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CHAPTER 1

Introduction

In this second part of the course, we shall study independent random variables. Much of
what we do is devoted to the following single question: Given independent random variables
with known distributions, what can you say about the distribution of the sum? In the process of
finding answers, we shall weave through various topics. Here is a guide to the essential aspects
that you might pay attention to.

Firstly, the results. We shall cover fundamental limit theorems of probability, such as the weak
and strong law of large numbers, central limit theorems, Poisson limit theorem, in addition to
results on random series with independent summands. We shall also talk about the various modes
of convergence of random variables.

The second important aspect will be the various techniques. These include the first and second
moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and Bernstein
and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention characteristic func-
tions, a tool of great importance, as well as the less profound but very common and useful tech-
niques of proofs such as truncation and approximation.

Thirdly, we shall try to introduce a few basic problems/constructs in probability that are of
interest in themselves and that appear in many guises in all sorts of probability problems. These
include the coupon collector problem, branching processes, Pélya’s urn scheme and Brownian

motion. Many more could have been included if there was more time'.

1. The basic set up for probability

A random experiment is an undefined but intuitively unambiguous term that conveys the idea
of an “experiment” that can have one of multiple outcomes, and which one actually occurs is
unpredictable. The first question in making a theory of probability is to give a mathematical

definition that can serve as a model for the real-world notion of a random experiment.

IReferences: Dudley’s book is an excellent source for the first aspect and some of the second but does not have
much of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can
touch upon in this course. Lots of other standard books in probability have various non-negative and non-positive

features.



In basic probability class we have already seen how to do this, provided the number of out-

comes is finite or countably infinite. This is how it is done.

Definition 1: Discrete probability space

A discrete probability space is a pair (€2, p), where Q is a non-empty countable set and
p: Q — [0,1] is a function such that > p(w) = 1. Then define P : 2% — [0,1] by P(A) =

weN
> p(w).

wEA

The set  is called the sample space (the collection of all possible outcomes), p(w) are called
elementary probabilities, subsets of (2 are called events, and P(A) is said to be the probability of the
event A. The way this mathematical notion is supposed to represent a random experiment is

familiar. We just illustrate with a few examples.

Example 1: A coin is tossed n times

Then Q = {0,1}" where if w = (w1,...,w,) € 2 denotes the outcome where the ith toss
is a head if w; = 1 and a tail if w; = 0. Further, p(w) = p*1TT¥n (1 — p)P=w1—~“n (this
assignment incorporates the idea that distinct tosses are ‘independent’). An example of the
event of getting k heads exactly, i.e., A = {w:w; + ...+ w, = k}, which has probability
P(4) = (R)p*1 —p)" "

\_
Example 2: 7 balls are thrown into n bins at random
Then 2 = [n|" where [n] = {1,...,n}. Here w = (w1,...,wyp) € 2 denotes the outcome

where the ith ball goes into the bin numbered w;. Elementary probabilities are defined by

p(w) = n~". An example of an event is that the first bin is empty, ie., A = {w:w; #

1 for alli}, and it has probability P(A) = (n — 1)"/n".

But when the number of possible outcomes is uncountable, this framework does not suffice.

Three examples:

(1) A glass rod falls and breaks into two pieces.
(2) A fair coin is tossed infinitely many times.

(3) A dart is thrown at a circular dart board.

If €2 denotes the sample space (the set of all possible outcomes), then in the above cases it must

respectively be equal to



(1) [0,1], where we think of the glass rod as the line segment [0, 1] and the outcome denoting

the point in [0, 1] where the breakage occurs,

(2) {0,1}Y, where w = (w1,ws, . ..) denotes the outcome where the kth toss turns up wy, (al-

ways 1 denotes heads and 0 denotes tails),

(3) {(z,y) : 2% + y? < 1}, where the point (z,y) denotes the location where the dart hits the
dartboard.

In all three cases €2 is uncountable. We also agree on the probabilities of many events, for example
that [0.1,0.35] and {w € {0, 1} : w; = 1, wy = 0} and {(z,y) : > 0 > y} in the three examples all
have probability 1. But where that comes from? If any elementary probability has to be assigned
to singletons, it can only be zero, and there is no unambiguous meaning to adding uncountably
many zeros to get 1. So we need a new framework.

The first example is clearly the same as the issue of assigning lengths to subsets of the line, and
in measure theory class we have seen that it can be done satisfactorily by giving up the idea of
assigning length to every subset. As recompense, we get a notion of length that is not just finitely,

but countably additive. This framework exactly fits our need.

Definition 2: Probability space

A probability space is a triple (€2, 7, P) where
e ()is a non-empty set,
e F is a sigma algebra of subsets of 2. That is, F C W PeF,Ac F = A°e F;
Ap € F = UpA, € F.

e P is a probability measure on F. Thatis P : 7 — [0,1] and P(UA,) =), P(4,) if
A, € F are pairwise disjoint, and P(Q2) = 1.

.

Observe that n will always indicate a countable indexing (may start at 0 or 1 or vary over all
integers). For A € F, we say that P(A) is the probability of A. We do not talk of the probability of
sets not in the sigma algebra. This framework will form the basis of all probability.

To return to the modeling of random experiments, what the sample space should be is usually
clear, as we have seen. What sigma-algebra to take? Except for the trivial sigma-algebras 2 and
{0, Q}, all sigma-algebras of interest arise as follows.
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Definition 3: Generated sigma-algebra

Let S be a collection of subsets of 2. The smallest sigma-algebra containing S, also called
the sigma-algebra generated by S, exists and is defined as

a(8) =)

F2S

where the intersection is over all sigma-algebras that contain S.

Into S we put in all subsets which we definitely wish to define probabilities for, and then take
o(S) as our sigma-algebra. For example, in the stick-breaking example, we may take S to be the
collection of all intervals in [0, 1]. That is called the Borel sigma-algebra on [0, 1] and denoted B or

Bo,1)- This is one of the most important sigma-algebras for us, so let us define it in general.
Definition 4: Borel sigma-algebra

Let X be a metric space. The smallest sigma-algebra containing all open sets is called the

Borel sigma-algebra of X and denoted Byx.

Many different collections of subsets can give rise to the same sigma-algebra. For example, the
collection of closed subsets also generates Bx. If X = R, the collection of intervals, the collection of
intervals with rational end-points, the collection of compact sets, all these generate Bg (exercise!).

Now that we are clear how the sigma-algebra associated to a random experiment is obtained,
the question remains of the probability measure. We have (2, a collection of subsets S, and the
sigma-algebra ¢(S). By symmetry considerations or experiments or something else, we know
what probability of events in S ought to be. So the primary question of designing a probability

space reduces to this:
Question 1: Extension of probability

Given P : § — [0, 1], does there exist a probability measure P on ¢(S) such that P(A) =

P(A) for A € S. If so, is it unique?

The answer to this comes from the construction of measures in measure theory. As it turns
out, for our purposes it suffices to assume the existence of Lebesgue measure, and everything else

follows from that.



Example 3: Break a stick at random

Here 2 = [0, 1], the sigma algebra is B the collection of all Borel subsets of [0,1] and the

probability measure is A, the Lebesgue measure on [0, 1]. It is a non-trivial fact that there is

a unique measure \ on B such that A([a, b]) = b — a whenever [a, b] C [0, 1].

Similarly the dart throwing can be captured by taking the sample space tobe D = {(z,y) : 2%+
y? < 1} and the Borel sigma algebra of D and the two-dimensional Lebesgue measure on D (nor-
malized by 1/7). How to make sense of tossing infinitely many coins? We could invoke yet
another theorem in measure theory, or more precisely the method of construction of measures via
outer measures etc. Conveniently for us, we can use the stick-breaking probability space and cre-
ate many other probability spaces, including the one for tossing a coin infinitely many times. Let

us introduce this notion first.

Definition 5: Measurable function

Let 7 be a sigma-algebra on X and let G be a sigma-algebraonY. Amap 7' : X — Y is said
to be measurable if T~1(A) € F forall A € G.

Lemma 1: Push-forward measure

Let (2, F, P) be a probability space and let G be a sigma-algebra on A. Suppose T': 2 — G is
a measurable function. Then, Q : G — [0, 1] defined by Q(A) = P(T!(A)) is a probability

measure on (A, G).

PROOF. If A, € G are pairwise disjoint, then so are B,, := T~1(A) which are in F. Further,
TY(UnA,) = U, By, hence

Q(UnAn) = P(T_I(UnAn)) = ZP(Bn) = Z Q(An)-

Of course T71(A) = ©, hence Q(A) = P(Q) = 1.

We say that Q is the push-forward of P under 7', and sometimes denote itas Q = P o T 1.

Example 4: Tossing a coin infinitely many times

Here Q = {0,1}". In S, we include all sets that are defined by finitely many co-ordinates.

These sets of the form

(1) Az{w:(W1,W2,---)€Q:Wi1:51;'--7win:€”}




for some n > 1 and some 1 < i; < ... < iy and some ¢1,...,&, € {0,1}, are called finite
dimensional cylinder sets and the corresponding sigma-algebra C = o(S) is called the cylinder
sigma-algebra.

Define T' : [0,1] — {0,1}N by T(z) = (x1,22,...) where 2 = Y | 2,27" is the binary
expansion of x. To avoid ambiguity, for dyadic rational z = k/2", we take the expansion

that has infinitely many ones. We claim that 7" is measurable. Indeed,
T_l({w = (wy,w2,...) EQ:wy =¢€1,...,wp =EN)

is an interval of length 277, and for any A € S, we can write 7-!(A) as a union of such
intervals. For example, if A is as in (1), then by taking N = i,, and both possibilities for w;
for i € [n] \ {i1,...,in}, we see that T~1(A) is a union of 2V~ pairwise disjoin intervals
each of length 2.

As T is measurable, we can define P = )\ o T~! as a probability measure on C. Is this the
probability measure we want? If we take an element of S, say A as in (1), from the earlier

discussion

which is the probability we wanted to assign to A.

In fact, as it happens, every probabilty space of interest to probabilists can be got this way by

pushing forward Lebesgue measure on [0, 1] by a measurable mapping.

Theorem 2: Borel isomorphism theorem

Let (X, d) be a complete and separable metric space and let i be a probability measure on

Bx. Then there is a measurable T': [0,1] — X such that Ao T~ = p.

We shall not prove this theorem, but what we primarily need is a very important case of
interest, when X = RN and y is an infinite product of measures on R. This is intimately connected
to one of the most important notions in probability, namely independence. Instead of repeating, we
refer the reader to sections 28-30 (also 27 if not familiar with finite product measures and 31-32 to
go a little beyond the bare minimum needed) of Part-1 of these lecture notes. In section 24 there
is a brief introduction to conditional probability. In the next section, a very short introduction to

Expectation is given, but for the construction and details, refer to Part-1.
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Remark 1: History

Immediately after the initial works of Borel and Lebesgue on measure and integral, it was
realized that measure theory could provide the foundation for probability theory. But it
was only after the notions of independence and conditional probability could be satisfac-
torily captured under this framework that this became universally accepted. Many people
made contributions to the former, but it was Kolmogorov’s brilliant capturing of conditional

probability under measure theoretic framework that is usually marked as the foundation of

axiomatic definition of probability.

2. User’s guide to expectation

Let (2, F,P) be a probability space. Let RV denote the set of all random variables and let
RV denote the set of all non-negative random variables on this probability space. Here is the
fundamental fact:

Fact: There is a unique function E : RV, — [0, co] such that
(1) Linearity: E[X + Y] = E[X| + E[Y] and E[cX] = cE[X] for all X,Y € RV, and for all
c>0.

(2) Positivity: E[X] > 0 with equality if and only if X = 0 a.s.
(3) MCT (Monotone convergence theorem): If X,,, X € RV and X,, 1 X a.s., then E[X,,] 1 E[X].

(4) E[14] =P(A) forall A € F.
We do not go into the construction of expectation (also called Lebesgue integral). But it is worth
noting that accepting the above fact, one has the following explicit form: For any X € RV,
n2"—1
. k k k+1
E[X]= lim ) 2nP{ X< }

n—o00 2n 2n

This is got by observing that X,, = ZZiT(L)_l *1 ko <xchi are increase to X pointwise, and hence
E[X] = E[X,,] by the MCT. And E[X,,] can be got from linearity.

One may also take the above formula as the definition of expectation (it is not hard to see that
the limit exists) and prove that it satisfies the four properties stated above.

For general X € RV, we writeitas X = X; — X_ where Xy = X V0O0and X_ = (-X); =
—(X A0). If E[X4] and E[X_] are both finite, then we say that X has expectation (or that X is
integrable) and define E[X| = E[X ;]| —E[X_]. Observe that X| + X_ = | X|, hence integrability is
equivalent to E[|X|] < co. We also write X € L! if Xis integrable (although L! is a space defined
via an equivalence relation). More generally, if | X |? is integrable, we write X € L? (or LP(P) or
LP(Q, F,P) if we needed).

11



2.1. Limit properties. Apart from MCT we also have the following very important facts.

(1) Fatou’s lemma: If X,, € RV, then Eliminf E[X,,] > E[liminf X,,].

(2) DCT: If X,, — X as., if | X,,| < Y for some integrable Y, then X,,, X are integrable and
E[X,] — E[X]. In fact, E[| X,, — X|] — 0.
Fatou’s lemma follows directly from MCT by observing that Y,, := infj>, X} increase to Y :=

liminf X, and that Y,, < X,,. DCT follows by applying Fatou’s lemma to ¥ — X,, and to Y + X,.

2.2. Inequalities. Cauchy-Schwarz, Holder’s and Minkowski’s inequalities are important and
repeatedly used. These are explained in Part-1 of these lecture notes. Another set of all important
inequalities are those of Markov and Chebyshev, and their generalizations. These are explained

in the following sections.

2.3. Connection to independence. In general, statements for events have analogous state-
ments for random variables and vice versa. Here is an illustration of how this works for indepen-
dence of sigma-algebras (which was defined in terms of events).

Let (Q2, F,P) be a probability space. Sub sigma-algebras Gi,...,G,, are independent if and
only if E[X; ... X,,] = E[X;]...E[X,,] for any bounded random variables X; such that X; is G;

measurable.

12
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CHAPTER 2

Some basic tools in probability

We collect several basic tools in this section. Their usefulness cannot be overstated.

1. First moment method

In popular language, average value is often mistaken for typical value. This is not always
correct, for example, in many populations, a typical person has much lower income than the aver-
age (because a few people have a large fraction of the total wealth). For a mathematical example,
suppose X = 10° with probability 1072 and X = 0 with probability 1 — 1073. Then E[X] = 1000
although with probability 0.999 its value is zero. Thus the typical value is close to zero.

Since it is often easier to calculate expectations and variances (for example, expectation of a
sum is the sum of expectations) than to calculate probabilities (example, tail probability of a sum
of random variables), inequalities that bound probabilities in terms of moments may be expected

to be somewhat useful. In fact, they are extremely useful!

Lemma 3: First moment method or Markov’s inequality

Let X > 0be ar.v. For any ¢ > 0, we have P{X > ¢} <

E[x]
=L

PROOF. For any t > 0, clearly t1x>; < X. Positivity of expectations gives the inequality. W

Thus, a positive random variable is unlikely to be more than a few multiples of its mean,
e.g. there is less than 10% chance of it being more than 10 times the mean. Trivial though it
seems, Markov’s inequality is very useful, particularly as it can be applied to various functions of
the random variable of interest. Observe that in the following instances X is not assumed to be

positive, but Markov’s inequality is applied to positive functions of X.

(1) Markov’s inequality asserts that the tail of a random variable with finite expectation must

decay at least as fast as 1/t. In fact, the proof shows that if X is integrable then
1
P{IX| 2 t} < {ElIX|1jx2d = o(1/)

since E[| X |1, x>¢] — 0 by DCT.

13



(2) If X has finite variance, applying Markov’s inequality to (X — E[X])? gives
P{|X —E[X]| > t} = P{|X — E[X]]? > 2} <t *Var(X),
which is called Chebyshev’s inequality. Higher the moments that exist, better the asymp-
totic tail bounds that we get, for example, P{|X — E[X]| > t} < t PE[|X — E[X]|?].
(3) If E[e**] < oo for some A > 0, we get P{X > t} = P{e* > M} < e ME[eM]. This is

an even better bound as it decays exponentially as ¢ — oo.

1.1. A different sort of strengthening of Markov’s inequality. In many situations, the fol-

lowing strengthening turns out to be useful. If X is a positive random variable, then

(2) P{X > t} < &
E[X | X >
We have not yet defined conditional expectation. For now, it can be interpreted in the elementary
fashion
E[X1x>]
EX|X>tl=—"7.
XX >1 P{X >t}

In particular, if X takes values in N with p, = P{X = k}, then
kpr + (k + 1)pey1 + - ..
Pk + Pr+1+ -
In any case, it is clear that E[X | X > t] > t, hence it is stronger than Markov’s inequality. To give

E[X|X>t]=

a caricature of its usefulness, imagine X to be the number of fruits in a mango tree in a desert.
Most likely X is zero, but if it is above a moderate threshold, we guess that unlikely rains must

have occurred and hence X is likely to be very large. That means that E[X | X > t] > ¢.

2. Second moment method

The first moment method says that a positive random variable is likely to be less than a few
multiples of the mean. Can we say the converse, i.e., a random variable is likely to be larger than
a fraction of its mean? If the expectation is large, is the random variable likely to be large? This is
not true, for example, if' ;, ~ (1 — 1)dy + 16,2, then E[V,,] — co but P{Y;, > 0} = # — 0.

What more information about a random variable will allow us to get the desired conclusion?

Here is a natural approach using Chebyshev’s inequality: If X is a non-negative random variable
Var(X)

E[X]>

Thus, if the variance is bounded by 1 E[X]?, we get a non-trivial lower bound for the probability.
More generally, if Var(X) < (1—§)2E[X]?, then we get a lower bound for the probability that X >

P{X > ;E[X]} > 1—P{\X—E[X] > ;E[X]} >1-4

IThe measure 4, puts mass 1 at the point z, hence P{Y,, > 0} = % — 0.

n2

14



2

3 is way larger than E[Y,]? < n?,

JE[X]. Observe that in the example given above, Var(Y;) < n
hence the method does not work.

Thus, a control on the variance in terms of the square of the mean, allows us to say that a
positive random variable is at least a fraction of its mean (with considerable probability). The
following inequality is a variant of the same idea. It is better, as it gives a non-trivial lower bound
even if we only know that Var(X) < 100E[X]%.

Lemma 4: Second moment method or Paley-Zygmund inequality

For any non-negative r.v. X, and any 0 < o < 1, we have

E[X]? (1—a)?
P{X > oE[X]} > (1 —a)2E[X2] o \,Ea[r)(()]()

In particular, P {X > 0} > %

\_

PROOF. E[X]? = E[X1x-0)? < E[X?|E[1xs0] = E[X?]P{X > 0}. Hence the second inequal-
ity follows. The first one is similar. Let © = E[X]. By Cauchy-Schwarz,
E[X1xs0)* < E[XYP{X > apu}.

Further, p = E[X1xcau] +E[X1x50,) < ap+E[X1x54,], whence, E[X1x54,] > (1—a)u. Thus,
2 2
E[X1X>01M] > (1 _ a)2E[X] ]
E[X?] E[X?]

The remaining conclusions follow easily. n

P{X >au} >

Alternately, the first inequality can be derived by applying the second oneto Y = (X —apu)4,

as (1) P{Y > 0} = P{X > au}, 2) E[Y] > E[X — au] = (1 — o) and (3) E[Y?] < E[X?].

3. Borel-Cantelli lemmas

If A, is a sequence of events in a common probability space, limsup A,, consists of all w that
belong to infinitely many of these events. Probabilists often write the phrase “A,, infinitely often”

(or “A,, i.0” in short) to mean lim sup A,,.

Lemma 5: Borel Cantelli lemmas

Let A,, be events on a common probability space.

(1) If Y, P(A,) < oo, then P(A, infinitely often) = 0.

(2) If A, are independent and >, P(A,,) = oo, then P(A,, infinitely often) = 1.

15



PROOF. (1) For any N, P (U2 v An) < > o2 v P(A,) which goes to zero as N — oo.
Hence P(limsup 4,,) = 0.

(2) Forany N < M, P(UM  A,) = 1 — [y P(AS). Since 3, P(A,) = oo, it follows
that HﬁiN(l —P(4,)) < HnM:N e PAn) 5 0, for any fixed N as M — oo. Therefore,
P (UX yAp) = 1forall N, implying that P(4,, i.0.) = 1. [

We shall give another proof later, using the first and second moment methods. It will be seen

then that pairwise independence is sufficient for the second Borel-Cantelli lemma!

4. Kolmogorov’s zero-one law

If (2, F,P) is a probability space, the set of all events that have probability equal to 0 or to
1 form a sigma algebra. Zero-one laws are theorems that (in special situations) identify specific
sub-sigma-algebras of this. Such c-algebras (and events within them) are sometimes said to be
trivial. An equivalent statement is that any random variable measurable with respect to such a

sigma algebra is an almost sure constant.

Let (2, ) be a measurable space and let F,, be sub-sigma algebras of F. Then the tail o-

algebra of the sequence F,, is defined to be 7 := N,0 (Uy>,Fi). For a sequence of random
variables X1, X»,..., the tail sigma algebra (also denoted 7 (X1, X3,...)) is the tail of the

sequence o (Xy,).

