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The proof of Theorem 16.10 that you will find in either of the above referenceg for which, by the independent-increments property of B, it will suffice to prove

is specific to the Brownian situation, of course. But there is a sense in which
this result can be seen as part of the much more general theory of large deviations,
pioneered by Cramér, Schilder, Donsker and Varadhan, Ventcel and Freidlin,
and developed further by Donsker, Varadhan, Stroock, among others. The
excellent account by Deuschel and Stroock [1] contains a proof of Theorem
16.10 from a large-deviations point of view, and is delightfully clear.

that, for any xeR? and t >0

(17.5) E*[C/]=0, .
where P* is the law of Brownian motion started at x. Without loss of generality,
we can take x =0 (and write P for P°), and we shall prove that, for 0 <e <,

(17.6) E[C/-c/]=0.
Using the assumption (17.2), the fact that P[sup,, |B,| > a] < cP[|B, | > /. /1]

(see (13.4)), and dominated convergence, (17.6) implies ( 17.5). ; '
3. BROWNIAN MOTION IN HIGHER DIMENSIONS Letting p,(x):= (2nt)~*2 exp(— |x|?/2¢) denote t}:e d-dimensional Brownian
: transition density, we observe that, for ¢t > 0, xeR :

17. Some martingales for Brownian motion. By Brownian motion in R we ap 1 & a%,
Tiean a process B,:=(B|,..., Bf) where each of the s U~1,....d 0 a 17.7) ——f(x)=5 Z F(x).
Brownian motion, independent of all the others. To study Brownian motion in o FRREN
R? we are going to need martingales, and the purpose of this section is to Hence g
derive a result that gives us al] the mar.tingales we shall need. This result can be E[C/ - C/]= E[ ft,B) - f(e,B,) — f %f(s, B, ds]
Seen as a special case of general results in Markov process theory or in stochastic A
calculus, but we shall prove it here using the special structure of Brownian
motion, since we do not yet have the general results, - J. [P(x)f(t,x) — p(x)f (e, x)] dx
(17.1) THEOREM. Suppose that f:R* x R‘ R js C'2, and that there exists ' of ;
a constant K such that, for all ¢ 20, xeR¢, = | ds | pix) a(s, X)+34/(s,%) [dx.

of & 1of T But
A72) 110+ |= @, x)| + ’—(t,x) + (t, x)| < KeKt+1x)

ot j=zx Ox; -';1 /;1 0x;0x; f PAX)3Af (s, x)dx = f 38p,(x)f (s, x) dx,
Then t g

et (integrating twice by parts and using (17.2))
t
(17.3) Cl=f (¢,B,) — £(0, B,) — J; Yf(s,B)ds isa martingale, g J‘ % (5, x)dx,
where ot
aof 14 @2 f) . .

17.4 AT el N, (IR t, x). using (17.7). Thus
(17.4) /(t,x) (at 21; ox? (t,x)

€xponential growth condition (17.2) will be seen to be unnecessary provided we
relax the statement (17.3) to say that C’ is a local martingale. We shall not
digress to define this now. In dimension d = 1, the only functions of x for which
f(B)is a martingale are the linear functions, but in dimension d > 2 we shall
see that there is a very rich family of J for which f (B, is a martingale.

Proof. We must prove that, for 0 <s < (A
E[C/ - C/|I#,]1=0,

E[c/-c1= f[P.(X)f (t,x) — p,(x)f (e, x)] dx
% 0
— J; ds f[p,(x) g—tf(s, x)+ f(s, x) a—p: (x)] dx
! i}
= f [Px)f(t, x) — p(x)f (¢, )] dx — f ds f o (ps(x)f (5, x)) dx

= f [p(x)f(t,x) = p,(x) f (e, x)] dx — f { f’ ds % [ps(x)f(s,x)] } dx
=0. O




