropriate

conditions:
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It can be shown that for any stochastic matrix P ,

1

n

n

∑
t=1

Pt

converges (as n→ ∞) to a stochastic matrix, say R .

Moreover, for 0 < λ < 1, writing Kλ = (I −λP)−1, one has

lim
λ→1

(1−λ )Kλ → R

or

lim
ε→0

ε(I − (1− ε)P)−1→ R (2)
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Theorem : Suppose that either (i) the matrix RQR is

primitive, namely, the eigenvalue 1 has geometric multiplicity 1

for RQ or (ii) the matrix QR is primitive. Then π∗ is this

unique eigenvector (of RQR and/or QR).

Proof : Since

π
ε((1− ε)P + εQ) = π

ε

it follows that

π
ε
εQ = π

ε(I − (1− ε)P)
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From πεεQ = πε(I − (1− ε)P) we conclude

π
εQ[ε(I − (1− ε)P)−1] = π

ε

Taking limit as ε ↓ 0 and using (2) we conclude

π
∗QR = π

∗

Since π∗ obviously satisfies π∗P = π∗ and hence π∗R = π∗, it

follows that

π
∗RQR = π

∗.
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Coming to the case of compact metric space S as the state

space, need some definitions:

A probability transition kernel Γ is said to be strongly Feller if

for all bounded continuous functions f on S ,

x 7→
∫
f (u)Γ(x ,du) is continuous.

A probability transition kernel Γ is said to be open set

irreducible if for all open sets U in S and all x ∈ S ,

∑
∞
n=1 Γn(x ,U) > 0
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For probability transition kernels Γ,Λ on S , Γ∗Λ is defined by

[Γ∗Λ](x ,A) =
∫

Λ(u,A)Γ(x ,du).

For a probability transition kernel Γ, Γ(n) are defined

inductively by Γ(1) = Γ and for k ≥ 1, Γ(k+1) = Γ(k) ∗Γ, i.e.

Γ(k+1)(x ,A) =
∫

Γ(k)(u,A)Γ(x ,du).
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Suppose P ,Q are probability transition kernels on S such that

(i) Q is strongly Feller and open set irreducible.

(ii) ∃R - a probability transition kernel on S such that for all

bounded continuous functions f on S ,

lim
n

1

n

n

∑
k=1

∫
f (u)dP(k)(x ,du)→

∫
f (u)R(x ,du).

(iii) The kernel Q ∗R admits a unique invariant probability

measure π∗.
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Let πε be the unique invariant probability measure for

Pε = (1− ε)P + εQ.

Then πε converges to π∗ in the sense of weak convergence of

measures.
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Prisoner’s Dilemma Consider the following 2×2 game:

C D

C (σ ,σ) (0,θ )

D (θ ,0) (δ ,δ )

where θ > σ > δ > 0.
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