How to think of it? If A is in the tail of (X})x>1, then A € o(X,,, Xy,41,...) for any n. That is,
the tail of the sequence is sufficient to tell you whether the even occurred or not. For example, A

could be the event that infinitely many X, are positive. Or that limsup X,, = 1, etc.

Theorem 6: Kolmogorov’s zero-one law

Let (2, 7, P) be a probability space and let F,, be independent sub sigma algebras. Then

the tail sigma-algebra 7 is trivial.

PROOF. Define Ty, := 0 (Ug>nFi). Then, Fi, ..., F,, T, are independent. Since 7 C 7, it fol-
lows that Fi,...,F,, T are independent. Since this is true for every n, we see that 7, F1, o, ...
are independent. Hence, 7 and ¢ (U, F,,) are independent. But 7 C o (U, F;,), hence, T is inde-
pendent of itself. This implies that for any A € T, we must have P(A)? = P(AN A) = P(A) which
forces P(A) tobe O or 1. [ |
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If X1, Xo,... are independent random variables, and Y is another random variables such

that Y is a function of (X,,, X;,41,...) for any n, then Y is a constant a.s.

Independence is crucial (but observe that X; need not be identically distributed). If X}, = X;
for all k, then the tail sigma-algebra is the same as o(X) which is not trivial unless X is constant
a.s. As a more non-trivial example, let £, k > 1 beiid. N(0.1,1) and let n ~ Bery(1/2). Set X}, =
nék. Intuitively it is clear that a majority of &s are positive. Hence, by looking at (X,,, Xy41,...)
and checking whether positive or negatives are in majority, we ought to be able to guess 1. In
other words, the non-constant random variable 7 is in the tail of the sequence (X},)x>1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial

conclusions. Another interesting application will be given in a later section.

Let X; be independent random variables. Which of the following random variables must

necessarily be constant almost surely? lim sup X,,, lim inf X,,, lim sup n~=1S,, liminf S,,.

Remark 3: Reformulation in terms of product measures

Let (Q, F, 1) be probability spaces and consider (2 = x;$;, F = ®;F;, it = Q;p;). The

tail sigma-algebra of the sequence G;, = o{Ilj, IIj41, ...} is trivial.

5. Ergodicity of i.i.d. sequence

We now prove another zero-one law now, which covers more events, but for i.i.d. sequences
only. We formulate it in the language of product spaces first. Let (2, F) be a measure space and
consider the product space Q" with the product sigma algebra F®N. Let Pij, be the projection onto
the kth co-ordinate. For k € N, let 6 : QY — QY denote the shift map defined by II,, o 65 = II,,1
for all n > 1. In other words, (6xw)(n) = w(n + k) where w = (w(1),w(2),...).

Definition 7: Invariant sigma-algebra

An event A € F®N is said to be invariant if w € A if and only fw € A for any k > 1. The
collection of all invariant events forms a sigma algebra that is called the invariant sigma
algebra and denoted Z. An invariant random variable is one that is measurable with respect
toZ.

.
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Note that a random variable X on the product space is invariant if and only if X o 6, = X for
all £ > 1. We could also have taken this as the definition of an invariant random variable and then

defined A to be an invariant event if 1 4 is an invariant random variable.

Example 5

Let A be the set of all w such that lim,,_,.c w,, = 0 and let B be the set of all w such that
lwr| < 1forall & > 1. Then A is an invariant event as well as a tail event while B is an

invariant event but not a tail event.

.

Exercise 2

In the setting above, show that 7 C 7.

Lemma 8: Ergodicity of i.i.d. measures

Let P be a probability measure on (£, F). Then the invariant sigma algebra Z on QY is

trivial under P®N,

PROOF. Let 4 = P®N. Suppose A € Z. Since A := |J, o{Ily,...,II,,} is an algebra that
generates the sigma algebra F®Y, for any ¢ > 0, there is some B € A such that u(AAB) < ¢. Let
N be large enough that B € o{Il;, ... ,IIx}. Then Oy B € o{Iln41,...,Iax}. Under the product
measure, II;s are independent, hence p(B NOn(B)) = u(B)pu(On(B)). But p = p(B) = p(dn(B))
(because the measure is an i.i.d. product measure and hence invariant under the shift 6). Thus,
w(BNOnB) = u(B)? Now, u(BAA) < ¢ and hence

(BN ON(B)) — n(ANON(A))] < u(BAA) + u((OnB)A(ONA)) < 2e,

1u(B)? — u(A)?] < |u(B) — p(A)||(B) + u(A)| < 2e.
This shows that (A N Oy A) and ;(A)? are within 4e of each other. But A € Z, meaning that
OnA = A. Therefore, u(A) is within 4e of (A)%. As ¢ is arbitrary, u(A) = p(A)2. This forces that
w(A)=00of u(A) = 1. [ |

Remark 4: Reformulation in terms of sequences of random variables

Let X1, X», ... be a sequence of random variables on a common probability space such that
(X%, Xk+1, . ..) has the same distribution as (X7, Xs, .. .) for any k. Let Y be another random
variables such that Y = F(Xj, Xj.1,...) for any k > 1 for some F : RY — R. Then Y is an

almost sure constant.

-
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It is often more natural to consider the invariant sigma-algebra on the 2-sided infinite product
QF with shifts being defined in the obvious way. Under any i.i.d. product measure, the invariant

sigma-algebra is trivial.

6. Bernstein/Hoeffding inequality

Chebyshev’s inequality tells us that the probability for a random variable to differ from its
mean by k multiples of its standard deviation is at most 1/k?. Its power comes from its generality,
but the bound is rather weak. If we know more about the random variable under consideration,
we can improve upon the bound considerably. Here is one such inequality that is very useful.
Sergei Bernstein was the first to exploit the full power of the Chebyshev inequality (by applying
it to powers or exponential of a random variable), but the precise lemma given here is due to
Hoeftding.

Lemma 9: Hoeffding’s inequality

Let X1,..., X, be independent random variables having zero mean. Assume that | X}| < aj

a.s. for some positive numbers ay. Then, writing S = X1+...+ X,and A = /a? + ... + ai,

we have P{S > tA} < e~2"" for any ¢t > 0.

Before going to the proof, let us observe the following simple extensions.
(1) Applying the same to —X}s, we can get the two-sided bound P{|S| > tA} < 2e1°/2,
(2) If | Xi| < ay, are independent but do not necessarily have mean zero, then we can apply
Hoeffding’s inequality to Y, = X}, — E[X}]. Since |X};| < ay, we also have |[E[X}]| < ax

and hence |Y;| < 2aj. This gives a conclusion that is slightly weaker but qualitatively no
different: With S = X; + ... + X,,,

P{S—E[S] > t\/a%—l—...—ka%} < emst’

PROOF. Fix 8 > 0 and observe that

(3) P{S>tA} = P{eGS > thA} <e etAE[ 05 c—OHAR

Jhe

The inequality in the middle is Markov’s, applied to ¢?%. Since = — €@ is convex, on the interval

[—ag, ag], it lies below the line z — “galf e P 4 ”a’“ e, Since —aj, < X < ai, we get that

X < oy, + B Xy, where oy, = ( far 4 ¢=9ak) and Bk = 1 (eV — e=0k), Plug this into (3) to get

Ak

[T (s + B X ] = e 4 H o
k=1
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since all terms in the expansion of the product that involve at least one Xjs vanishes upon tak-
ing expectation (as they are independent and have zero mean). We now wish to optimize this
bound over 6, but that is too complicated (note that oy;s depend on ). We simplify the bound by

observing that ay, < e?*9%/2, This follows from the following observation:

& 2n

1
i(ey te) = Z (gn)' (the odd powers cancel)
n=0
e y2n
<Y gy (@220 x (20 -2)x ... x2=2"nl)
n=0 ’
=¥’ /2,

n
Consequently, we get that [] ax < e02A%/2, Thus, P{S > tA} < e~ OtA+30%4% Now it is easy to see
k=1

that the bound is minimized when 6 = ¢/A and that gives the bound e /2, n

Clearly the Hoeffding bound is much better than the bound 1/¢? got by a direct application of

—t2/2 is a bound for the tail of the stan-

Chebyshev’s inequality. It is also a pleasing fact that e
dard Normal distribution. In many situations, we shall see later that a sum of independent ran-
dom variables behaves like a Gaussian, but that is a statement of convergence in distribution
which does not say anything about the tail behaviour at finite n. Hoeffding’s inequality is a non-

asymptotic statement showing that S behaves in some ways like a Gaussian.

7. Kolmogorov’s maximal inequality

It remains to prove the inequality invoked earlier about the maximum of partial sums of X;s.
Note that the maximum of n random variables can be much larger than any individual one. For
example, if Y,, are independent Exponential(1), then P(Y), > ¢) = ¢!, whereas P(max;<, Y}, >
t)y=1—(1- e_t)” which is much larger. However, when we consider partial sums S1, S2, ..., Sy,
the variables are not independent and it is not clear how to get a bound for the maximum. Kol-
mogorov found an amazing inequality - there seems to be no reason to expect a priori that such

an inequality must hold!

Lemma 10: Kolmogorov’s maximal inequality

Let X,, be independent random variables with finite variance and E[X,,] = 0 for all n. Then,

P {maxg<y |Sk| >t} <t72Y}_, Var(Xy).

Observe that the right hand side is the bound that Chebyshev’s inequality gives for the prob-
ability that |S,| > t. Here the same quantity is giving an upper bound for the (presumably) much
larger probability that one of |S|, ..., |S,| is greater than or equal to ¢.
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PROOF. Fix n and let 7 = inf{k < n : |Sg| > t} where it is understood that 7 = n if | S| < ¢ for
all £ < n. Then, by Chebyshev’s inequality,

4) P(max |Si| > t) = P(|S;| > t) <t *E[S]].
We control the second moment (;f Sr by that of S, as follows.
E[S}] = E[(S; + (Sn — 57))°]
= E[S?] + E [(S, — 5-)%] + 2E[S-(Sn — S7)]
(5) > E[S?] + 2E[S; (S, — S7)]-

We evaluate the second term by splitting according to the value of 7. Note that S, — S; = 0 when

7 = n. Hence,

i
L

E[ST(Sn - 5'7-)] = E[lT:kSk(Sn - Sk)]

Z E[1,-;S5k] E[S,, — Si] (because of independence)

Tl
e

Il
i

k
=0 (because E[S,, — Si] =0).
In the second line we used the fact that S;1,—; depends on Xj,..., X} only, while S,, — Sj, de-
pends only on Xj1,...,X,. From (5), this implies that E[S%] > E[S?]. Plug this into (4) to get
P(maxg<, Sk > t) < t?E[S2]. [ |

In proving this theorem, Kolmogorov implicitly introduced stopping times and martingale
property (undefined terms for now). When martingales were defined later by Doob, the
same proof could be carried over to what is called Doob’s maximal inequality. In simple

language, it just means that Kolmogorov’s maximal inequality remains valid if instead of

independence of X}s, we only assume that E[X}, | X1,..., X;_1] = 0.

8. Coupling of random variables

Coupling is the name probabilists give to constructions of random variables on a common
probability space with given marginals and joint distribution according to the need at hand. If
you have studied Markov chains, then you would have perhaps seen a proof of convergence to
stationarity by a coupling method due to Doeblin. In this method, two Markov chains are run, one
starting from the stationary distribution and another starting at an arbitrary state. It is shown that
the two Markov chains eventually meet. Once they meet, when they separate, it is impossible to
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tell which is which (by Markov property), hence the second chain “must have reached stationarity

too”. Here are some simpler general situations where the method is useful.

Proving inequalities between numbers by coupling: Suppose we wish to show that a < b. If
we could find random variables X,Y on a common probability space such that X < Y a.s., and
E[X] = a and E[Y] = b, then the inequality would follow. If the numbers are in [0, 1], this may be
be possible to prove by finding events A C B such that P(A) = a and P(B) = b. What is called
the probabilistic method is of this kind: We show that a set A (described in some way), is non-empty

by showing that P(A) > 0 under some probability measure P.

Example 6

Let X ~ Bin(100,3/4) and Y ~ Bin(100,1/2). Then it must be true that P{X > 71} >
P{Y > 71}, but can you show it by writing out the probabilities? It is possible, but here is
a less painful way. Let Uy, . .., Uigg be i.i.d. Unif|0, 1] random variables on some probability
space. Let X' =37, 1y, <g/sand Y’ = 37, 1y, <1/2- Then X' > Y7, hence the event {Y' > 71}
is a subset of {X’ > 71} showing that P{X’ > 71} > P{Y’ > 71}. But X’ has the same

distribution as X and Y has the same distribution as Y, showing the inequality we wanted!

More generally, if X ~ pand Y ~ vand X > Y a.s., then F,(t) < F,(t) forall t € R. If the

latter relationship holds, we say that v is stochastically dominated by .

If v is stochastically dominated by j, show that there is a coupling of X ~ pwith Y ~ v in

such a way that X > Y a.s.

Getting bounds on the distance between two measures: Suppose 1 and v are two probability
measures on R and we wish to get an upper bound on their Lévy-Prohorov distance. One way
is to use the definition and work with the measures. Here is another: Suppose we are able to
construct two random variables X,Y on some probability space such that X ~ u, Y ~ v and

|X — Y| <r with probability at least 1 — r. Then we can claim that d(x, v) < r. Indeed,
F,(t)=P{Y <t} >P{X <t—r}-P{X -Y|>r}>F,(t—7)—r

and similarly F,(t) > F,(t — r) — r. Itis a fact that if d(u, ) = r, then such a coupled pair of
random variables does exist but it requires a bit of work (it is akin to Hall’s marriage problem), so

we skip it.
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Similar ideas can be used for other distances. For example, on a finite set [n] = {1,2,...,n}, let
i, v be two probability measures. Their total variation distance is defined as dry (1, v) = ggﬁ |p(A)—
v(A)]. One way to get a bound on the total variation distance is to construct two random variables
X, Y on some probability space such that X ~ y, Y ~ vand P{X # Y} = r. Then drv(u,v) <r.

Indeed, for any A, we have
WA =P{X e A} <P{Y e A} +P{Y ¢ A, X € A} <v(A)+P{X #Y}.

Getting the inequality with p and v reversed, we see that dry (i1, v) < P{X # Y'}. Itis an easy fact

that one can always couple random variables this way.

Show that there is a coupling (X, Y') that achieves equality, i.e., P{X # Y} = drv (i, v).

Defining distances using coupling: The fact that Lévy distance and total variation distance can be
rephrased in terms of coupling suggests that one can define other distances between probability
measures by minimizing some cost over all possible couplings. The following is a very useful

definition (we shall not use it in this course though).

Definition 8: Transportation distance

Let 1 and v be two measures on R?. For ¢ : R? x R? — [0,00), define T.(u,v) :=

inf{E[c(X,Y)]: X ~ pu, Y ~ v}, where the infimum is over all couplings with the given

marginals (and one can choose the probability space too).

Popular choices of the cost function are ¢(z,y) = ||z — y|| (Euclidean distance) and ¢(z,y) =
|z — y||*. In the latter case, the transportation distance is widely referred to as Wasserstein metric,

although it has been well-argued that it should be called Kantorovich metric.
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CHAPTER 3

Applications of the tools

We illustrate the use of the tools introduced in the previous chapter. Simultaneously, this is an
excuse to showcase a few probability situations of interest on their own. Further, coupon collector
problem, branching processes, random walks, etc., are not only interesting on their own, they also
appear embedded within various other problems. A good understanding of probability requires

one to know these well.

1. Borel-Cantelli lemmas

If X takes values in R U {+oo} and E[X] < oo then X < oo a.s. (if you like you may see
~which has E[X] =

k

it as a consequence of Markov’s inequality!). Apply thisto X = > 72,14
> re P(Ay) which is given to be finite. Therefore X < oo a.s. which implies that for a.e. w, only
finitely many 14, (w) are non-zero. This is the first Borel-Cantelli lemma.
The second one is more interesting. Fix n < m and define X = 7" 14
v P(Ag). Also,

Then E[X]| =

k*

EX’=E|> 1Ak1A£] =Y P(Ap) + > P(A)P(A)
k=n l=n k=n k#L

m 2 m
< <Z P(Ak:)) + ) P (4).
k=n k=n

Apply the second moment method to see that for any fixed n, as m — oo (note that X > 0 is the
same as X > 1),

B (ZZL:” P(Ak))2 + Zzl:n P(Ak)
1

L+ (0, P(4R) ™

which converges to 1 as m — oo, because of the assumption that ) S P(Aj) = oco. This shows that

P(Ug>nAj) = 1 for any n and hence P(limsup 4,,) = 1.

Note that this proof used independence only to claim that P(A; N A¢) = P(A;)P(As). There-
fore, not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma
holds for pairwise independent events too!
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2. Coupon collector problem

A bookshelf has (a large number) n books numbered 1,2, ...,n. Every night, before going to
bed, you pick one of the books at random to read. The book is replaced in the shelf in the morning.

How many days pass before you have picked up each of the books at least once?

Theorem 11: Coupon collector problem

Let 7;, denote the number of days till each book is picked at least once. Then 7, is con-
centrated around n log n in a window of size n by which we mean that for any sequence of

numbers 6,, — oo, we have

P(|T, — nlogn| < nb,) — 1.

\

The proof will proceed by computing the expected value of T}, and then showing that T;, is

typically near its expected value.

A very useful elementary inequality: In the following proof and many other places, we shall have

occasion to make use of the elementary estimate

1
1—-z<e™® forallz, 1—2> e~ for |z| < 5

To see the first inequality, observe that e™*

— (1 —x)is equal to 0 for z = 0, has positive derivative
for x > 0 and negative derivative for z < 0. To prove the second inequality, recall the power series

expansion log(1 — z) = —x — 2?/2 — 23/3 — ... which is valid for |z| < 1. Hence, if |z| < 3, then
log(l —z) > —z — 22 + 11:2 - li |z|*
- 2 2 pd

z—az—xQ

since Y 54 [z? < 2?3000, 278 < La2

PROOF OF THEOREM 11. Fix an integer ¢t > 1 and let X, ; be the indicator that the kth book is
not picked up on the first ¢ days. Then, P(T;, > t) = P(S;,, > 1) where S, = X;1 + ... + Xy, is
the number of books not yet picked in the first ¢ days. As E[X; ;] = (1 — 1/n)" and E[X; ;X /] =

1 —2/n) for k # ¢, we also compute that thefirst two moments of S;,, and use (??) to get
P , g

NG
(©) ne e < E[Sin] =n <1 — n> < ne .
and
1 t 2 t
@ EB[S;)=n <1 - n) +n(n—1) (1 —~ n) < ne W +n(n—1)e .

The left inequality on the first line is valid only for n > 2 which we assume.
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Now set ¢t = nlogn + nf, and apply Markov’s inequality to get

n log n+nbn

(8) P(T, > nlogn+nb,) =P(S;, > 1) <E[S;,] <ne” n <e ' =0(1).

On the other hand, taking t = nlogn — n#,, (where we take 6,, < logn, of course!), we now apply
the second moment method. For any n > 2, by using (7) we get E[S?,] < €’ + ¢?’». The first
0

n . Thus,

inequality in (6) gives E[S; ] > e
logn—6n
BlSif? | et

(9) P(Tn > nlogn — nﬂn) = P(St,n > ].) > E[St%n} = on T 20,

as n — oo. From (8) and (9), we get the sharp bounds

=1-o0(1)

P (|T,, — nlog(n)| > nb,) — 0 for any 6,, — cc. [ |

Here is an alternate approach to the same problem. It brings out some other features well. But

we shall use elementary conditioning and appeal to some intuitive sense of probability.

ALTERNATE PROOF OF THEOREM 11. Let 4 = 1 and for k > 2, let 73, be the number of draws
after k£ — 1 distinct coupons have been seen till the next new coupon appears. Then, T;,, = 71 +... +
Tn-

We make two observations about 7;s. Firstly, they are independent random variables. This is
intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the
distribution of 7, is Geo(=2+1). This is so since, after having seen (k — 1) coupons, in every draw,
there is a chance of (n — k + 1)/n to see a new (unseen) coupon.

If ¢ ~ Geo(p) (this means P(¢ = k) = p(1 — p)*~! for k > 1), then E[¢] = % and Var(¢) = lp%p,
by direct calculations. Therefore, remembering that 1 + § +... + 1 = logn + O(1), we get

n
E[l,)=) ——— =nl :
[T] k_ln_k"‘l nlogn + O(n)
_ n2 < (n2
Var(Z ”Z I<:+1 Zn—lﬁ—l = Cn
withC' = 3772 1] . Thus, if ,, 1 oo, then fix N such that |E[T,,] — nlogn| < n#,, forn > N. Then,

1
([T, —nlogn| > ud,} < P {|1, ~ B{L,) > Lo, }

Var(T,,)
i
=g
which goes to zero as n — oo, proving the theorem. |
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3. Branching processes:

Consider a Galton-Watson branching process with offsprings that are i.i.d {. We quickly recall
the definition informally. The process starts with one individual in the 0th generation who has
& offsprings and these comprise the first generation. Each of the offsprings (if any) have new
offsprings, the number of offsprings being independent and identical copies of £. The process
continues as long as there are any individuals left'.

Let Z,, be the number of offsprings in the nth generation. Take Zy = 1.

Theorem 12: The fundamental theorem on Branching processes

Let m = E[{] be the mean of the offspring distribution.
(1) If m < 1, then w.p.l, the branching process dies out. That is P(Z, =
0 for all large n) = 1.

(2) If m > 1, then the process survives with positive probability, i.e., P(Z,
1 for all n) > 0.

v

PROOF. In the proof, we compute E[Z,,] and Var(Z,,) using elementary conditional probability
concepts. By conditioning on what happens in the (n — 1)St generation, we write Z, as a sum

of Z,_; independent copies of {&. From this, one can compute that E[Z,,|Z,,_1] = mZ,_; and

2 2

if we assume that ¢ has variance o we also get Var(Z,|Z,-1) = Z,_10°. Therefore, E[Z,]| =

EE[Z,|Z,-1]] = mE[Z,,_;]| from which we get E[Z,,] = m". Similarly, from the formula Var(Z,,) =
E[Var(Z,|Z,-1)| + Var(E[Z,,| Z,,—1]) we can compute that
Var(Z,) = m" ‘o? + m*Var(Z,_,)
=Mt +m"+ . +m?) o (by repeating the argument)

n+1 _
B 1
m—1
(1) By Markov’s inequality, P{Z, > 0} < E[Z,] = m" — 0. Since the events {Z,, > 0} are

decreasing, it follows that P (extinction) = 1.

IFor those who are not satisfied with the informal description, here is a precise definition: Let V = |J;°, N% be the
collection of all finite tuples of positive integers. For k > 2, say that (v1, . ..,v) € N} isachild of (v1,...,v—1) € Ni 1.
This defines a graph G with vertex set V' and edges given by connecting vertices to their children. Let G be the
connected component of G containing the vertex (1). Note that G is a tree where each vertex has infinitely many
children. Given any n : V' — N (equivalently, n € NV, define T}, as the subgraph of G1 consisting of all vertices
(v1,...,vg) for which v; < n((v1,...,vj-1)) for 2 < j < k. Also define Z,_1(n) = #{(v1,...,vx) € T} for k > 2 and
let Zo = 1. Lastly, given a probability measure i on N, consider the product measure 1®V on NV, Under this measure,
the random variables n(u), u € V areii.d. and denote the offspring random variables. The random variable Z;, denotes

the number of individuals in the kth generation. The random tree T, is called the Galton-Watson tree.

28



(2) If m = E[¢] > 1, then as before E[Z,,] = m™ which increases exponentially. But that is not
enough to guarantee survival. Assuming that ¢ has finite variance o2, apply the second
moment method to write

E[Z,]? 1

Var(Z,) +E[Z,]? — 1+ 2

m—1

P{Z, >0} >

which is a positive number (independent of n). Again, since {Z,, > 0} are decreasing
events, we get P(non-extinction) > 0.

The assumption of finite variance of £ can be removed as follows. Since E[{] =m > 1,
we can find A large so that setting = min{¢, A}, we still have E[n] > 1. Clearly, 1 has
finite variance. Therefore, the branching process with 7 offspring distribution survives
with positive probability. Then, the original branching process must also survive with
positive probability! (A coupling argument is the best way to deduce the last statement:
Run the original branching process and kill every child beyond the first A, a brutal form
of family planning. If inspite of the violence, the population survives, then the original

must also survive...) |

The proof does not cover the critical case which may be skipped on first reading.

The critical case m = 1: This case is a little more delicate as E[Z,,] = 1 stays constant. Here the
strengthened form of Markov’s inequality (2) comes in handy. The intuitive explanation why it
can help is that if there is one survivor in the nth generation, then it is likely that there are many

survivors. For simplicity we give a not entirely rigorous argument in a particular example.

A HEURISTIC PROOF OF EXTINCTION IN THE CRITICAL CASE FOR BINARY BRANCHING. Assume
that pg = py = % Then m = 1. If Z,, > 1, pick an individual in the nth generation (this is where
the argument is loose - one needs to specify how this individual is picked). Call this individual
v, and let her ancestors be v,—1,v,—2,...,v9 (Where v; belongs to the kth generation). Let M}
be the number of descendents of v; that are alive in generation n, excluding those that are also

descendents of vy 1. Then,
anl—l-Mn_l—‘r...—l-Mo.

We claim that E[M};] = 1. Indeed, as v;, has at least one offspring (i.e., vj+1), she must have exactly
one more off-spring, call it v; ;. Then Mj, is exactly the number of descendents of v}, who are
in the nth generation of the original process (which is the n — k — 1st generation of the tree under
vy, 1)- But as the branching is critical, E[M}] = 1. This shows that E[Z, | Z, >1] =n+1and
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consequently, by the strengthening of Markov’s inequality given above,

E[Z 1
P{Z,>1} < 120 =
E(Z,| Z,>1] n+1

which converges to 0. u

4. How many prime divisors does a number typically have?

For a natural number £, let v(k) be the number of (distinct) prime divisors of n. What is the
typical size of v(n) as compared to n? We have to add the word typical, because if p is a prime
number then v(p) = 1 whereas (2 x 3 x ... X p) = p. Thus there are arbitrarily large numbers
with v = 1 and also numbers for which v is as large as we wish. To give meaning to “typical”, we
draw a number at random and look at its v-value. As there is no natural way to pick one number

at random, the usual way of making precise what we mean by a “typical number” is as follows.

Formulation: Fix n > 1 and let [n] := {1,2,...,n}. Let u, be the uniform probability measure on
[n], i.e., un{k} = 1/n for all k£ € [n]. Then, the function v : [n] — R can be considered a random
variable, and we can ask about the behaviour of these random variables. Below, we write E,, to

denote expectation w.r.t fiy,.

Theorem 13: Hardy-Ramanujan

With the above setting, for any § > 0, as n — oo we have

(10) o {k € [n]: ‘

v(

k) -1 ) >6p — 0.
log logn

PROOF. (Turan). Fix n and for any prime p define X, : [n] — R by X,(k) = 1,;. Then,

v(k) = > X,(k). We define ¢(k) := >  X,(k). Then, ¥ (k) < v(k) < (k) + 4 since there can be
p<k p<VE
at most four primes larger than vk that divide k. From this, it is clearly enough to show (10) for

5]

n

in place of v (why?).

We shall need the first two moments of 1) under y,,. For this we first note that E,,[X,| =

P

n  — pq’

n

and E,[X,X,] = @ Observe that % - % < @ < % and % - =<

1
n n
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By linearity E,[¢] = Y. E[X,]= Y 1+ O(n 1). Similarly

p<n p<¥n
Var,[¢] = Var[X,]+ > Cov(X,, X,)
p<¥n p#q<Yn
1 1 _ _
=2 (5—17+O(n 1))+ >, o™
p<¥n p#q< Yn
1 1 _1
-y Loy Liomh,

p<n P p<{n P
We make use of the following two facts. Here, a,, ~ b,, means that a,,/b,, — 1.

o0

Z ]—1) ~ loglogn Z% < 00.

p<¥n p=1P
The second one is obvious, while the first one is not hard, (see exercise 5 below)). Thus, we get
E,[¢)] = loglogn + O(n*%) and Var,[¢] = loglog n 4+ O(1). Thus, by Chebyshev’s inequality,
k) —E, Var,, 1

loglogn ~ 6%(loglogn)? loglogn

From the asymptotics E,,[¢)] = loglogn + O(n_%) we also get (for n large enough)

‘ Y(k) Var, (v) _ 1
i {k el | oglorn ! > 5} < Ploglogn)? ~ ° (loglogn> -

~ loglogn. [Note: This is not trivial although not too hard.]

5. A random graph question

The complete graph K, has vertex set [n] = {1,2,...,n}and edgeset E = {{i,j} : 1 <i<j <
n}. We now define a random graph model as a random sub-graph of K,,. This model has been

studied extensively by probabilists in the last fifty years.

Definition 9: Erdos-Rényi random graph

Fix0 <p <1 Let X;;, 1 <i<j<n, beiid. Ber(p) random variables. Let G be the graph

with vertex set [n] and edge-set {{i,j} : X; ; = 1}. Then G is called the Erdos-Rényi random
graph with parameters n and p and denoted G(n, p).

There are many interesting questions about G(n, p). Here we ask only one: Is G(n, p) connected?
If p = 1, the answer is clearly yes, and if p = 0, the answer is clearly no. It is not hard to see that
(use coupling!) to show that the probability that G(n,p) is connected increases with p. Where
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does the change from disconnected to connected take place? The answer is given in the following

theorem.

Theorem 14: Connectivity threshold for Erdos-Renyi random graph

Fix § > 0 and let p;- = (1 ié)lo%. Then, as n — oo,

P{G(n,p,})is connected } -+ 1 and P{G(n,p,) is connected } — 0.

Unlike in the other problems, here the second moment method is easier, because we show dis-
connection by showing that there is at least one isolated vertex (i.e., a vertex that is not connected

to any other vertex). To show connectedness, we must go over all proper subsets of vertices.

PROOF THAT G(n, p,,) IS UNLIKELY TO BE CONNECTED. Let Y be the number of isolated ver-
tices, i.e.,, Y = """ | Y;, where Y is the indicator of the event that vertex i is not connected to any

other vertex. Then,

E[Y] =Y E[Yi =n(1 - p)" "' > ne
=1

if p< 3 (sothatl—p > e~P~P%). Further, Y;Y; = 1if and only if all the 2n — 3 edges coming out of
i or j (including the one connecting i and j) are absent (i.e., X; 1., X, are all 0). Therefore,
E[Y?] =) E[V;]+2) E[E[Y]
i=1 i<j

n(1—p)""" +n(n 1)1 -p)*?

< ne—P=1) | p2e-Cn-3p.

When p = p;,, by the second moment method that
]2 TL2 €2np72np2 eanpQ

P{Yy >1} > ElY > =
{ = } = E[Y2] ~ ne—pn—1) L n2e—(2n-3)p - %ep(n-i-l) 4 edp

which goes to 1 as n — oo (as p, — 0 and %e"p” — 0). When Y > 1, G(n,p) is disconnected,

completing the proof. [ |

PROOF THAT G(n, p,) IS UNLIKELY TO BE DISCONNECTED. We get a crude estimate as follows.
Suppose A C [n]. Then A is disconnected from A¢if and only if X; ; = Oforalli € Aandall j € A“.
This has probability (1 — p)l4I("=14D_ If the graph is disconnected, then there must be some such
set A with |A| < n/2. Thus, by the union bound,

Ln/2]
P{G(n,p) is not connected } < Z (Z) (1 — p)kn=h),
k=1

Now, we set p = p; and divide the sum into k < en and k > en.
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In the second sum, we use the simple bounds (}) < 2" and k(n — k) > (1 — )n?. Since
1 — p < e P, and there are at most n terms, we get (recall the definition of p;)

Z (Z) (1 — p)k(n—k) < n2n€*€(178)(1+6)n10gn‘

k>en

Obviously this goes to zero as n — oo (for any choice of ¢ > 0, which will be made later).

The sum over k < ¢ is handled by setting (7) < n"and 1 —p < e™. We get

3 (Z)u R < 3 linp—tog )
1<k<en k<en
< Z o klogn[(1+6)(1—%)—1]
1<k<en

e—k logn[(146)(1—e)—1] .

IA

k=1
If ¢ > 0 is chosen small enough that (1 + 6)(1 — &) — 1 > 14, then the above sum becomes a
geometric series whose sum is

e—%&logn 1

1 <sn

6/2
1— ef§6logn - 2 ’

the inequality holding for large n. Thus, P{G(n,p,}) is connected } — 1. [

6. A probabilistic version of Fermat'’s last theorem

Fermat’s last theorem is the statement that there are no strictly positive integers a, b, c such that
a? +bP = c?,if p > 3 is an integer. For p = 2 there are solutions of course, e.g., 3,4, 5. What is the
intuition behind why it fails for larger p? There are more squares than cubes than fourth powers
and so on (in the sense that the number of p-th powers below N grows like N'/?). In a sparser
sequence, there should be less coincidences of the kind where sum of two terms is another term.
Here is a way to make a random version of the question that shows that p = 3 is precisely where
there is a change of behaviour!

Fix a > 0 and let &, ~ Ber(n™) be independent. This gives us a random subset of positive
integers S, = {n : &, = 1}. By considering the summability of P{¢,, = 1}, from the Borel-Cantelli
lemmas we see that S, is a finite set w.p.1. if and only if a > 1. Hence let us fix @ < 1 and observe

that [S, N [NV]| =& + ... + En. Therefore,

N 1 1—a .
1 TN ].f a < 1,
EljS N[Vl =3~ {7
k=1 log N if a = 1.
Alternately, for o < 1 the Nth term is of the order of N? where p = 2. Thus p > 3 corresponds

2
t0a<§.
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Theorem 15: Erdos—-Ulam

If < 2, then with probability 1, there are at most finitely many triples (a,b,c) € S3 such

thata < b < cand a+b = c. If & > 2, then with probability 1, there are infinitely many

such triples.

Just to avoid some computations, we have not allowed a = b in our solution space. It does
not make a difference to the result if allowed. The proof will proceed by computing the first and

second moment of the random variable T denoting the number of solution triples with ¢ < N.

PROOF. Fixany 1 < a < b < ¢ = (a + b). The probability that (a, b, c) is in 82 is 1/(ab(a + b))®.
Asa+b>Vab,

1
E[Ty] < g = (because a + b > Vab)
1<a<b<N (ab) 2

o 2
1
<)==
<k:1 ké)

This sum finite if « > 2. Since the total number of solutions 7" is the increasing limit of Ty, MCT
shows that E[T] < oo and hence T' < oo a.s. This proves the first statement.

For the second statement, we work out the case o = % and leave o < % as an (easier) exercise.
N

E[Ty] = Z i Z ;
c=1

2 z
¢ 7 (a(c — a)}

The inner sum can be written as

11 1 1 [ dw

T Z o oz T 2 2

3 a<t (21—-2)s c3Jo w3(l—ux)
for c large. Denoting the integral as C' (and a small argument needed to ignore small c), we get
E[Ty] ~ O, 1 ~ Clog N. This expectation goes to infinity and hence E[T] = oco. But to say

that 7" is infinite a.s., we compute the second moment of 7.

N
E[TJ%;] = Z Z E[gagcfagcfa’gc/fa’gc’} .

c,c/’=1a<c, a’/<c'

When the two triples are disjoint, the expectations factor and hence we can write

E[T]%f] = E[TN]2 + Z E[gagc—agcfa’fc’—a’gc’] - E[gafc—agc]E[éa’éc’—a’fe’]

< E[TN]2 + Z E[gagcfagcga’gc/fa’gc’]

where the asterisk indicates summing over pairs of triples such that {a, c—a, c}N{d’, /' —d’, '} # 0.
We show that this entire sum is O(log N), which then shows that the standard deviation of T is

34



O(V1og N). As E[Ty] ~ Clog N, by Chebyshev inequality we get

Var(Tw)
P{Ty <(1-6)ClogN} < ————
v < (1= 0)Clos N} < s 1o0? N

as N — oo. This shows that T' = oo a.s. and in fact gives a more quantitative statement about how

—0

many solutions there are.
It remains to show that the asterisked sum is O(log N). Now we must divide into several cases.
[ |

7. Random series

Let X,, be independent random variables. The event that the series ) |, X, converges is clearly
a tail event, hence has probability zero or one. Is it zero or one? Depends on the variables.

Let X,, ~ Ber(py). Then the series converges if and only if X,, = 0 for all but finitely many n.
By the Borel-Cantelli lemma,

0 if >, pn < oo,
1 if ), pn = oo.

Thus, the series ), X, converges almost surely if ) p, < oo and diverges almost surely if

P{X,=1i0}=

Zn Pn = 0.
Since p, = E[X,,], this may give the impression that what matters is the sum of expectations.

Not entirely correct. For example, let X, be independent with P{X,, =1} = P{X,, = -1} = p,/2
and P{X,, = 0} = 1 — p,. Then again, the random series converges if and only if X,, # 0 only
finitely often. Again by Borel-Cantelli lemma, this is equivalent to the convergence of ), p,,. Here
E[X,] = 0 for all n, what p,, measures is the variance.

In general, Kolmogorov (after Khinchine and others) found a complete and satisfactory answer
to the general question. His answer is that the random series converges almost surely if and only
if three (non-random) series constructed from the distributions of X,,s converge. We shall prove

Kolmogorov’s three series theorem later.

8. Random series of functions

One can similarly ask about convergence of ) X,u,, where X,, are independent random
variables and u,, are elements of a Banach space. In particular, let f,, : [0,1] — R be given contin-
uous functions and consider the series ) |, X, f,,(t). The following events are clearly tail events.

e The event C that the series converges uniformly on [0, 1].
e The event ND that the sum is a nowhere differentiable function (it makes sense to ask this
only if P(C) = 1).
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Again, whether these events have probability 0 or 1 depends on the variables X,,s and the func-
tions f,s. For example, if f,,(t) = sin(7nt)/n and X,, are i.i.d. N(0, 1), then Wiener showed that
P(C)=1and P(ND) = 1.

We shall see this in the next part of the course on Brownian motion. For now, you may simply
compare it with Weierstrass” nowhere differentiable function ) sin(3"7t)/3". In contrast, the

random series does not require such rapid increase of frequencies. However, although P(C' N

sin(7nt)

ND) = 1, it is not easy to produce a particular sequence x,, € R such that the function ) z,~—_

converges uniformly but gives a nowhere differentiable function!

9. Random power series

Let X, be i.i.d. Exp(1l). As a special case of the previous examples, consider the random

power series Y 7 o X, (w)z".

For fixed w, we know that the radius of convergence is R(w) =
(limsup | X,,(w)|'/™)~1. Since this is a tail random variable, by Kolmogorov’s zero-one law, it must
be constant. In other words, there is a number ry such that R(w) = rg a.s.

But what is the radius of convergence? It cannot be determined by the zero-one law. We may
use Borel-Cantelli lemma to determine it. Observe that P(\Xnﬁ > 1) =e " forany t > 0. If
t =1+ e with e > 0, this decays very fast and is summable. Hence, |Xn|% <1+c¢€a.s.. and hence
R <1+ ¢ a.s. Take intersection over rational € to get R < 1 a.s.. For the other direction, if t < 1,

t" 5 1 and hence Yon e 1" = . Since X, are independent, so are the events {|Xn|% > t}.

then e~
By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n
such that ]Xn\% > 1 — . Again, take intersection over rational ¢ to conclude that R > 1 a.s. This
proves that the radius of convergence is equal to 1 almost surely.

In a homework problem, you are asked to show the same for a large class of distributions and

also to find the radius of convergence for more general random series of the form >~ ¢, X,,2".

10. Growth of a supercritical branching process

We showed that a super-critical branching process survives with strictly positive probability.
One can ask how the generation sizes Z,, grow when the branching is supercritical. An important
theorem of Kesten and Stigum asserts that under the extra condition that E[Llog, L] < oo, the

generation sizes grow exponentially in the sense that
Z ..
P {lim sup —- > 0} = P{non-extinction}.
m

Actually it says that with lim Z,,/m™ in place of lim sup (the existence of the limit must be proved,
of course), but we stick to the above form. Obviously the event on the left is contained in the event
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on the right, hence the asserion is really that whenever non-extinction occurs, it occurs by the Z,
grown exponentially fast.

We prove a very special case of this, as the main goal here is to illustrate the tools introduced
in the previous chapter. Recall that the off-spring variable L has distribution p;, = P{L = k} and

m = Y ;. kpy is its mean.

Theorem 16: Growth of supercritical branching process

Assume that py = 0 and m > 1 and that 0% := Var(L) < oco. Then, limsupm "2, > 0 a.s.

PROOF. Under the assumption that py = 0, extinction never occurs. Further, if

Let W,, = Z,/m™ and let W = limsup W,,. Also recall the way we constructed a branching
process from i.i.d. random variables L,, ;, n,k > 1 by using Ly, 1, Ly, 2 . . . to determine the numbers
of offsprings of those individuals in the (n — 1)st generation.

First we claim that P{IV > 0} > 0.

The same proof that we used (second moment method) to show that non-extinction has strictly
positive probability in fact shows that

lim inf P {Zn > ;m”} > YT +1402 .

m—1

Now let W = limsup Z,,/m™ and let NE be the event of non-extinction. Clearly {W > 0} C NE.
What we need to show is that P{W > 0} = P{NE}, which then implies that P{{W > 0}NNE} =0
as claimed.

First we claim that P{WW > 0} > 0. As {W < ¢} C Unx Np>n {Zn < em™}, it follows that if
P{W > 0} = 0, then for any € > 0, there is some N < oo such that P{Z,, > em” for some n >
N} <e. [ ]

11. Percolation on a lattice

This application is really an excuse to introduce a beautiful object of probability. Consider the
lattice Z2, points of which we call vertices. By an edge of this lattice we mean a pair of adjacent
vertices {(z,v), (p,q)} where x = p,|ly —q| = 1 ory = q,|x — p| = 1. Let E denote the set of all
edges. X, e € E be ii.d Ber(p) random variables indexed by E. Consider the subset of all edges
e for which X, = 1. This gives a random subgraph of Z? called the bond percolation graph at level p.
We denote the subgraph by G, for w in the probability space.

Question: What is the probability that in the percolation subgraph, there is an infinite con-
nected component?

Let A = {w: G, has an infinite connected component}. If there is an infinite component,
changing X, for finitely many e cannot destroy it. Conversely, if there was no infinite cluster
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to start with, changing X, for finitely many e cannot create one. In other words, A is a tail event
for the collection X, e € E! Hence, by Kolmogorov’s 0-1 law?, P,(A) is equal to 0 or 1. Is it 0 or is
it 1?

In a pathbreaking work of Harry Kesten, it was proved in 1980s that P,(4) = 0if p < 1 and
P,(A) = 1if p > 3. The same problem can be considered on G = Z?, keeping each edge with
probability p and deleting it with probability 1 — p, independently of all other edges. It is again
known (and not too difficult to show) that there is some number p. € (0, 1) such that P,(4) =0
if p < p. and P,(A) = 1if p > p.. The value of p. is not known, and more importantly, it is not
known whether P, (A) is 0 or 1! This is a typical situation; zero-one laws may tell us that the

probability of an event is 0 or 1, but deciding between these two possibilities can be very difficult!

12. Random walk

Let X; beii.d. Bery(1/2)and let S,, = X; + ...+ X,, forn > 1and Sy = 0 (S = (S,,) is called
simple, symmetric random walk on integers). Let A be the event that the random walk returns to the
origin infinitely often, i.e., A = {w : S, (w) = 0 infinitely often}.

Then A is not a tail event. Indeed, suppose X (w) = (—1)* for k > 2. Then, if X;(w) = —1, the
event A occurs (i.e., A 5 w) while if X;(w) = +1, then A does not occur (i.e., A # w). This proves
that A € 0(Xa, X3,...) and hence, it is not a tail event.

Alternately, you may write A = limsup A4,, where A,, = {w : S, (w) = 0} and try to use Borel-
Cantelli lemmas. It can be shown with some effort that P(As),) < % and hence ), P(A,) = oo.
However, the events A,, are not independent (even pairwise), and hence we cannot apply the
second Borel-Cantelli to conclude that P(A) = 1.

Nevertheless, the last statement that P(A) = 1 is true. It is a theorem of Pélya that the random
walk returns to the origin in one and two dimensions but not necessarily in three and higher
dimensions! If you like a challenge, use the first or second moment methods to show it in the

one-dimensional case under consideration (Hint: Let R, be the number of returns in the first n

steps and try to compute/estimate its first two moments).

2You may be slightly worried that the zero-one law was stated for a sequence but we have an array here. Simply
take a bijection f : N — Z* and define Y,, = X(,) and observe that the event that we want is in the tail of the sequence
(Yn)nen. This shows that we could have stated Kolmogorov’s zero one law for a countable collection F;, i € I, of

independent sigma algebras. The tail sigma algebra should then be defined as N o U F)
FCI|F|<co i€I\F
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CHAPTER 4

Modes of convergence

1. A metric on the space of probability measures on R?

What kind of space is P(R?), the space of Borel on R?? It is clearly a convex set (this is true
for the space of probability measures on any measurable space). We want to measure closeness of

two probability distributions. Two possible definitions come to mind.

(1) For u,v € P(R?), define Dy (u,v) := sup 4ep, [1(A) —v(A)|. Since p and v are functions on
the Borel o-algebra, this is just their supremum distance, usually called the total variation
distance. It is easy to see that D; is indeed a metric on P(R%).

One shortcoming of this metric is that D; is too strong. If i is a discrete measure
and v is a measure with density, then D;(u,v) = 1. But if p is uniform distribution on
[0,1] and py, is uniform distribution on the finite set {j/n: 1 < j < n}, then for large n
we would like to think that ;¢ and p,, are close (after all, if we want a sample from p, a
random number generator will in fact give us a sample from v for some large n, and we

accept that). But in the metric D, they remain far apart.

(2) We can restrict the class of sets over which we take the supremum. For instance, taking
all semi-infinite intervals, we define the Kolmogorov-Smirnov distance

D2(M7 V) = sup ‘*F/L(m) - Fu(x)‘
z€R4

If two CDFs are equal, the corresponding measures are equal. Hence D is also a genuine
metric on P(RY).

Clearly Dy(u,v) < D1(p,v), hence Dy is weaker than D;. Unlike with D;, itis possible
to have discrete measures converging in D to a continuous one, see Exercise 6. But it is
still too strong.

For example, if a # b are points in R, then it is easy to see that D1 (04, &) = D2(04, ) =
1. Thus, even when a,, — a in R%, we do not get convergence of J,,, to J, in these metrics.
This is an undesirable feature as we must accept errors in measurement, for example, a
10 digit number as an approximation to a real number. Alternately, let us just say that we
would like the embedding R — P(R) defined by a — 4, to be continuous.
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Thus, we would like a weaker metric, where more sequences converge. The problem with the
earlier two definitions is that they compare closeness of ;1(A) with v(A). But we must allow for
finite precision of measurement, meaning that we cannot be too sure if a number belongs to A or

is close to it. The next definition allows for this imprecision.

Definition 10

For p, v € P(R?), define the Lévy distance between them as (here 1 = (1,1,...,1))
d(u,v) == inf{u > 0: Fy(z +ul) +u > F,(2), F,(z+ul) +u > F,(z) Yz € R%}.

If d(pn, 1) — 0, we say that p,, converges in distribution or converges weakly to ¢ and write

L 4 p. [...breathe slowly and meditate on this definition for a few minutes...]

Although we shall not use it, in the same way one can define a metric on P(X) for a metric

space X (it is called Lévy-Prohorov distance). For p,v € P(X)
d(p,v) == inf{t > 0: p(AD) +¢ > v(A) and v(A®) + ¢ > p(A) for all closed A C X}.
Here A is the set of all points in X that are within distance ¢ of A. This makes it clear

that we do not directly compare the measures of a given set, but if d(u, v) < ¢, it means that

whenever p gives a certain measure to a set, then v should give nearly that much (nearly

means, allow ¢t amount less) measure to a t-neighbourhood of A.

.

As an example, if a,b € RY, then check that d(6,,8,) < (max; |b; — a;|) A 1. Hence, if a,, — a,

then d(d,,,,0,) — 0. Recall that §,,, does not converge to &, in Dy or Ds.

Let p, = %2221 Ok/n- Show directly by definition that d(un,\) — 0. Show also that
Dy (pn, ) — 0 but Dq(pn, A) does not go to 0.

The definition is rather unwieldy in checking convergence. The following proposition gives

the criterion for convergence in distribution in terms of distribution functions.

Proposition 17

L, KN p if and only if F},, () — F, () for all continuity points = of F),.

PROOF. Suppose fiy, 4 p. Let 2 € R? and fix u > 0. Then for large enough n, we have F,(z +
ul) +u > F,, (x), hence limsup F,, (x) < Fj,(x + ul) + u for all w > 0. By right continuity of F},,
we get limsup F),, (x) < F,,(x). Further, F, (z)+u > F,,(x—ul) for large n, hence liminf F, () >
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F,(z —u) for all u. If z is a continuity point of F),, we can let v — 0 and get lim inf F),, (z) > F},(z).
Thus F,, (z) = Fj(x).

For the converse, for simplicity let d = 1. Suppose F;,, — F at all continuity points of F'. Fix
any v > 0. Find 21 < 23 < ... <z, continuity points of F, such that z;;1 < z; + u and such that
F(z1) <wand 1 — F(x,,) < u. This can be done because continuity points are dense. Now use
the hypothesis to fix N so that | F},(z;) — F(x;)| < u for each i < m and for n > N. Henceforth, let
n > N.

If x € R, then either z € [z;_1,z;] for some j or else + < z; or x > ;. First suppose

x € [xj_1,2;]. Then
F(x +u) > F(z;) > Fu(zj) —u > Fy(z) —u, Fo(x +u) > Fy(xj) > F(z;) —u> F(z) —u.
If <z, then F(z +u) +u > u > F(x1) > F,(x1) — u. Similarly the other requisite inequalities,
and we finally have
F.(x 4 2u) +2u > F(z) and F(x + 2u) + 2u > F,(z).

Thus d(pp, 1) < 2u. Hence d(jip, ) — 0. [

Example 7

Again, let a,, — a inR. Then Fs, (t) = 1ift > a, and 0 otherwise while Fs,(t) = 1ift > a
and 0 otherwise. Thus, Fs, (t) — Fs,(t) for all ¢ # a (just consider the two cases ¢t < a and
t > a). This example also shows the need for excluding discontinuity points of the limiting

L distribution function. Indeed, Fj, (a) = 0 (if a, # a) but F;,(a) = 1.

Observe how much easier it is to check the condition in the theorem rather than the original
definition! Many books use the convergence at all continuity points of the limit CDF as the defini-
tion of convergence in distribution. But we defined it via the Lévy metric because we are familiar
with convergence in metric spaces and this definition shows that convergence in distribution in
not anything more exotic. On the other hand, giving the metric first is also misleading unless one
understands that there are several alternate definitions that we could have given (see exercise at
the end of the section), all of which give the same topology on P(R). The point to keep in mind is

that the topology, however you define it, is metrizable.

If a, — 0and b2 — 1, show that N(an,b?) -5 N(0,1) (recall that N(a,b?) is the Normal

distribution with parameters a € R and b* > 0).
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Question: In class, Milind Hegde raised the following question. If we define (write in one dimen-

sion for notational simplicity)
d'(p,v) =inf{t >0: F,(z +1t) > F,(z) and F,(z + t) > F,(z) for all z},

how different is the resulting metric from the Lévy metric? In other words, is it necessary to allow
an extra additive ¢ to F),(x +t)?

It does make a difference! Suppose (i, v are two probability measures on R such that p(Kp) = 1
for some compact set Ky and v(K) < 1 for all compact sets K. Then, if z is large enough so that
z > yforally € Ko, then F,(z +t) < 1 = Fj,(z) for any ¢ > 0. Hence, d'(u1,v) > t for any ¢
implying that d’'(p, v) = oc.

Now, it is not a serious problem if a metric takes the value co. We can replace d’ by d”(u,v) =
d'(u,v) N1 or d"(u,v) = d(p,v)/(1 + d(u,v)) which gives metrics that are finite everywhere
but are such that convergent sequences are the same as in d’ (i.e., d'(un, ) — 0 if and only if
d"(tn, pt) — 0).

But the issue is that measures with compact support can never converge to a measure without
compact support. For example, if X has exponential distribution and X, = X A k, then the
distribution of X}, does not converge to the distribution of X in the metric d’. However, it is indeed

the case that the convergence happens in the metric d. Thus the two metrics are not equivalent .

Here are other ways to have defined the Lévy metric. There is no natural way to choose
between these definitions, underlining the point made earlier that the value of the Lévy distance is
itself of no great significance, what matters is the topology, or which sequences converge to which
measure. In fact, the Kolmogorov-Smirnov and total variation distances are more meaningful (and

actually used!) when one really wants to measure distances.

In class T wrongly claimed that for probability measures on a compact set in place of the whole real line, eg.,
P([-1,1]), convergence in d’' and in d are equivalent. Chirag Igoor showed me the following counter-example. Let

1 = 61 and for each n define

0 ifx <0,
Fo(@)=qz/n if0<z<l,

1 ifx>1.

Then, Fy,(xz) — F,.(z) for each = and hence the corresponding measures converge to 1 in Lévy metric. But the conver-
gence fails in d'. To see this, take any = > 0 and observe that if F},(0.5 + t) > F},, (0.5), then we must have ¢ > 0.5. As
this is true for every n, it follows that y,, does not converge to ;2 in d’. Another such example is i, = (1—n")do+n""61

and p = do.
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Exercise 8

Show that each of the following is a metric that is equivalent to the Lévy metric (in the sense
that 1, — 1 in one metric if and only if in the others).
(1) inf{u > 0: F,(z + aul) + bu > F,(x), F,(z + aul) + bu > F,(z) Vz € R?} where
a,b > 0 are fixed.

) inf{u+v:u,v>0and F,(z +ul) +v > F,(2), F,(z +ul) +v > F,(z) Vz € R}.

Equivalent forms of convergence in distribution. We have given two equivalent definitions

of convergence in distribution. There are several others.

Theorem 18

Let pin, i € P(R?). The following statements are equivalent.
(1) pn S .
(2) Fy,(x) = F,(x) for all z where F), is continuous.
3) linrr_kioréf n(G) > p(G) for all open G C RY.

(4) limsup u,(C) < p(C) for all closed C' C R<.

n—o0

(5) [ fdun — [ fdp for all bounded continuous f : R — R.

\_

We have proved the equivalence of (1) and (2). It is also clear that (3) and (4) are equivalent
(just take complements). Hence it suffices to show that (2) = (3) = (5) == (2). For

simplicity, we present the proof in one-dimension.

PROOF FOR d = 1. Assume (2). Let G C R be an open set. Then write it as G = U (ay, bg).
Choose intervals (a}, b)) C (ax,bs) such that a}, b} are continuity points of F), and p(aj,b,) >

w(ag, by) — e27F (possible as there are at most countably many discontinuity points). Then
fin(ak, b)) = Fp, () = Fpu, (ap) = Fu(by) — Fu(ay,) = plag, by).
Hence liminf 1, (ax, by) > plag, by,) — 27 By Fatou’s lemma applied to sums, we see that

lim ianun(ak, br) > Z,u(ak, br) —e27F > u(G) —e.
k k

The left side is lim inf 1,,(G) and € > 0 is arbitrary, hence lim inf p,,(G) > p(G). This proves (3).
Assume (3) holds. Let f € Cy(R). Then {f > t} is an open set for any ¢ € R and hence
liminf p, {f >t} > p{f > t} by assumption. By Fatou’s lemma,

e}

lim inf /000 pn{f > thdt > /0 p{f > t}dt.
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If f > 0, then this is the same as saying liminf | fdu, > [ fdu. For general bounded continuous
f with M = ||f|lsup, apply this to the positive functions M — f and M + f to conclude that
[ fdpn — [ fdp.

Assume (5) holds. If z < y, let ¢, : R — [0, 1] be a continuous function such that ¢, , (u) =1
foru < z and ¢, ,(u) = 0 for u > y. Then

Fn(@) < [ Guadin < Fu). Fule) < [ pryi < Fult).
As [ @z ydun — [ oz ydp by assumption, we see that
limsup F),, (z) < F,(y), liminf F),, (y) > Fj,(x).
This is true for all z < y. Let y | z in the first inequality to get limsup F,, (x) < F),(z) for all z. Let

z 1 y in the second inequality to get liminf F}, (y) > Fj,(y—) for all y. Hence if x is a continuity
point of F},, we have lim F}, (z) = F,(x). [ |

As we have seen, u, LA p does not imply that p,(A) — p©(A) in general. Sometimes it does,

for example if A = (—oo, z] where p{z} = 0. Hereis a
Exercise 9

generalization.

Let A € B(R). If pp, 4 wand p(0A) = 0, then show that p,,(4) — p(A).

The dual of C.(R) is the space of all signed measures on R with finite total variation. These

are basically of the form 6 = p — v where p, v are mutually singular positive measures
and 6 acts on f by f — [ fdu — [ fdv. The dual norm is ||f]| = p(R) + v(R). Conver-
gence in weak-* sense in the dual space is defined by 6,, — 0 if 6,,(f) — 6(f) for all f (i.e.,
pointwise convergence of linear functionals), though we are being a little loose in talking
in terms of sequences (the dual with weak-* topology is generally not a metric space). That
is essentially the definition of weak convergence of probability measures (point (5) in the
theorem proved above), except that in this sense probability measures can converge to a
sub-probability measure. For example, 0.56y + 0.50,, — 0.50¢. But if we ask for 6,,(f) — 6(f)
for all f € Cy(R), a larger space, then this leakage of mass to infinity cannot happen. Mod-

ulo this point, convergence in distribution is just weak-* convergence.

2. Ways to prove convergence in distribution

We end the chapter by outlining different ways in which to prove convergence in distribution.
Suppose we need to show that 1, 4 L
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(1) The most elegant of all ways is to find random variables X,,, X on some probability space
such that X,, ~ u, and X ~ pand X,, 3 X. This will follow from later sections in this
chapter.

In fact, Skorohod’s principle tells us that this can always be done, although it is not

always clear how to find such random variables.

(2) Go by the book and show that [ fdu, — [ fdu for all f € Cy(R) or any of the other
equivalent conditions that were mentioned before. In practise, the smaller the class of
functions for which we need to check this convergence, the better it is for us.

For example, if we know that p,,, 1 € P(R), then it suffices to show that convergence
for f € C°(R). To see this, go back to the proof of (5) = (2) in the proof of Theorem ??2.
Observe that we can choose ¢, , to be smooth, even with bounded derivatives. The rest

of the proof remains the same.

(3) We shall later see that a surprisingly small class of functions suffices! Let e;(r) = ¢ for
t € R.If [eidpy, — [edpforallt € R, then puy, A . We shall prove this when we discuss

characteristic functions.

3. Compact subsets in the space of probability measure on Euclidean spaces

Often we face problems like the following. A functional L : P(RY) — R is given, and we
would like to find the probability measure ;o that minimizes L(;). By definition, we can find
nearly optimal probability measures p,, satisfying L(u,) — 2 < inf, L(v). Then we might expect
that if the sequence 1, (or a subsequence of it) converged to a probability measure 1, then  might
be the optimal solution we are searching for. This motivates us to characterize compact subsets of

P(R?), so that existence of convergent subsequences can be asserted.

Looking for a convergent subsequence: Let 1, be a sequence in P(R?). We would like to see if a
convergent subsequence can be extracted. Towards this direction, we prove the following lemma.

We emphasize the idea of proof (a diagonal argument) which recurs in many contexts.

Lemma 19: Helly’s selection principle

Let F), be a sequence distribution functions on R?%. Then, there exists a subsequence {n;}

and a non-decreasing, right continuous functon F : R? — [0, 1] such that F,,(z) — F(x) if

x is a continuity point of F.

As before, we present the proof in one-dimension (just for notational simplicity).
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PROOF. Fix a dense subset S = {x1,z2,...} of R. Then, {F,,(z1)} is a sequence in [0, 1]. Hence,
we can find a subsequence {n ;. };, such that F, , (x1) converges to some number a; € [0, 1]. Then,
extract a further subsequence {nz 1}, € {111}« such that F;,, , (z2) — a2, another number in [0, 1].

Of course, we also have F;,,, (z1) — ;. Continuing this way, we get numbers «; € [0, 1] and

2,k
subsequences {n1 %} O {n2x} O ...{nex} ... such that for each /, as k — oo, we have F,,,, (z;) —
a; foreach j < ¢.

The diagonal subsequence {n¢,} is ultimately the subsequence of each of the above obtained
subsequences and therefore, Fa,, (zj) = o as £ — oo, for each j. Henceforth, write n, instead of
ngp.

To get a function on the whole line, set F'(z) := inf{«; : j for which z; > z}. F'is well defined,
takes values in [0, 1] and is non-decreasing. It is also right-continuous, because if y,, | y, then for
any j for which x; > y, itis also true that x; > y,, for sufficiently large n. Thus lim,,,~ F'(yn) < a;.
Take infimum over all j such that z; > y to get lim,,,oc F'(yn) < F(y). Of course F(y) < lim F(y,)
as F'is non-decreasing. This shows that lim F'(y,,) = F'(y) and hence F is right continuous.

Lastly, we claim that if y is any continuity point of F, then F,,,(y) — F(y) as { — oc. To see

this, fix § > 0. Find 7, j such thaty — § < x; <y < z; <y + 6. Therefore
liminf F,,(y) > lim F,, (2;) = a; > F(y — 0)
limsup F, (y) < lim F,,(z;) = o < F(y +9).
In each line, the first inequalities are by the increasing nature of CDFs, and the second inequalities
are by the definition of F. Thus
F(y—) <liminf F,,(y) < limsup Fy,(y) < F(y)

forall y € R. If F(y—) = F(y), then it follows that lim F},,(y) exists and equals F'(y). [ ]

The Lemma does not say that F’ is a CDF, because in general it is not!

Example 8

Consider 9,,. Clearly F;, (z) — 0 for all « if n — 400 and Fj;, (x) — 1 for all z if n — —ooc.
Even if we pass to subsequences, the limiting function is identically zero or identically one,
and neither of these is a CDF of a probability measure The problem is that mass escapes to

infinity. To get weak convergence to a probability measure, we need to impose a condition

to avoid this sort of situation.

-
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Definition 11

A family of probability measure A C P(RY) is said to be tight if for any ¢ > 0, there is a
compact set K. C R such that u(K.) > 1 — ¢ forall u € A.

Example 9

d

Suppose the family has only one probability measure pi. Since [—n,n]¢ increase to R?, given
e > 0, for a large enough n, we have ([—n,n]?) > 1 — e. Hence {u} is tight. If the family is
finite, tightness is again clear.

Take d = 1 and let p,, be probability measures with F,,(z) = F(xz — n) (where F is a fixed

CDF), then {u,} is not tight. This is because given any [—M, M], if n is large enough,

n([—M, M]) can be made arbitrarily small. Similarly {é,} is not tight.

We now characterize compact subsets of P(R?) in the following theorem. As P(R?) is a metric
space, compactness is equivalent to sequential compactness and we phrase the theorem in terms

of sequential compactness.

Theorem 20

Let A C P(RY). Then, the following are equivalent.

(1) Every sequence in A has a convergent subsequence in P(R?).

(2) Ais tight.

PROOF. Let us take d = 1 for simplicity of notation.

(1) Assume that A is tight. Then any sequence (u,),, in A is also tight. By Lemma 19, there is
a subsequence {n;} and a non-decreasing right continuous function F' (taking values in
[0, 1]) such that F},,(z) — F(z) for all continuity points x of F.

Fix A > 0 such that p,,,[—A, A] > 1—¢ and such that A is a continuity point of F'. Then,
Fo,(—A) <eand F,,(A) > 1 — ¢ for every n and by taking limits we see that F'(—A) < ¢
and F'(A) > 1 —e. Thus F(4+00) = 1 and F(—o00) = 0. This shows that F' is a CDF and
hence F' = F), for some p € P(R?). By Proposition 17 it also follows that i, 4 L.

(2) Assume that A is not tight. Then, there exists ¢ > 0 such that for any £, there is some
pwr € A such that pp([—k,k]) < 1 — 2e. In particular, either F,, (k) < 1 — ¢ or/and

F, (—k) > €. We claim that no subsequence of (u); can have a convergent subsequence.

To avoid complicating the notation, let us show that the whole sequence does not
converge and leave you to rewrite the same for any subsequence. There are infinitely
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many k for which F,, (—k) > ¢ or there are infinitely many k& for which F),, (k) > 1 —e.
Suppose the former is true. Then, for any = € R, since —k < z for large enough k, we see
that F),, (z) > F),, (—k) > ¢ for large enough k. This means that if F},, converge to some
F' (at continuity points of F), then F'(x) > ¢ for all z. Thus, F' cannot be a CDF and hence

1. does not have a limit. |

Adapt this proof to higher dimensions.

4. Modes of convergence of random variables

Before going to the strong law of large numbers which gives a different sense in which S,,/n
is close to the mean of X, we try to understand the different senses in which random variables
can converge to other random variables. Let us recall all the modes of convergence we have

introduced so far.

Definition 12

Let X,,, X be real-valued random variables on a common probability space.

» X, % X (X,, converges to X almost surely) if P {w : lim X,,(w) = X (w)} = 1.

> X, 5 X (X, converges to X in probability) if P{|X,, — X| > 6} — 0 as n — oo for
any 6 > 0.

> X, 5 X (X, converges to X in L?) if | X,, — X ||, — 0 (i.e.,, E[|X,, — X|P] — 0. This
makes sense for any 0 < p < oo although || - ||, is a norm only for p > 1. Usually
it is understood that E[| X,|P] and E[| X |P] are finite, although the definition makes
sense without that.

> X, 4 x (X, converges to X in distribution) if the distribution of ;1 x,, LA 1x where
1 is the distribution of X. This definition (but not the others) makes sense even if

the random variables X,,, X are all defined on different probability spaces.

.

Now, we study the inter-relationships between these modes of convergence.

4.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli
random variables elucidates the matter.
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Example 10

Suppose A,, are events in a probability space. Then one can see that

1) 14, 50+ lim P(4,) =0,
n—oo

(2) 14, ¥ 0 < P(limsup 4,) = 0.
By Fatou’s lemma, P (limsup A4,) > limsup P(4,,), and hence we see that a.s convergence of
1,4, to zero implies convergence in probability. The converse is clearly false. For instance,
if A,, are independent events with P(4,,) = n~!, then P(A,) goes to zero but, by the sec-
ond Borel-Cantelli lemma P(limsup A,,) = 1. This example has all the ingredients for the

following two implications.

Suppose X,,, X are random variables on the same probability space. Then,

1) If X, “% X, then X,, 5 X.

(2) If X, 5 X “fast enough” so that ), P(|.X,, — X| > §) < oo for every § > 0, then
X, X,

-

PROOF. Note that analogous to the example, in general

1) X, 5 X < V5> 0, lim P(|X, — X| > 6) =0,

2) X, ™3 X <V >0, P(limsup{|X,, — X| > 6}) =0.

Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For
the second part, observe that by the first Borel Cantelli lemma, if P (|X,, — X| > J) < oo, then
P(]X,, — X| > di.0) = 0 and hence limsup | X,, — X| < § a.s. Apply this to all rational § and take

countable intersection to get lim sup | X;,, — X| = 0. Thus we get a.s. convergence. n

The second statement is useful for the following reason. Almost sure convergence X,, “3 0 is
a statement about the joint distribution of the entire sequence (X, X»,...) while convergence in
probability X, L, 0is a statement about the marginal distributions of X,,s. As such, convergence
in probability is often easier to check. If it is fast enough, we also get almost sure convergence for
free, without having to worry about the joint distribution of X,s.

Note that the converse is not true in the second statement. On the probability space ([0, 1], B, A),
let X, = 1y9,1/,)- Then X, “% 0 but P(|X,| > §) is not summable for any § > 0. Almost sure con-
vergence implies convergence in probability, but no rate of convergence is assured.
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(1) If X,, L X, show that X, “3 X for some subsequence.

(2) Show that X, L X if and only if every subsequence of {X,,} has a further subse-

quence that converges a.s.

3) If X, £> X and Y, 5) Y (all r.v.s on the same probability space), show that a.X,, +
bY, 5 aX +bY and X,.Y, 5 XY.

-

4.2. In distribution and in probability. We say that X, 4 X if the distributions of X,, con-
verges to the distribution of X. This is a matter of language, but note that X,, and X need not be on
the same probability space for this to make sense. In comparing it to convergence in probability,

however, we must take them to be defined on a common probability space.

Suppose X,,, X are random variables on the same probability space. Then,

1) If X, 5 X, then X,, % X.

(2) If X, % X and X is a constant a.s., then X, £ x.

PROOF.

(1) Suppose X, L X. Since for any 6 > 0
P(X, <t) <P(X <t+0)+P(X - X, >0)
and P(X <t—0)<P(X,<t)+P(X,—X >9),
we see that limsup P(X,, <¢) < P(X <t+¢)and liminf P(X,, <t) > P(X <t — ) for
any 6 > 0. Let ¢ be a continuity point of the distribution function of X and let § | 0. We
immediately get lim,_., P(X,, < t) = P(X < ). Thus, X, 5 X.

(2) If X = ba.s. (bis a constant), then the cdf of X is Fix(t) = 1;>. Hence, P(X,, <b—4§) — 0
and P(X,, < b+0) — 1forany ¢ > 0 as b=+ ¢ are continuity points of F'x. Therefore
P(|X, —b] >6) < (1—Fx,(b+6))+ Fx, (b—0) converges to 0 as n — co. Thus, X, B
|

If X, =1—-Uand X = U, then X, X but of course X, does not converge to X in
probability! Thus the condition of X being constant is essential in the second statement. In fact, if
X is any non-degnerate random variable, we can find X, that converge to X in distribution but
not in probability. For this, fix 7" : [0,1] — R such that T'(U) 2 X. Then define X, = T(1-U). For

50



all n the random variable X, has the same distribution as X and hence X, 4 X. But X, », does not

converﬁe in Erobabiliti to X (unless X is deienerate).

(1) Suppose that X, is independent of Y, for each n (no assumptions about indepen-
dence across n). If X, % X and Y, S Y, then (X,,,Y,) S (U, V) where U - X,
VZyandU ,V are independent. Further, a.X,, + bY,, 4 QU +bV.

2) If X, £ X and Y, Ly (all on the same probability space), then show that X, Y, A
XY.

-

4.3. In probability and in L”. How do convergence in LP and convergence in probability
compare? Suppose X, Bx (actually we don’tneed p > 1 here, but only p > 0 and E[| X,,— X |’] —
0). Then, for any ¢ > 0, by Markov’s inequality

P(|X, — X| > 6) < 6 PE[|X, — X|P] = 0

and thus X,, 5 X. The converse is not true. In fact, even almost sure convergence does not imply

convergence in L?, as the following example shows.

On ([0,1], B, \), define X,, = 2"1jg /). Then, X,, %2 0 but E[X}] = n~'2" for all n, and

hence X, does not go to zero in L? (for any p > 0).

As always, the fruitful question is to ask for additional conditions to convergence in proba-
bility that would ensure convergence in LP. Let us stick to p = 1. Is there a reason to expect a

(weaker) converse? Indeed, suppose X, L X Write

E[|X, — X|] = /OOO P(|X, — X| > )dt.

For each ¢ the integrand goes to zero because X, L X. Will the integral go to zero? The example
of X, = nly,1/, and X = 0 (on ([0, 1], B, \)) shows that it need not. What goes wrong in that
example is that with a small probability X, can take a very very large value and hence the expected
value stays away from zero. This observation makes the next definition more palatable. We put

the new concept in a separate section to give it the due respect that it deserves. This will
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5. Uniform integrability
Definition 13: Uniform integrability

A family {X;}ic; of random variables is said to be uniformly integrable if given any ¢ > 0,

there exists A large enough so that E[| X;[1x,|> 4] < e foralli € I.

A uniformly integrable family must be bounded in L'. To see this find A > 0so that E[| X;[1|x,5 4] <
1 for all i. Then, for any i € I, we get E[|X;|] = E[|X;|1x,|<a] + E[|Xi|1|x,>a] <A+ 1.

The converse is not true, as the example of X,, = nl[o’ 100 ([0, 1], B, \) shows. In this case, for
any A4, if n is large enough, then E[| X, |1, x, |- 4] = 1, hence the family is not uniformly integrable.

However, this just misses uniform integrability.

Example 12

A finite set of integrable random variables is uniformly integrable. More interestingly, an
LP-bounded family with p > 1 is u.i. For, if E[| X;|P] < M for all i € I for some M > 0, then

X \P 1
( 7 | Xl 11x,>¢ SFM

which goes to zero as t — oo. Thus, given ¢ > 0, one can choose t so that

E[|X;| 1|x,>¢] < E

sup;er E[| Xi|1)x,>¢] <e.

Exercise 13

| 4

If {Xi}ier and {Y}};cs are both w.i, then {X; + Y} (; jyerx is ui. What about the family of

products, {X;Y}} j)erxs?

Lemma 23

| 4

Suppose X,,, X are integrable random variables on the same probability space. Then, the

following are equivalent.

1) x, 5 x.

@) X, 5 X and {X,} is u.i.

PROOE. If Y, = X,, — X, then X,, % X iff Y, % 0, while X,, & X iff ¥, 5 0 and by the first
part of exercise 13, { X, } is u.i if and only if {Y},} is. Hence we may work with Y;, instead (i.e., we

may assume that the limiting r.v. is 0 a.s).



First suppose Y, 51) 0. We already showed that Y, Eo. 1 {Y,,} were not uniformly inte-
grable, then there exists § > 0 such that for any positive integer k, there is some n;, such that
E[|Y, |1y, j2¢] > 0. This in turn implies that E[|Y;,, || > . But this contradicts ¥;, % 0.

Next suppose Y, L 0and that {Y,}isu.i. Then, fixe > 0and find A > 0so that E[|Yy|1}y, > 4] <
¢ for all k. Then,

E(|Yi|] < E[Yi| Ly, <al + E[[Yi|1y, 5 4]

A
g/ PVl > t)dt + <.
0

Since Y, 5 0 we see that P(|Yx| > t) — O forallt < A. Further, P(|Yy| > ¢) < 1forall k and 1 is
integrable on [0, A]. Hence, by DCT the first term goes to 0 as k — oo. Thus lim sup E[|Y%|] < ¢ for
any ¢ and it follows that Y3, Lo [

Corollary 24

a.s.

1
Suppose X, X are integrable random variables and X,, = X. Then, X,, Ly X if and only

if { X, } is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT.
As shown by Lemma 23 and corollary 24, uniform integrability is the sharp condition, so it must
be weaker than the assumption in DCT. Indeed, if {X,,} are dominated by an integrable Y, then
whatever “A” works for Y in the u.i condition will work for the whole family {X,,}. Thus a

dominated family is u.i., while the converse is false.

5.1. Relationship to compactness. The definition of uniform integrability is reminiscent of

the definition of tightness. In fact, it can be recast in that fashion.

Given random variables X;, i € I on (2, F,P), define the measures y;(4) = [, | X;|dP and
letv; = ;0o X Z._l be the push-forward measure on R. Show that {X; : i € I} is uniformly
integrable if and only if the measures {v; : i € I} is tight.”

"We defined tightness for probability measures. Here we obviously mean that given e > 0 there is some M
such that v;([—M, M|°) < e foralli € I.

-

Tightness is the criterion for precompactness in the space of probability measures. Similarly,
uniform integrability is also related to a compactness question.

To explain this, recall that on a Banach space X, there is the norm topology coming from the
norm, and the weak topology induced by the dual space X* (it is the smallest topology on X
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in which every element of X* is continuous). In particular when X = LP(u) for a probability
measure 1, what are the compact sets in the weak topology?

For1 < p < oo, we know that LP and LY are duals of each other, where %4—% = 1. Therefore, the
weak topology on L? is the same as the weak* topology on L” when viewed as the dual of L?. By
the Banach-Alaoglu theorem, norm-bounded sets are pre-compact in the weak topology. Norm-
boundedness is clearly necessary, hence this gives a precise characterization for pre-compact sets
in L? with weak topology.

This argument fails for L!, since it is not the dual of a Banach space. The Dunford-Pettis theorem
asserts that pre-compact subsets of L! (1) in this weak topology are precisely uniformly integrable
subsets of L'().
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CHAPTER 5

Sums of independent random variables-I

1. Weak law of large numbers

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close
to 50. What do we mean by that, for after all the number of heads could be any number between
0 and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The
weak law of large numbers expresses precisely this.

Here and in the rest of the course S,, will denote the partial sum X; + ... + X,,. If we have

several sequences (X,), (V) etc., we shall distinguish them by writing S;X, S} and so on.

Theorem 25: Kolmogorov’s weak law of large numbers

Let X, X5 ... beiid random variables. If E[|X}|] < oo, then for any ¢ > 0,

P{‘isn—E[Xl]‘>5}—>0 asn — oo.

Let us introduce some terminology. If Y,,, Y are random variables on a probability space and
P{|Y, — Y| > 6} — 0as n — oo for every § > 0, then we say that Y;, converges to Y in probability
and write ¥, & V. In this language, the conclusion of the weak law of large numbers is that

1s, 4 E[X/] (the limit random variable happens to be constant).

PROOF. Step 1: First assume that X; have finite variance o2. Without loss of generality, let
E[X1] = 0 (or else replace X; by X; — E[X}]). By Chebyshev’s inequality, P(|n=1S,| > §) <
n~26~2Var(S,). By the independence of X;s, we see that Var(S,,) = no?. Thus, P(|22| > §) < ;—;
which goes to zero as n — oo, for any fixed 6 > 0.

Step 2: Now let X; have finite expectation (wWhich we assume is 0), but not necessarily any higher
moments. Fix n and write Xy = Yy, + Zx, where Y} := X;1,x,|<4, and Zy := Xx1|x,|> 4, for some
A, to be chosen later. Then, Y; are i.i.d, with some mean p,, := E[Y;] = —E[Z)] that depends on
A, and goes to zero as A,, — oco. Fix § > 0 and choose n( large enough so that |1, | < ¢ for n > ny.

As |Y1] < A, we get Var(Y;) < E[Y?] < A,E[|X1|]. By the Chebyshev bound that we used in

the first step,

néz - nd?
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If n > ng then |u,| < 6 and hence if [2SZ + p,| > 6, then at least one of Z1,..., Z, must be

non-zero.

{15

> 5} < nP(Zl 75 0)

= nP(’Xﬂ > An).
Thus, writing Xy, = (Yi — o) + (Zk + pn), we see that

Sh SY SZ
P{)n >25}SP{(;—M >5}+P{‘:+M >5}
AnE[[ X1]]
< — +nP(|X1] > Ay)
AE[IX4]]  n
é n52 + An [|X1| 1‘X1‘>An]

Now, we take A,, = an with a := §3E[|X;|]7!. The first term clearly becomes less than §. The
second term is bounded by a 'E[|X1| 1|x,|>an], which goes to zero as n — oo (for any fixed

choise of a > 0). Thus, we see that

n—oo

limsupP{‘Sn > 25} <6
n

which gives the desired conclusion. u

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to
say that Var(S)) = nVar(Y;) for which it suffices if Y; were uncorrelated. In particular, if
we assume that X; pairwise independent, identically distributed and have finite mean, then

the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with
density K(%HQ) Observe that E[| X |P] < oo for all p < 1 but not p = 1. It is a fact (we shall
probably see this later, you may try proving it yourself!) that 1.5, has exactly the same

distribution as X;. There is no chance of convergence in probability to a constant!

(3) The proof under finite variance assumption is the most useful one, as the minimality
of assumptions is less important than the strength of the conclusion. For example, if we
assume that X; have exponential moments, one can get the deviation probability to decay

exponentially. We shall see this later under the heading “concentration of measure”.

(4) If X}, are ii.d. random variables (possibly with E[|X;|] = c0), let us say that weak law of
large numbers is valid if there exist (non-random) numbers a,, such that %Sn — an £> 0.
When X; have finite mean, this holds with a,, = E[X].
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It turns out that a necessary and sufficient condition for the existence of such a,, is that
tP{|X| >t} — 0ast — oo (in which case, the weak law holds with a,, = E[X1|x|<y])-

Note that the Cauchy distribution violates this condition.

Find a distribution which satisfies the condition tP{|X| > ¢} — 0 but does not

have finite expectation.

2. Applications of weak law of large numbers

We give three applications, two “practical” and one theoretical.

2.1. Bernstein’s proof of Weierstrass’ approximation theorem.
Theorem 26: Weierstrass” approximation theorem

The set of polynomials is dense in the space of continuous functions (with the sup-norm

metric) on an interval of the line.

PROOF (BERNSTEIN). Let f € C]0,1]. For any n > 1, we define the Bernstein polynomials
Qi) = Sr_of (&) (Hp*(L — p)»*. We show that |Qs, — f|| — 0 asn — oo, which is
clearly enough. To achieve this, we observe that Q. (p) = E[f(n~'S,)], where S, has Bin(n, p)
distribution. Law of large numbers enters, because Binomial may be thought of as a sum of i.i.d
Bernoullis.

For p € [0, 1], consider X1, X», ... ii.d Ber(p) random variables. For any p € [0, 1], we have

B [r(3)] - [ < B [ (2) -0
=E, “f (i?) - f(p) |1|5;:l—p|g(5:| +Ep “f (%) — f(p) ‘1|s7?_p|>5}

@ <) + 2512, {| 2 - p| > o}

where || f|| is the sup-norm of f and w¢(d) := sup{|f(z) — f(y)|: |z — y| < } is the modulus of
continuity of f. Observe that Var,(X;) = p(1 — p) to write

Pp{‘%p‘>5}§p(l—p)< 1

nd2 T 462n’
S,

Plugging this into (2) and recalling that Q;,,,(p) = E,, [f (22)], we get

171
e | Q1) = F0) | S ws(0) + 55 -

Since f is uniformly continuous (which is the same as saying that w¢(é) | 0 as § | 0), given
any ¢ > 0, we can take 6 > 0 small enough that w;(0) < . With that choice of §, we can choose n
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large enough so that the second term becomes smaller than . With this choice of § and n, we get
1Qfn — fII < 2e. u

It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but
the Chebyshev bound. The main point is that the Bin(n, p) probability measure puts almost
all its mass between np(1 — 0) and np(1 + §) (in fact, in a window of width \/n around np).

Nevertheless, WLLN makes it transparent why this is so.

2.2. Monte Carlo method for evaluating integrals. Consider a continuous function f : [a, b] —
R whose integral we would like to compute. Quite often, the form of the function may be suffi-
ciently complicated that we cannot analytically compute it, but is explicit enough that we can
numerically evaluate (on a computer) f(z) for any specified x. Here is how one can evaluate the
integral by use of random numbers.

Suppose X1, X»,... are ii.d uniform([a,b]). Then, Y; := f(Xj) are also i.i.d with E[Y;] =
f; f(x)dz. Therefore, by WLLN,

1 b
P (‘ E;f(xk) - / fla)dz | > 5) Lo
Hence if we can sample uniform random numbers from [a, b], then we can evaluate 1 Y| f(Xy),
and present it as an approximate value of the desired integral!
In numerical analysis one uses the same idea, but with deterministic points. The advantage of
random samples is that it works irrespective of the niceness of the function. The accuracy is not
great, as the standard deviation of 2 3°7_, f(X}) is Cn~'/2, so to decrease the error by half, one

needs to sample four times as many points.

Since 7 = fol Hi%daz, by sampling uniform random numbers Xj; and evaluating

Ly ﬁ we can estimate the value of 7! Carry this out on the computer to see how

many samples you need to get the right value to three decimal places.

2.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such
as “do you support the war in Iraq?”. The poll may be conducted across continents, and one is
sometimes dismayed to see that the pollsters asked a 1000 people in France and about 1800 people
in India (a much much larger population). Should the sample sizes have been proportional to the

size of the population?
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Behind the survey is the simple hypothesis that each person is a Bernoulli random variable
(1="yes’, 0="no’), and that there is a probability p; (or ps) for an Indian (or a French person) to have
the opinion yes. Are different peoples” opinions independent? Definitely not, but let us make

that hypothesis. Then, if we sample n people, we estimate p by X,, where X; are i.i.d Ber(p). The

accuracy of the estimate is measured by its mean-squared deviation \/Var(X,,) = /p(1 — p)n*%.
Note that this does not depend on the population size, which means that the estimate is about as
accurate in India as in France, with the same sample size! This is all correct, provided that the
sample size is much smaller than the total population. Even if not satisfied with the assumption
of independence, you must concede that the vague feeling of unease about relative sample sizes

has no basis in fact...

3. Strong law of large numbers

If X,, are i.i.d with finite mean, then the weak law asserts that n=1S,, Lt E[X;]. The strong law

strengthens it to almost sure convergence.

Theorem 27: Kolmogorov’s strong law of large numbers

Let X, be i.i.d with E[|X1]|] < co. Then, as n — oo, we have

The proof of this theorem is somewhat complicated. First of all, we should ask if WLLN im-
plies SLLN? From Lemma 21 we see that this can be done if P (|n~1S,, — E[X;]| > §) is summable,
for every § > 0. Even assuming finite variance Var(X;) = 02, Chebyshev’s inequality only gives a
bound of 02§~2n~! for this probability and this is not summable. Since this is at the borderline of
summability, if we assume that pth moment exists for some p > 2, we may expect to carry out this
proof. Suppose we assume that oy := E[X}] < oo (of course 4 is not the smallest number bigger
than 2, but how do we compute E[|S,,|P] in terms of moments of X; unless p is an even integer?).

Then, we may compute that (assume E[X] = 0 without loss of generality)

E [Sﬁ] =n?(n—1)%0* + nay = O(n?).
Thus P (Jn=1S,| > §) < n~*6*E[S;] = O(n~?) which is summable, and by Lemma 21 we get the
statement of SLLN under fourth moment assumption. This can be further strengthened to prove

SLLN under the second moment assumption, which we first present since there is one idea (of

working with subsequences) that will also be used in the proof of the general SLLN'.

IThe idea of proving SLLN this way was told to me by Sourav Sarkar who came up with the idea when he was a

B.Stat student. I have not seen it any book, although it is likely that the observation has been made before.
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Theorem 28: SLLN under second moment assumption

a.s

— E[X;] asn — oo.

Let X,, be i.i.d with E[X?] < co. Then,

n
n

PROOF. Assume E[X] = 0 without loss of generality and let 02 = Var(X;). By Chebyshev’s
mequahty, P{|15,| >t} < 23 since Var(S,) = no®. Now consider the sequence n; = k*. The
bounds 2 tn7 are summable, hence by the first Borel-Cantelli lemma, we see that |, 1 Sh,.| < 6 for all
but f1n1tely many k, almost surely. If this even be denoted Ej, then P(Es) =1, hence Nscq. Es also
has probability one, which is another way of saying that nl—kSnk 3 0.

This can be applied to the i.i.d. sequence X, and the i.i.d. sequence X, (that two sequences
are not independent of each other is irrelevant) to see that
3) nlkU”k — E[X{] and nlkv"k — E[X[], as.
where U, V,, are partial sums of X" and X, respectively.

Now for any n, let k be such that n;, < n < ngy;. Clearly U, < U, < Uy,,,and V,, <V, <

k+1
Viugs1, since the summands are non-negative (a similar assertion is false for S,,, which is why we
break into positive and negative parts) Thus,
1
—U < U < —Un,,
Tk+1 n Nk

and the analogous statement for V. Now, nkH /ni — 1, hence rewriting the above as

ng ng+1 1
—U U < — ,
Ngping T g gy
we see that on the event in (3), we also have 2U,, — E[X[] and 1V,, — E[X[]. Putting these

together with the almost sure assertion of (3), and recalling that S,, = U,, — V,,, we conclude that
+Sn =¥ E[X{] — E[X[] = E[X)]. u

Now we return to the more difficult question of proving the strong law under first moment
assumptions. We give two proofs, one in this section and one in the next?.

In the first proof, we shall reuse the idea from the previous proof of (1) proving almost sure
convergence along a subsequence {n;} and then (2) getting a conclusion about the whole sequence
from the subsequence for positive random variables. However, since we do not have second
moment, we cannot use Chebyshev to take the sequence nj, = k? in the first step. In fact, we shall
have to take an exponentially growing sequence nj, = o, where a > 1. But this is a problem for
the second step, since nj11/nr — o whereas the proof above works only if we have nj;/n; — 1.

Fortunately, we shall be able to take « arbitrarily close to 1 and thus bridge this gap! As before,

’The proof given in this section is due to Etemadi. Most books in probability give this proof. The presentation is

adapted from a blog article of Terence Tao.
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using positive random variables is necessary to be able to sandwich §,, between S, and S, , ;.

This will also feature in the proof below.

PROOF OF THEOREM 27. Step 1: It suffices to prove the theorem for integrable non-negative ran-
dom variable, because we may write X = X, — X_ and it is true that S, = S;7 — S,; where
St =X+...+Xfand S, = X{ +... + X,,. Henceforth, we assume that X,, > 0 and
p = E[X;] < oo (Caution: Don’t also assume zero mean in addition to non-negativity!). One
consequence of non-negativity is that

Sny _ Sn _ Sn
4 —L L=< 2
( ) Ny = n = N
Step 2: The second step is to prove the following claim. To understand the big picture of the proof,

if Ny <n < Ns.

you may jump to the third step where the strong law is deduced using this claim, and then return

to the proof of the claim.

a.s.

Fix any A > 1 and define ny, := | \*]. Then, — E[X;]as k — oo.

Proof of the claim Fix j and for 1 < k < nj; write X}, = Y}, + Z where Y = X;1x,<n; and
Zy = Xk1x,>n,; (Why we chose the truncation at n; is not clear at this point). Then, let Js be large
enough so that for j > J;, we have E[Z;] < 4. Let S}{j =>7 Y, and Sfj = >0 | Zk. Since
Sn; = S}{j + Sfj and E[X] = E[Y1| + E[Z;], we get

S, sy SZ
P{‘ J—E[Xl]‘>26}§P B[y +\ J—E[Zl]‘>25
sy Sz
gP{ " E[Y] >5}+P{) ”J—E[Zl]‘>6}
n; n;
sy SZ
(5) gP{ Y B[YY] >6}+P{ nJ#O}.
n; ng

We shall show that both terms in (5) are summable over j. The first term can be bounded by

Chebyshev’s inequality
6 P Sy E[Y; o< Logpe L pix21

while the second term is bounded by the union bound
Sz
(7) P{TZL]#O} San(Xl >7’Lj).
J
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The right hand sides of (6) and (7) are both summable. To see this, observe that for any positive z,

there is a unique & such that n;, < x < ng1, and then

o0

1 1 c- L
@ Yl <2 Y HEOn B Ynlen <Y V<00
j=1 " j=k+1 J=1 J=1

Here, we may take C\ = ﬁ, but what matters is that it is some constant depending on A (but not
on x). We have glossed over the difference between |\ | and A/ but you may check that it does
not matter (perhaps by replacing C with a larger value). Setting x = X in the above inequalities
(a) and (b) and taking expectations, we get

> nle[X121X1<nj] <GE[X)]. ) nP(X;)>ny) < CE[X).

j=1 j=1

As E[X] < oo, the probabilities on the left hand side of (6) and (7) are summable in j, and hence it

also follows that P { iﬁ — E[X;] ‘ > 20 } is summable. This happens for every 6 > 0 and hence
J
S’n i a.S.

Lemma 21 implies that T E[X;] a.s. This proves the claim.

Step 3: Fix A > 1. Then, for any n, find k such that N < n < A1 and then, from (4) we get

1 S. S
—E[X;] < liminf — < limsup — < AE[X}], almost surely.
A n—oo M n—oo N

Take intersection of the above event overall A =1+ 1, m > 1to get lim % = E[X{] a.s. [ |
n—oo

4. Another proof of the SLLN via a maximal inequality

Here we give another proof of the SLLN, much shorter and involving hardly any technicali-

ties®. But the techniques used in the first proof are useful and worth keeping in mind.

Lemma 30: A maximal inequality

Let X}, beii.d. random variables with finite expectation. Then, for any ¢ > 0,

1 1
P {sup —Sn > t} < -E[|X4]].
n N t

The proof will assume that we know the SLLN for bounded i.i.d. random variables. Indeed,
we do know a simple proof under the fourth moment assumption by a direct application of the

first Borel-Cantelli lemma.

3Sauditya Jaiswal suggested that we could prove the SLLN on these lines, using the maximal inequality. When he
asked me about it, my first response was that we shall see this proof when we study reverse martingales. That is true,
but then I found that Michael Steele has a beautiful exposition (Explaining a mysterious maximal inequality—and a path to
the law of large numbers. Amer. Math. Monthly 122 (2015), no. 5, 490-494.) that gives an elementary proof of the maximal

inequality and deduces the SLLN from it. It seems nice enough to include here.
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PROOF OF SLLN ASSUMING LEMMA 30. Fix A > 0 and define Y,, = Xnlx,|<a and Z, =
Xnlix,|>A4, 80 that X,, =Y, + Z,, and S;f = S}; + Sf . The two sums can be controlled separately

as follows.

(1) 15Y “% E[X1,x, <] by the SLLN for bounded random variables
nen | X1]< y

(2) For any € > 0, by Lemma 30,

—_

1 1
P {limsup —8Z > E} <P {sup HST% > E} < EEUX1’1|X1|>A}
n n

Putting these together, we have

X Y z
lim sup — < limsup —/* + lim sup —~
n—oo N n—oo N n—soo N

<E[Xilx<al te wp. >1- %E[|X1|1\X1\>A]-
Now let A — oo and then ¢ | 0 (and note that E[X11|x,<4] — E[X1] and E[X11|x,|54] — 0
by DCT) to get limsup % < 0 a.s. Applying the same to —X; gives lim inf % > 0 a.s. Hence
Sn T EX). |

n

It remains to prove the maximal inequality.

PROOF OF LEMMA 30. Define
M, = maX{O,Xl,Xl 4+ X9, ..., X1+ ... —i—Xn},
M,/L = maX{O, X0, Xo+ X3,..., X0+ ...+ Xn+1}.
Observe that these quantities are positive. On the event {),, > 0}, we can drop the zero from the

maximum and write
M, = maX{Xl,Xl + Xo,..., X1+ ... —l—Xn}
= X1 + max{0, Xs,..., Xo+ ... + X, }

Hence, M,, — M} < X; on the event M,, > 0. On the event M,, < 0 we have the trivial bound
M,, — M, <0 (since M), > 0 anyway). Putting them together, M,, — M} < X;1, 0.

If X}, are i.i.d. with finite mean, we have M, 4 M, and hence have the same expectation
(check that E[M,,] exists). Hence E[X11,/,>0] > 0.

Fix t > 0 and apply this to X; — ¢ to get E[(X; — t)1,>¢] > 0 which implies that

1
P{M, >t} < JE[X)].
Let n — oo and note that M,, 1 sup S—n" to get the statement of the Lemma. |
n
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5. Beyond the law of large numbers

There are multiple ways in which we can go beyond the laws of large numbers. Here are some

important ones that we shall not be going into in great detail (but will touch upon some).

rom Chebyshev inequali =Sy, —p| >} = n) under second moment assump-

1) From Chebyshev inequality P{|15 > 6} =0(1 d d t p
tion. If we assume more on the random variables, can we improve the estimate? The best
sort of estimate one can hope for in general are of the form e~%". These questions come

under the topic of concentration of measure.

(2) In the cases where we get bounds such as e~%", one could ask for explicit form of c;.
Since the inequality was written to be valid for all n, one may be forced to choose small
cs to take care of small values of n. Something more fundamental may result from asking
the inequality for large n. In other words, we ask for I; so that e "(5+IP{|1 5, — | >
6} < e ™57 for any e > 0 and for large enough n (how large depends on ¢). These

questions come under the topic of large deviation theory.

(3) In the previous points 6 > 0 was fixed, which means that the deviation of S,, from n is
of the order of n. What kinds of bounds can one get for P{|S,, — nu| > nP} forp < 1? As
the standard deviation of S, is of the order of \/n, it makes sense to take p > % These

questions are often called moderate deviations.

(4) While SLLN says that %Sn 232 0 (when E[X;] = 0), what happens if we divide by some-
thing less, such as n%%? For any a,, 1 0o, by Kolmogorov’s zero-one law one can see that
lim sup,,_, 5"

o is a constant random variable. If this constant is zero, then a,, is too large,
if the constant is oo then a,, is too small. Could we find a,, so that the constant is 1? It
turns out that the right answer is a,, = y/2nloglogn (when X; have zero mean and unit
variance), hence the relevant results is called the law of iterated logarithm.

More generally, whenever we have a sequence of random variables ¢, “% 0, one can

ask for numbers b,, T oo so that lim sup b,&, = 1.

Of course there are many other directions, such as relaxing the assumptions of identical distribu-
tion or independence. But they are not well-suited to cover in class and we ignore such questions
entirely. Instead, in this section we work out detailed estimates for the special case of Bernoulli

random variables, answering the above questions in detail.

5.1. Bernoulli random variables. Let X; bei.i.d. Ber(1/2) random variables. Then S,, has the

transformed Binomial distribution

pu(k) = P{S, = k} = <Z>21“ 0<k<n.
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By Stirling’s formula, we have the following estimate when n as well as k£ and n — k are large:

n"te
Pn k) ~
(k) ke (n — k) ka2
W /i
C2MER(n — k)R \or\/k(n — k)
NZD { [ k. k n—k_  n-— k] }
= e —n |log2 + —log — + lo
V2m\/k(n — k) P & n o tn n 8 n
— \/ﬁ efnl(k/n)
V2my/k(n — k)

where I(z) = log2+zlogz+ (1 —x)log(l—x) for z € [0, 1] (with the interpretation that 0log 0 = 0,
by continuity). is called the Shannon entropy function. The precise meaning of the approximation
in the first line is that given ¢ > 0, there exist V and K such thatforalln > Nand K <k < N—-K,

we have

(8) (12\_/?‘;5) e—nl(kz/n) < pn(k) < (1 _|_€)e—nl(k/n)‘

where we used the fact that k(n — k) is largest when k = n/2 and smallest when k£ = 1 (we anyway
have k > K) to to simplify the form of the bounds.

The properties of = — I(z) play a key role in the estimates for the probabilities. It is symmetric
about x = 1/2, attains its minimum value of 0 uniquely at z = 1/2, is convex, and is bounded

between the parabolas 2(z — 3)? < I(z) < 3(z — 3)?for0 <z < 1.

Large deviations: If x > %, then take ¢ = 1/2 (or any fixed number in (0, 1)) and use (8) to get

1 —nl(x)
P{S, > nz} > pp([nzx]) > —4\/56 ,
P{S, > na} = Z pn(k) < ne @),

k>nx
In the second line, we bounded all terms by the largest one (i.e., p,([nx]) and used the fact that
I(z) is increasing on [1/2,1]. As I(z) > 0 for z > 3, the polynomial factors outside are negligible
compared to the exponential term and we can simply write P{S,, > nz} ~ ¢ ™(®) in the sense
that

o1
nh_}ngo - log P{S,, > nz} = —I(x).

This is the statement of the large deviation principle for Bernoullis.

Concentration inequalities: From the estimate above and the fact that I(z) > 2(z — 3)?, we get

1

P{Sn > na:} < ne_nl(m) < ne—2n(m_§)2
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FIGURE 1. Graph of the function = — I(z)

We can get rid of the polynomial factor below and rewrite this as
P{S, > nx} < CLe2—oIm(@—3)?

for any ¢ > 0 and C. < oo (required to take care of the case of small ). With more care, one can

derive the following inequality of Bernstein

P{S, > nz} < 9¢~2r=3)?

6. The law of iterated logarithm

If a,, 1 oo is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup *2—:
is constant a.s. What is this constant?

If X; have finite mean and a,, = n, the strong law tells us that the constant is zero. What if
we divide by something smaller, such as n® for some a < 1? To probe this question further, let us
assume that X; are i.i.d. Ber+(1/2) random variables. Then using higher moments (just as we did
in proving strong law under fourth moment assumption), we can get better results. For example,
from the fact that E[S}] = n + 3n(n — 1) (check!), we can see that lim sup f—: = 0 a.s. if a, = n®

with a > 3. More generally, we reason as follows. For a positive integer p,
P{S, >t} <E[SPI,* < CynPt,™
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where we used the fact that E[S%p | < Cpn® for a constant C),. Assuming this, we see that if ¢, = n®
with @ > 1, then we can choose a p large enough to make the probabilities summable. By Borel-
Cantelli it follows that n=S,, 3 0 as n — oc.

To see that E[S2”] < C,n?, expand S2¥ as a sum of monomial terms X* ... X where k; are
non-negative integers that sum to 2p. When we take expectations, this factors as E[X f ... E[Xn].
If any k; is odd, then the product is zero. If all k;s are even, the product is 1. We need to count the
number of monomials of the latter type: Since each £; is even, there are at most p of them that are
not zero. The subset of such indices can be chosen in (Z) < nP ways. Once the indices are chosen,
the number of monomials are at most the number of ways to distribute 2p balls into p bins. Let
this number be C),. With all the overcounting, we still get E[Sﬁp | < CpnP, as claimed.

Instead of using moments, one may use Hoeffding’s inequality to see that lim sup f—z =0
even if a,, = h,+/nlogn for any sequence h, — oo. In the converse direction, one can show that
lim sup % = 400, a.s. (let us accept this without proof for now). This motivates the question of
what is the right order of (limsup) growth of S,,? In other words, we want a deterministic sequence
a, such that limsup S, /ay, is finite and strictly positive. Since the lim sup is a constant a.s., we can

scale by that and reformulate the question as follows.

Su _

an

The sharp answer, due to Khinchine is one of the great results of probability theory.

Question: Let X; be i.i.d Bery(1/2) random variables. Find a,, so that lim sup 1las.

Theorem 31: Khinchine’s law of iterated logarithm

Let X; be i.i.d. Bery(1/2) random variables. Then,

lim sup - =1la.s.

n—oo V2nloglogn

By symmetry, the liminf of S,,/v/2nloglogn is equal to —1 almost surely. From these two, one
can also deduce (since the difference between successive terms is 1/+/2nlog log n that goes to zero)
that the set of all limit points of the sequence {S,,/v/2nloglogn} is equal to [—1, 1], almost surely.

The law of iterated logarithms was extended to general distributions with finite variance by
Hartman and Wintner (with intermediate improvements by Kolmogorov and perhaps others).
Here we only prove the theorem for Bernoullis (the general case is more complicated and a clean

way to do it is via Brownian motion in the next course).
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Result 32: Hartman-Wintner law of iterated logarithm

Let X; be i.i.d. with mean p and finite, non-zero variance 0. Then,

. Sn —np
lim sup

n—oo 0y/2nloglogn

=1a.s.

7. Proof of LIL for Bernoulli random variables

Let X1, Xo,... beiid. Ber+(1/2) random variables. Theorem 31 follows from the following
two statements. For any 6 > 0, we have

n

9 li —— <1445 a.s.
& lfisolip v2nloglogn — o as
(10) lim sup S >1-46 a.s.

n—oo v2nloglogn —
Taking intersection over countably many values of §, e.g., § = 1, k > 1, we get the statement of

LIL. To motivate the principal idea in the proof, consider the following toy situation.

Example 13: Borel-Cantelli after blocking

Let B, be events in a probability space and let A} = By, Ay = A3 = By, Ay = A5 = A¢ = B3
and so on (n many A;s are equal to B,,). To show that only finitely many A,s occur a.s., if we
apply Borel-Cantelli lemma to A, s naively, we get the sufficient condition )  nP(B,,) < occ.
This is clearly foolish, as the event {A4,, i.0.} is the same as { B, i.0.}, and the latter has zero

probability whenever > P(B,,) < oo, a much weaker condition!

What this suggests is that when we have a sequence of A,,s and want to show that P{4,, i.0.} =
0, it may be good to combine together those A;s that are close to each other. For example, we can
take a subsequence 1 = n; < ny < ... and set Cj, to be the union of A,s with n;, < n < ngyq. If
only finitely many Cjs occur, the only finitely many A,s occur, and thus it suffices to show that
> 1 P(Ck) < co. The naive union bound P(Cy) < > "1 P(A,) takes us back to the condition

n=ng

>, P(A,) < oo, but the point is that there may be better bounds for P(C},) than the union bound.

PROOF OF THE UPPER BOUND (9). Write a,, = v/2n log log n. We want to show that only finitely
many of the events A,, = {S,, > a,(1 + J)} occur, a.s. We use blocking as follows. Fix A > 1 and

set n; = | \¥]. Define the events

nk+171
Cy = U Ap = {Sn > an(1+9) forsome ny <n < ngi1},
n=nig
nk+1—1
D, = U A, ={Sy > an, (1 +9) for some ny < n < ngi1}.
n=nj
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Then Cj, C Dy, as ay, is increasing in n. Thus if we show that >, P(Djy) < oo, it follows that only

finitely many C), occur a.s. and hence only finitely many A,, occur a.s. We claim that
(11) P(Dy) < Ok~ F0/X Where €y < oo for any \ > 1.

Granting this, it is clear that choosing 1 < A < (1 + §)? ensures summability of P(D;). We give
two proofs of the inequality (11) below, which completes the proof. [

Proof of (11) via the reflection principle: The following lemma is of interest in itself and useful.

Lemma 33: Reflection principle/Ballot problem

Let X} beii.d. Ber+(1/2) random variables. Then for any integer a > 0, we have
2P{S,, > a} < P{max{Sy,..., S} > a} <2P{S, > a}.

Equality holds if n and a have opposite parity.

Chapter-3 of Feller’s vol-1 is highly recommended for more such beautiful combinatorial facts

about simple symmetric random walks.

PROOE. Break the event max{Sy,...,S,} > a as a union of pairwise disjoint events
A, ={So<a,...,S,1<a,Sg,=a}, k=1,...,n.
By the symmetry of S,, — S, and its independence from Ay,
P({S, >a} N Ar) =P({S, — S >0} N Ay)
(12) = P{S, — S > 0/P{A} > P(4y)

Sum over k. On the right we get 1P{max{S,...,S,} > a} while on the left we get P{S, > a}
(since {S,, > a} C A; U...U A,). Hence the second inequality is proved. To prove the first

inequality, using the same idea, write
P({S, >a}nNAy) =P{S,— S >0} N Ag)
1
(13) =P{S, = Sp > 0}P{A;} < JP(4).

Add up over k to get 2P{S,, > a} < P{max{So,...,S,} > a}.
If n has the opposite parity, then P{S,, = a} = 0, hence all three probabilities in the statement
are equal. [
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Returning to the proof of (11), if Dy, occurs, then there is some n < njy; (in fact some n > ny)

such that S, > a,, (1 + §). The reflection principle in Lemma 33 applies to give the bound

P(Dk) < 2P{Sﬂk+1 > ank(l + 5)}
_(46)%af,
<2e *+1  (by Hoeffding’s inequality).
The exponent is (omitting integer part for simplicity of notation)

(14 0)?2\*loglog A\* (1 +6)?
I Nk+1 - Y
from which (11) immediately follows. |

(14)

log(klog A)

Proof of (11) via the modified Markov inequality (2): Let X} = Z”’““_l 18, >a,, (148), SO that Dy,

n=ng

is the event that X, > 1. Apply the strengthened form of Markov’s inequality (2) to write

_ E[X}]
P(D;) =P{X;, > 1} < WXZEH

What we need is an upper bound for the numerator and a lower bound for the denominator.

To get an upper bound for E[X}], use Hoeffding’s inequality to write

np41—1 . | ) )
a; (1496
B = 3 PS> an(40)< 3 exp {_<2n>}
="k n=ny,
a2 (1+6)?
< (Mg — nk) €xp {—162()}
Tk+1

where we bounded all terms by the largest one (which is the last one).

Next we claim that ¢(ng+1 — ny) (for some ¢ > 0) is a lower bound for E[X}, ‘ Xy > 1]. The
heuristic idea is that if X, > 1, there is some (random) N € [ng, ng+1) for which Sy > ay, (1 + 9).
If we fix that N and regard it as given, then S,, — Sy has a symmetric distribution about 0 for any
n, hence P{S, — Sy > 0} > %, which would imply that E[X}, | X} > 1] > %(nk_l,_l — ng). This
reasoning is faulty, as the way we choose N (which is a random variable) may invalidate the claim
that S,, — Sy has a symmetric distribution.

To make the reasoning precise, write X, = Yj + Z;, where Y}, is the number of n in the first half
of the interval [ny, ng41) for which S,, > ay,, (14 6) and Zj, is the analogous number for the second

half of [nk,nkﬂ). Then Xlekzl > %(Ykle21 + Zklyk21) and {Xk > 1} - {Yk > 1} @] {Zk > 1}.
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Consequently,

EXilx>1]  1EYilzo] + E[Z) 1y >1]
1 i BNz 1] ElZly, ]

2

1

E[X) | Xz > 1] =

P{Z, > 1} P{YV; > 1}
= S min{E[Y; | Z > 1), E[Z¢ | Vi > 1]},

a+b

. ra b . .
org = min{%, 7} valid for any non-negative

In the second line we used the elementary inequality
numbers a, b, ¢, d. Now consider the second term inside the minimum. Since Y}, > 1, condition on
the location N in the first half of [ny, ng+1) where S,, > ap, (1 + ) and use the fact that S,, — Sy,
n > N, is still a simple symmetric random walk, and hence for any n in the second half, has
probability 1/2 or more to be non-negative. Therefore, E[Zj, | Y}, > 1] > %(nj41 — ng). Similarly
(considering the random walk in backwards direction starting from n;_ 1), reason that E[Y}, | Z;, >
1] > %(nk+1 — ng). Putting all this together, E[X}, | X, > 1] > %(nk_l’_]_ — ng).
Thus,

aik(1+5)2
(Pg41 — n) €xp T Tone a7, (148
< 86_ 2np41

P(Dy) <

é(nkﬂ — ng)
By the computation shown in (14), this is of the form given in (11). |

7.1. Proof of the lower bound (10). Again we choose a subsequence nj, = | \¥], the difference

being that we shall choose A to be a large constant in the end. It suffices to show for any ¢ > 0 that
(15) P{S,, > (1 —-2d)ay, i0.} =1

where a,, = v/2nloglogn as before. By the upper bound and the symmetry of S,,, we know that
almost surely, Sy, > —2ay,, for all but finitely many k. Also, ay, < an,,,/VA, hence

2
ﬁankﬂ

for all but finitely many k, a.s. Therefore, (15) follows if we choose A > 4/§2 and show that

S

Nk+1

an _Snk_

k41

P{S

nesr — Snp = (1 =0)ap, ., io.} =1
These events are independent across k, and hence a good lower bound on the individual proba-
bilities is sufficient. The one given below in Claim 34 gives

1—94§ 2a2
P{5 — Sy 2 (1- 6)ank+1} > V2 exp {_HW}

Ras 7T(’I7,].H_1 — nk) 2(nk+1 - nk)

V2 { (1— 6)2loglog nkﬂ}
= m exXp — 1_ 1
\/ﬁnk+1(1 -3) )



Claim 34: An estimate for binomial coefficients

If n, k — oo in such a way that |k — 3n| < n%/3, then
n 1 \/§ Jgj
—_— (&4 n.,

”?H“ 2n /1

1 k2
P{S, >k} > e 35

In particular, for such k, we have

-

In a basic probability class you may have seen the de Moivre-Laplace theorem that compares
binomial coefficients to the Gaussian density. This one is almost the same, except that in the de
Moivre-Laplace theorem one only needs k£ = %n + zv/n with fixed x, while here we allow z to
grow like O(n'/%).

PROOF. The first one is just by Stirling’s approximation. n

8. Random series with independent terms

In law of large numbers, we considered a sum of n terms scaled by n. A natural question is
to ask about convergence of infinite series with terms that are independent random variables. Of

course Y X, will not converge if X; are i.i.d (unless X; = 0 a.s!). Consider an example.

Example 14

Let ay, be i.i.d with finite mean. Important examples are a,, ~ N (0, 1) or a,, = £1 with equal
probability. Then, define f(z) = ), anz™. What is the radius of convergence of this series?
From the formula for radius of convergence R = (lim SUDP, o0 \an]%) s easy to find
that the radius of convergence is exactly 1 (a.s.) [Exercise]. Thus we get a random analytic

function on the unit disk.

\

Now we want to consider a general series with independent terms. For this to happen, the in-
dividual terms must become smaller and smaller. The following result shows that if that happens

in an appropriate sense, then the series converges a.s.

Theorem 35: Khinchine

Let X,, be independent random variables with finite second moment. Assume that E[X,,] =

0 for all n and that ) Var(X,,) < co. Then }_ X,, converges, a.s.

72



PROOF. A series converges if and only if it satisfies Cauchy criterion. To check the latter,

consider N and consider
(16) P (]S, — Sn| > dforsomen > N) = liﬁm P (|S, — Sn| > d forsome N <n < N +m).

Thus, for fixed N, m we must estimate the probability of the event § < maxj<i<m |Sn4+r — Sn|.
For a fixed k we can use Chebyshev’s to get P(§ < [Syir — Sn|) < 6 2Var(Xy + Xyt + ... +
XnN4+m). However, we don’t have a technique for controlling the maximum of |Sy 41 — Sn| over
k =1,2,...,m. This needs a new idea, provided by Kolmogorov’s maximal inequality below.

Invoking 10, we get

N+m o)
P (1S, — Sy| > dforsome N <n<N+m) <52 ) Var(Xy) <52 Var(Xp).
k=N k=N

The right hand side goes to zero as N — oo. Thus, from (16), we conclude that for any 6 > 0,
lim P (|S, — Sny| > d for somen > N) = 0.
N—o0

This implies that lim sup S,, — liminf S,, < § a.s. Take intersection over 6 = 1/k, k = 1,2... to get

that S,, converges a.s. [ |

What to do if the assumptions are not exactly satisfied? First, suppose that ), Var(X,,) is finite
but E[X,,] may not be zero. Then, we can write > X,, = > (X,, — E[X,,]) + > E[X,,]. The first
series on the right satisfies the assumptions of Theorem 35 and hence converges a.s. Therefore,
> X, will then converge a.s if and only if the deterministic series ) |, E[X,,] converges.

Next, suppose we drop the finite variance condition too. Now X, are arbitrary independent
random variables. We reduce to the previous case by truncation. Suppose we could find some A >
0 such that P(|X,| > A) is summable. Then set Y;, = X,,1|x, |<4. By Borel-Cantelli, almost surely,
X, =Y, for all but finitely many n and hence ) X,, converges if and only if )Y, converges.
Note that Y;, has finite variance. If > E[Y,] converges and ), Var(Y},) < oo, then it follows from
the argument in the previous paragraph and Theorem 35 that ) Y;, converges a.s. Thus we have

proved

Theorem 36: Kolmogorov’s three series theorem - part 1

Suppose X, are independent random variables. Suppose for some A > 0, the following
hold with Yn = Xn]_‘angA.

(@) Y P(|Xn| > A) <oco. (b)) > E[Y;]converges.  (c) ¥ Var(¥y) < oc.

Then, )", X,, converges, almost surely.
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Kolmogorov showed that if ), X,, converges a.s., then for any A > 0, the three series (a),
(b) and (c) must converge. Together with the above stated result, this gives a complete and sat-
isfactory answer, as the question of convergence of a random series (with independent entries) is

reduced to that of checking the convergence of three non-random series! We skip the proof of this

converse implication.
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CHAPTER 6

Sums of independent random variables - II

1. Central limit theorem - statement, heuristics and discussion

If X; are i.i.d with zero mean and finite variance o2, then we know that E[S2] = no?, which can
roughly be interpreted as saying that S,, ~ y/n (That the sum of n random zero-mean quantities
grows like \/n rather than n is sometimes called the fundamental law of statistics). The central limit
theorem makes this precise, and shows that on the order of \/n, the fluctuations (or randomness)
of S,, are independent of the original distribution of X;! We give the precise statement and some

heuristics as to why such a result may be expected.

Theorem 37: Central limit theorem for i.i.d. variables

Let X,, be i.i.d with mean p and finite variance o%. Then, SZ:/%“ 4N (0,1).

Informally, letting Z denote a standard Normal variable, we may write S,, ~ nu + o/nZ.
More precisely, P{S,, < nu+ov/nt} — P{Z <t} for any ¢t € R. This means, the distribution of S,,
is hardly dependent on the distribution of X; that we started with, except for the two parameters
- mean and variance. This is a statement about a remarkable symmetry, where replacing one
distribution by another makes no difference to the distribution of the sum. This feature that the
behaviour of a large yet random system does not depend on the details of the microscopic parts
that go into building it, is called universality and is a major theme of modern probability.

In the rest of the section, we discuss various aspects of the theorem, and in later sections we

give proofs of this and even more general central limit theorems.

Why scale by /n? Without loss of generality, let us take ¢ = 0 and o2 = 1. First point to note is
that the standard deviation of S,,/y/n is 1, which gives hope that in the limit we may get a non-
degenerate distribution. Indeed, if the variance were going to zero, then we could only expect the
limiting distribution to have zero variance and thus be degenerate. Further, since the mean is zero
and the variance is bounded above, it follows that the distributions of S,,//n form a tight family.

Therefore, there are at least subsequences that have distributional limits.

Why Normal distribution? Let us make a leap of faith and assume that the entire sequence
Sy/+/n converges in distribution to some Y. If so, what can be the distribution of Y? Observe
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that (2n)_%52n %y and further,
X X . _ .
1+ X3+ +X2"1i>y, Xo+ X4+ +X2"i>y_
Vn NLD

But (X1, X3,...) is independent of (X5, X4, ...). Therefore (this was an exercise earlier), we also

get

<X1+X3+...+X2n1 Xo+Xy+...+ Xy,
vn ’ vn
where Y7, Y5 are i.i.d copies of Y. But then, (yet another exercise), we get
Son _ 1 <X1+X3+...+X2n1 N X2+X4+...+X2n) q Yi+Y,
Vono V2 Vn Vn V2
Thus we must have Y; + Yy < V2Y. If Yy ~ N (0,02), then certainly it is true that Y; + Y» 4.2y,
We claim that N(0,0?) are the only distributions that have this property. If so, then it gives a

> 4 M, ")

strong heuristic that the central limit theorem is true. The claim itself is not trivial, we discuss it in

the section on the Gaussian distribution.

Justification by examples: Assuming that S,,/+/n has a distributional limit, we have justified that
the limit must be Gaussian. There are specific examples where one may easily verify the statement
of the central limit theorem directly (indeed, that was how the theorem was arrived at).

One is of course the Demoivre-Laplace limit theorem (CLT for Bernoulli random variables),
which is well known and we omit it here. We just recall that sums of independent Bernoullis
have binomial distribution, with explicit formula for the probability mass function and whose
asymptotics can be calculated using Stirling’s formula.

Instead, let us consider the slightly less familiar case of exponential distribution. If X; are i.i.d

Exp(1) so that E[X] = 1 and Var(X;) = 1. Then S,, ~ Gamma(n, 1) and hence S"—\/%" has density

Fal@) = eV 4 o)

(n)"
_ _1 -1
_cn o eV <1 + x>n
I'(n) Vn
1 1.2
— e 27
V2T

by elementary calculations (use Stirling’s approximation for I'(n) and for terms involving = write
the exponent as —z/n + log(1 + z/1/n) and use the Taylor expansion of logarithm). By an earlier
exercise (Scheffe’s lemma) convergence of densities implies convergence in distribution and thus
we get CLT for sums of exponential random variables.
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Prove the CLT for for the following distributions of X;s. (1) Ber(p). (2) Bin(k,p).

(3) Poisson(\). (4) Geometric(p).

The special feature of these cases is that we can explicitly work out the distribution of .S,,. This
is not the case in general, and in fact one of the uses of central limit theorem (for example, in statis-
tics) goes the other way. We use the Normal distribution as an approximation to the distribution
of S,.

Justification under stronger hypotheses Lastly, we show how the CLT can be derived under
strong assumptions by the method of moments. As justifying all the steps here would take time,
let us simply present it as a heuristic for CLT for Bernoulli random variables. Let X; be i.i.d.
Bery(1/2). Then S,, has a symmetric distribution and hence all odd moments are zero (but first,
|Sn| < n, hence all moments exist). For even moments,
E[S?] = ) E[Xi ... X,
1<k;<n

Fix k = (k1,...,kgp) and consider the corresponding summand. The expectation factors as a
product of E[X Ei], 1 <4 < n, where /; is the number of j for which k; = i. Unless each /; is even,
the summand vanishes and if each ¢; = 1. The terms for which each ¢; contribute 1 each, and these
terms may be divided into two parts.

First, those in which each ¢; is 0 or 2. The number of ways to ways to choose the p indices i for
which ¢; =2isn(n —1)...(n — p+ 1), and the number of ways that these indices may be chosen
is (2p—1)(2p—3)...(3)(1).

Next those terms in which at least one 4; is equal to 4. Then there are at most p — 1 distinct
indices, and they can be chosen in at most n”~! ways. The number of ways of choosing ¢;s is itself

a number that depends only on p, say C,,.

2. Gaussian distribution

We collect some basic facts about the Gaussian distribution here. The standard Gaussian mea-
sure is denoted 7, its density is denoted ¢ and its distribution function is denote ®. The density
of N(u,0?) is then o~ 1p((x — p)/o). We also use the notation p(-) for the density of N(0,t). We

usually write Z, Z1, Zs, . . . for standard Gaussian random variables.

1‘2
2.1. Heat equation. Consider p(z) = ﬁe‘ﬁ for t > 0 and = € R. Differentiation gives

o 10
<8t - 28m2> pi(x) = 0.
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In other words, p;(x) is a solution to the heat equation. This is the single most important fact about

the Gaussian distribution.

2.2. Integration by parts formula. Let f : R — R be a smooth function such that || f*) (z) €
LY(y) for any j,k (we need much less below). Then, as [ f(z/vt)pt(z)dz = E[f(Z)] for any ¢,

differentiating w.r.t. ¢ under the integral, we get

0= 9 /R F () VDpu()de

1

YYD /]Rf'($/ﬂ)xpt(x)dx + % /R f(x/vVt)p! (x)dz (by heat equation)

- _2t513/2 /]Rf/($/ﬁ)$pt(x)dx + ;/Rf”(x/\/i)pt(l')dl‘ (integration by parts)

from which, setting t = 1, we arrive at the Gaussian integration by parts formula

(17) E[Zf'(Z)] = E[/"(Z)].

We leave it as an exercise to justify the differentiation under integral and the integration by parts.
If we set h = f’, then (17) transforms to

(18) E[Zh(Z)] = E[W'(Z)],

which is often called Stein’s identity'. With a bit more care, one can prove that (18) holds for any
h : R — R that is absolutely continuous with &’ € L'(y) (this means that h(z) = [*_ g(¢)dt for
some g € L!(v), which is then called the derivative of h and denoted as /).

2.3. Moments. The odd moments are zero by symmetry, while the even moments can be got
by a direct integration. Alternately, use integration by parts formula (17) with f(z) = 2% we get
E[Z?%P] = (2p — 1)E[Z%~2], from which it follows that

E[Z%]=(2p—-1)x(2p—3) x...x3x L.

2.4. Characteristic function. Formally one can see that E[¢!?] = g2t by substituting it in

the moment generating function. For an honest proof, apply the integration by parts formula to

f(z) = € to get E[itZe'?] = —t?E[e?]. Setting ¢(t) = E[e!*?] we see (again, differentiating
under the expectation) that ¢'(t) = —ty(t), for which the unique solution satisfying ¢(0) = 1 is
p(t) = 2"

IAs Arka Das pointed out in class, (18) can be got directly by writing E[f'(Z)] = [ f'(z)¢(z)dz and integrating
by parts. We gave a more roundabout derivation to emphasize its connection with the heat equation. In addition,
the dynamical viewpoint of considering p;, t > 0, is of great importance. The identity (17) is related to the Ornstein-

Uhlenbeck process, a Markov process with stationary distribution N (0, 1).
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2.5. Characterizations of Gaussian distribution. A feature of a probability distribution that
is not shared by any other probability distribution is called a characterization of the said distri-
bution. For example, the characteristic function determines the distribution, hence is always a
characterization. Any distribution p with finite moment generating function (i.e., [ e*du(z) < oo
for |t| < ¢ for some § > 0) is characterized by its moment sequence.

In particular, the Gaussian distribution is characterized by its moments, i.e., no other distri-
bution has the same moments as the standard Gaussian distribution. The identities (17) and (18)
are also characterizations of the standard Gaussian distribution. This means that if E[A/(W)] =
E[Wh(W)] for a large enough class of functions h, then W ~ N(0,1). For instance, we saw that
applying it to h = e; one can derive that the characteristic function of N (0, 1) is e~*/2 but one can
also consider other classes of functions (e.g., C1(R)) that do not contain e;s. Yet another character-
ization is the stability property that we used earlier: If W, W’ are i.i.d. and W + W’ L \/2W, then

W ~ N(0,0?) for some o2 > 0. To see this, suppose 9(-) denotes the characteristic function of IV,

then
aw+w’)]2 2
Y(t) =E[V] = E [e( v )} _ 4 (\%) .

From this, by standard methods (note that characteristic functions are necessarily continuous),

one can deduce that ¢(t) = e~ for some a > 0. Therefore, W ~ N(0, 2a).

3. Strategies of proof of central limit theorem

To show that a random variable W ~ N(0, 1), it suffices to show that it has any one of the
characterizing properties of the standard Gaussian distribution. In the context of CLT, we have a
sequence W, = S, /y/n that we must show converges to N (0, 1) in distribution. Hence we wish
to know if W,, approximately has a characterizing property (and the approximation gets better as
n — 00), does it mean that W, 4N (0,1)? Here are the essential statements that give a positive

answer, hence each of them provides a possible route to showing that W, 4 N (0,1).

Theorem 38

Let pn, 0 € P(R) and let W;, ~ p, and W ~ pu. Each of the following is equivalent to
W, % W,

(1) E[f(W,)] = E[f(W)] forall f € C\*(R) (i.e., f¥) € Cy(R) for all j).

(2) E[e,(W,,)] — E[e,(W)] for all t € R.
If o = ~, then the following statement also implies that W), 4N (0,1): E[|W,|] < co and

E[N (W,)] — EW,h(W,)] =0 if h € C;(R).

\
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The second statement is known as Levy’s continuity theorem and is proved in the section on
characteristic functions. Further, what we need is the conclusion that W, S W, so we prove the

relevant one-way implications in the first and third statements.

PROOF. (1) Fixt and for k > 1 find fz € C*° such that 1(_ 4 < fi < 1(_m7t+%]. Taking

expectations, we see that

P{IW, < 1} < BIf(W,)] - BI(W)] < P(W <1+ ).
Let k£ — oo to get limsup F),, (t) < F,(t). Similarly,

P{W, <t + 1} 2 BLA(Wa)] > ELR(W)) 2 P{W < 1}

Replace t by t — 1 and let k — oo to get liminf F),, (t) > F,(t—).

)

3.1. Outline of three proofs of CLT. We present three proofs of the central limit theorem.

(1) Using characteristic functions: In this proof we show that E[e:(S,/v/n)] — e~*/2 for all
t € R. The reason that the characteristic function is so effective is that for sums of inde-
pendent random variables, the characteristic function will be a product of the individual
characteristic functions. Additional ingredients are basic facts about characteristic func-
tions, which imply that if Ele;(X;/v/n)] ~ 1 — % if E[X;] = 0 and E[X?] = 1. Hence
Ele:(S,/v/n)] ~ (1 — %)” ~ e~ t*/2. A little work is needed to make the approximations

precise.

(2) Using Lindeberg’s replacement principle: In this proof, along with X;, we construct inde-
pendent standard Gaussians Z;s on the same probability space, and show that E[f(S;X /\/n)] ~
E[f(S7/\/n)]. As the latter is the same as E[f(Z)], CLT follows. To show the closeness of
expectations, the idea is to go from Sff to Sf in n steps, by replacing each X; by Z;, one
after another. The heart of the proof is in showing that the difference in expectations in

each step is o(1/n).

(3) Using Stein’s method: This proof works by showing that W,, = S,,//n satisfies the Stein
identity approximately.
To not obfuscate the main ideas with less important technicalities, we present the first two proofs
assuming that the third moment of X;s is finite. Then we shall in fact state the more general
Lindeberg-Feller central limit theorem and prove it under minimal conditions, thereby also proving
the standard CLT under second moment assumption. The proof by Stein’s method is given there-
after.
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4. Central limit theorem - two proofs assuming third moments
We give two proofs of the following slightly weaker version of CLT.

Theorem 39

Let X, be i.i.d with finite third moment, and having zero mean and unit variance. Then,

Sy
n

converges in distribution to N (0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume

Theorem 37.

4.1. Proof via characteristic functions. We shall need the following facts.

Exercise 18

Let 2, be complex numbers such that nz, — z. Then, (1 + z,)" — €.

PROOF OF THEOREM 39. By Lévy’s continuity theorem (Lemma ??), it suffices to show that
the characteristic functions of n=2 S,, converge to the characteristic function of N (0, 1). The char-
acteristic function of S,,/\/n is ¥, (t) == E [eitsn/ \/ﬁ] Writing S, = X1 + ... + X,, and using

independence,

%(t) =E

eith/\/ﬁ]
k=1

e [cexerva]
k=1

()

where 1) denotes the characteristic function of X7.

Use Taylor expansion to third order for the function z — €'* to write,

) 1 T3 ip*
et =1 +ite — §t21‘2 - Btgem z3 for some z* € [0, z] or [z, 0].

Apply this with X; in place of 2 and tn~"/2 in place of . Then take expectations and recall that
E[X;] = 0and E[X?] = 1 to get
Y <t> =1- ﬁ + R,(t), where R,(t) = —Ltij’E [eitXikXﬂ .
vn 2n e " 62 '
Clearly, |R,,(t)| < Cin~3/2 for a constant C; (that depends on ¢ but not n). Hence nR,(t) — 0 and
by Exercise 18 we conclude that for each fixed ¢t € R,
12 n 2

Yn(t) = <1 ~ 5 + Rn(t)> —e z

which is the characteristic function of N(0,1). [ |
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4.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we
observe that the central limit theorem is trivial for (Y +...+Y,)//n, if Y; are independent N (0, 1)
random variables. The key idea of Lindeberg is to go from X; + ...+ X,, to Y7 +... + Y}, in steps,

replacing each X; by Y;, one at a time, and arguing that the distribution does not change much!

PROOF. We assume, without loss of generality, that X; and Y; are defined on the same proba-
bility space, are all independent, X; have the given distribution (with zero mean and unit variance)
and Y; have N (0, 1) distribution.

Fix f € C{”(R) and let y/nUy = 571 X; + Y27, Yy and vaVi = 35 X + 20, Y for
0 < k < n and empty sums are regarded as zero. Then, Vo = SY /\/n and V,, = S:X/\/n. Also,
SY /\/n has the same distribution as Y;. Thus,

B¢ (Jzs¥)] - Bl - ;E (Vi) — f (Vi)

n

=D B[f (Vi) = FU] = D _E[f (Vir) — £ (UR)].
k=1

k=1
By Taylor expansion, we see that

el Xk " X;? (7% Xl?

f(Vi) — f(Ug) —f(Uk)TﬁJrf O)5, + f (Uk)Gn%,
el Yk " Yk2 (T T%% Yk3
FVimr) = F(U) = §' (U)o S (U) gty + £ () hs.

Take expectations and subtract. A key observation is that U}, is independent of X}, Yj,. Therefore,
E[f'(Uy)X}] = E[f'(Uy)]E[X}] etc. Consequently, using equality of the first two moments of
Xy, Yy, we get
1 * k%
E[f (Vi) = f(Ve-1)] = ol {E[f"(UH X2+ E[f"(UFYE]}
n
Now, U}; and U}[* are not independent of X}, Y}, hence we cannot factor the expectations. We put

absolute values and use the bound on derivatives of f to get
1
BL(Vi)] ~ BU (Vi) < —C {BIXI P+ BIYi[]}
n

Add up over k from 1 to n to get

2|7 (=s%) | - B < oy EIGE + BV

Vn n?
which goes to zero as n — oco. Thus, E[f(S,/v/n)] — E[f(Y1)] for any f € C{gg) (R) and conse-
quently, by Lemma ?? we see that ﬁSn 4N (0,1). |

82



5. Central limit theorem for triangular arrays

The CLT does not really require the third moment assumption, and we can modify the above
proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where
we don’t have one infinite sequence, but the random variables that we add to get S,, depend on n
themselves. Further, observe that we assume independence but not identical distributions in each

row of the triangular array.

Theorem 40: Lindeberg-Feller CLT

Suppose X, i, k < n,n > 1, are random variables. We assume that

(1) For each n, the random variables X,, 1, ..., X,, , are defined on the same probability

space, are independent, and have finite variances.
(2) E[X, 4] =0and Y E[X?,] = 0% asn — oo.

(3) Forany § > 0, wehave >} E[X?  1|x, ,js5] = 0asn — oo

Then, Xp1+ ...+ Xpp S N(0,02) as n — oo.

First we show how this theorem implies the standard central limit theorem under second

moment assumptions.

PROOF OF THEOREM 37 FROM THEOREM 40. Let X, = n*%Xk for k = 1,2,...,n. Then,
E[X, ] = 0while Y7} E[X?,] = L >} E[X?] = 02, foreachn. Further, > B[X2 , 1/x ,|5s] =
E[X?1|x,~5m) which goes to zero as n — oo by DCT, since E[X}] < co. Hence the conditions
of Lindeberg Feller theorem are satisfied and we conclude that % converges in distribution to

N(0,1). n

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-

Feller CLT. We consider some examples.

Example 15

Let X}, ~ Ber(py) be independent random variables with 0 < p, < 1. Is S,, asymptotically
normal? By this we mean, does (S, — E[S,])/+/Var(S,) converge in distribution to N (0, 1)?
Obviously the standard CLT does not apply.

To fit it in the framework of Theorem 40, define X, ,, = X’;i;p’“ where 72 = Y7 pr(1 — pr)
is the variance of S,,. The first assumption in Theorem 40 is obviously satisfied. Further,
X, 1 has mean zero and variance pi(1 — pi)/72 which sum up to 1 (when summed over

1 < k < n). As for the crucial third assumption, observe that 1x ,~5 = 1x,—p,[>6r,- If
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Tn, T 00 as n — oo, then the indicator becomes zero (since | X — px| < 1). This shows that
whenever 7,, — 0o, asymptotic normality holds for S,,.

If 7, does not go to infinity, there is no way CLT can hold. We leave it for the reader to think
about, just pointing out that in this case, X; has a huge influence on (.S,, —E[S,]) /7. Chang-

ing X; from 0 to 1 or vice versa will induce a big change in the value of (S, — E[S,])/m,

from which one can argue that the latter cannot be asymptotically normal.

\

The above analysis works for any uniformly bounded sequence of random variables. Here is

a generalization to more general, independent but not identically distributed random variables.

Suppose X} are independent random variables and E[|X;|?*°] < M for some § > 0 and

M < oco. If Var(S,,) = oo, show that S,, is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 16

If X,, are i.i.d (mean zero and unit variance) random variable, what can we say about the
asymptotics of T, := X1 + 2X5 + ... + nX,? Clearly E[T;,] = 0 and E[T2] = Y7_ k? ~ .
Thus, if we expect any convergence to Gaussian, then it must be that n 3T, 5 N (0,1/3).
To prove that this is indeed so, write n_%Tn =Y 11 Xnk where X,, , = n"3kX 1. Let us
check the crucial third condition of Theorem 40.
E[X7 1 1ix, o>0] = 2 K EIXP1 x, s sp-103/2]
< n_lE[X21‘X|>5\/ﬁ] (since k < n)
which when added over k gives E[X?1|x|.s ] Since E[X?] < oo, this goes to zero as

n — oo, for any § > 0.

Let0 < a1 < as < ...befixed numbers and let X}, bei.i.d. random variables with zero mean

and unit variance. Find simple sufficient conditions on a;, to ensure asymptotic normality
of Tn = ZZ:l aka.

6. Two proofs of the Lindeberg-Feller CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with
the earlier proofs and see where some modifications are required.
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6.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a

roduct to an exponential.

If 2z, wy, € C and |2, |wg| < 6 for all k, then IT we | <1 ST |2 — wl
= k=1 k=1

PROOF OF THEOREM 40. The characteristic function of S,, = X, 1 + ... + X, ,, is given by
Pn(t) = H E [e"¥nk]. Again, we shall use the Taylor expansion of €**, but we shall need both

the second and first order expansions.

, 1422 _ 043 ita* 3

i 14 ite — 5t?2° — L™ for some z* € [0, z] or [z, 0].
1+ ite — St2eite" o2 for some z* € [0, ] or [z, 0].
Fix 0 > 0 and use the first equation for |z| < § and the second one for |z| > ¢ to write

1 1 . al -
1 4t — §152‘,62 + |z|>6t2:c2(1 . eztx+) . |2|§5t3$3eztx .
Apply this with z = X, ;, take expectations and write o> k= E[Xn i) to get

1
BleXn] = 1= o2 1t + ()
where, R, i(t) := %E |:1|Xn,k|>6X'r2L,k (1 - e“ka)} - %E [I‘XH,MSL;XS’ke”X;ak] We can bound

Ry, 1,(t) from above by using | X, x[*1x, ,|<s < 0 X7, and [1 — e"*| < 2, to get

|t| 0

(19) [Rop(D] < B [1x, ,155X25] + =B [X2,].

We want to apply Bxercise 21 to z, = E [¢*n+] and wy = 1 — o7 ,t*. Clearly |z < 1 by
properties of c.f. If we prove that max o2, — 0, then it will follow that |wg| < 1 and hence with
=n ’

¢ = 1 in Exercise 21, we get

n n
lim sup ‘ H E [e/Xnk] H (1 = 5% kt2> ’ < hmsupz | Ry i (t)]
k=1

< 6]1513025 (by 19)

To see that max op — 0, fixany § > O note that o < §° + E [szz,klan,kbé} from which we get

2 2
IlglaXU nk <0 +;E[ nk1|Xn,k\>5:| — 0%,

As § is arbitrary, it follows that max 02, —0asn — oo. As § > 0 is arbitrary, we get
=n ’
n n 1
: tXn k] — 1 _ 12 2
(20) JEIQOIEE e ] nlgroloklill (1 20n’kt > .

85



For n large enough (and fixed t), max t?c%, < 3 and then
n ?

1,2 42 1.4

4 1 1.2 42
€7§o—n,k Zon,kt < 1 — 70-2 t2 < €7§o—n,kt .
= 2 nJQ =

Take product over £ < n, and observe that ZZ_l 0;417 i — 0 (why?). Hence,

n 0'2152
2 _ot”
11 <1_ankt JET

From 20 and Lévy’s continuity theorem, we get > ;| X,, » 4N (0,02). [
6.2. Proof of Lindeberg-Feller CLT by replacement method.

PROOF. As before, without loss of generality, we assume that on the same probability space as
the random variables X, ;, we also have the Gaussian random variables Y, ;. that are independent
among themselves and independent of all the X, ;s and further satisfy E[Y,, ;] = E[X,, ;] and
E[quk] = E[ng]

Similarly to the earlier proof of CLT, fix n and define U = Zk L X+ > j—kt1 Yn; and

Z] 1 X0 J—l—Z] pi1 Ynjfor0 <k <n.Then Vo =Y, 1+.. +Y,pand V,, = Xy 1+ .+ Xy
Also, Vi, ~ N(0,0?). Thus,

(21) E[f (V)] —E[f(Vo)] =Y _E[f (Vi) = f (Vio1)]
k=1

=) El[f(Vk ZE (Vie1) = £ (UR)]-

k=1
We expand f(V}) — f(Ukx) by Taylor series, both of third order and second order and write

FVi) = f(Uk) = f{(Up) X i + %f”(Uk)XZ,k + éf”/(Uffk)Xg k

FVi) = F(U) = /(U)X 3 " (OF) X2,

where U} and U,f are between V), and Uy. Write analogous expressions for f(Vy_1) — f(Uy) (ob-
serve that V;,_1 = Uy, + Y}, ;) and subtract from the above to get

FOR) = FVier) = £ Xap = Yo + 5 f O (X = V) + 6 (U)X~ FU )Y,
FVi) = FVier) = /(U0 (X — Yo + 5 (" UF) X2~ P (UFF)V,).

Use the first one when | X, ;| < 6 and the second one when | X, ;| > ¢ and take expectations to get
22) [BF(Vi)] - Bl (Vi )ll < 5Bl [BIX2 kx4 6] — BV Ay, <]

23) b o[BI O, 00| + 5 B OED V2L, o]

4) 4 2[RI OONXns Py, <] + 2 [BO GNPy, <]
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Since E[X? ] = E[Y;?,], the term in the first line (22) is the same as 3E[| f”(Uy)[] |E[X2 . 1)x,, . 1>5] —
E[Y2, 1)y, ,|>s]| which in turn is bounded by

CHE[IX? k1 x, o=s] + BV Ly, 50l }-
The terms in (23) are also bounded by

CHEX] x1x, o>s] + BV i1y, 6]}
To bound the two terms in (24), we show how to deal with the first.

E[|f" (U Xnkl*1)x, ,1<sl| < CrSE[X] ]
The same bound holds for the second term in (24). Putting all this together, we arrive at
[E[f(Vi)] = E[f (Vi-)]| < CHE[IX7 4 1ix,, oj56) + BV, i1y, o560} + O{EIXZ 1] + B[V ]}

Add up over k and use (21) to get

E[f (V)] - BIf(0)]| <8 ) BIX2,:] + E2
k

=1
n
+Cr ) EX3Lx, o5e] + BVl sa)-
k=1

As n — oo, the first term on the right goes to 2602. The second term goes to zero. This follows
directly from the assumptions for the terms involving X whereas for the terms involving Y (which
are Gaussian), it is a matter of checking that the same conditions do hold for Y.

Consequently, we get limsup [E[f(Vp)] — E[f(Vy)]| < 2024. As § is arbitrary, we have shown
that for any f € C,S?’) (R), we have

E[f(Xn,l +...+ Xn,n)] - E[f(Z)]

where Z ~ N(0,0?). This completes the proof that X,,1 + ... + Xp,, LN N(0,02). [ |

7. Sums of more heavy-tailed random variables

Let X; be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see
that the sums S,, converge to Gaussian distribution after shifting (by nE[X1]) and scaling (by /n).
What if we drop the assumption of second moments? Let us first consider the case of Cauchy

random variables to see that such results may be expected in general.

Let X; be i.i.d Cauchy(1), with density m Then, one can check that % has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write = 2 oh,
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If X; were i.i.d with density
X;—b

m (which can be denoted C,, ; with a > 0, b € R), then

and hence, we get

Sn—nb 4
an

This is the analogue of CLT, except that the location change is nb instead of nE[X;], scaling
is by n instead of \/n and the limit is Cauchy instead of Normal.

This raises the following questions.

(1) For general i.i.d sequences, how are the location and scaling parameter determined, so

that b, }(S,, — a,) converges in distribution to a non-trivial measure on the line?
(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what

distributions on X do we get b, }(S,, — an) LoX.

For simplicity, let us restrict ourselves to symmetric distributions, i.e., X 4 _x. Then, clearly no
shifting is required, a,, = 0. Let us investigate the issue of scaling and what might be the limit.
Symmetric a-stable distributions Fix o > 0. Do there exist i.i.d. random variables X, Y such that
X +Y £ 23 X? When o = 2, centered Gaussian distributions satisfy the distributional equation,
and when o« = 1, the symmetric Cauchy distributions do. What about other o?

From the distributional identity, if X, Y ~ p arei.i.d., then the characteristic function /i satisfies
[(2Y/°t) = u(t)2. As ji is continuous, real-valued and symmetric, it is not hard to see that ji(t) =
etl” . Of course, we don’t know if this is a valid characteristic function, i.e., if such a distribution

 exists. This is answered in the following theorem.

Theorem 41: Symmetric stable distributions

The symmetric a-stable distribution exists if and only if 0 < a < 2.

PROOF. First suppose o > 2. Then e~ /" is a 2 function, with a maximum at 0. and hence if
1o With characteristic function e 111" were to exist, it would have finite variance and zero mean.
But taking variance of both sides in the identity X 4 Y 4 2l/a X where X ,Y areiid. po, we see
that 2Var(X) = 2%/Var(X). Either Var(X) = 0, in which case X = 0 a.s., or & = 2, in which case
X ~ N(0,0?) for some o > 0.

Next suppose 0 < a < 2. Recall that X ~ Pois(\) has characteristic function exp{A(e* — 1)},
hence uX has characteristic function exp{\(e’*! — 1)}. Adding independent copies of such vari-
ables that exp{z Aj(e™it — 1)} is also a characteristic function for u; € Rand \; > 0. As a spe-
cial case, take fu; w1th equal weight A; to get the characteristic function exp{>N =1 Aj(2cos(ujt) —
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2)}. Taking Riemann sum approximations to the integral and Lévy’s continuity theorem, we see

that for any continuous function A(-)

exp {/Ooo(cos(ut) - 1))\(u)du}
is a characteristic function. Of course, we need the integral inside the exponent to make sense and
be the limit of its Riemann sums. One example is A(u) = u~®~L. Integrability near oo forces o > 0
and integrability near 0 forces o < 2. On the other hand, if I(t) = [;°(cos(ut) — 1)u~*"!du, then
by a change of variables I(t) = t*I(1). This proves that exp{—|t|*} is a characteristic function for
0<a<?2 |

Henceforth, we write p, for the symmetric a-stable distribution with characteristic function
exp { [;7 (cos(ut) — 1)au="'du} (which is eI for some ¢, that we don’t care to evaluate).
These distributions are heavy tailed. The proof above in fact shows that none of them (except

a = 2) can have finite variance.

Theorem 42: Moments of symmetric stable distributions

Let 0 < a < 2. Then [ |z|Pdpq(z) < oo if p < aand [ |z[Pdpq(z) = coif p > a.

PROOF. In the chapter on characteristic functions in the appendix, the following estimate is

proved:
1/M
u(-2MoM) < M [ (= p(e)a.
~1M
Applying this to i, and using the fact that 1 — e~ 1" ~ |t|* as t — 0, we get pq([—2M, 2M]°) <

CM x ﬁ = CM~*. Now,
/a:|pdua(af) :/ paflx? > t}dt
0

o0
<c(1 +/ /P
1

which is finite if p < a.

To write: Proof that moments above o do not exist [ |

Domains of attraction of symmetric stable distributions Let 1., be the symmetric a-stable distri-
bution with characteristic function e~!1”, where 0 < a < 2. If X; ~ [ta, then it is easy to see that
Sn/ n!/® has the same distribution as X7, in particular n_éSn 4, tto. The question is, what are
the other distributions for which §,, (with the same scaling or different) have the same limit. For
a = 2, all we needed for the CLT was that X; have zero mean and unit variance.
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We stick to symmetric distributions here. Nevertheless, it is not sufficient to ask for X; to have
finite moments of order up to a and infinite moments beyond. A certain regularity in the tail

behaviour of the distribution is needed. The regularity is stated in terms of the important concept

L(at)
L(t)

for any a > 0. Examples are log ¢, powers and iterates of logarithm. Observe that ¢* is not slowly

of slowly varying functions. We say that L : (0, 00) — (0, c0) is slowly varying if — last — oo,

varying if € # 0.

Theorem 43: Convergence to symmetric stable distributions

Let X; be i.i.d. with symmetric distribution p. Assume that t*u([—t, t]°) is a slowly varying
function. Define b(u) = inf{t : u([—t,t]°) = u}. Then

What is the scaling b(1/n) here? If u([—t,t]°) ~ Ct~®, then b(1/n) < n/*. Butif u([~t,t]°) ~
Ct~“logt, then b(1/n) < né(log n)é and if p([—t,t]¢) ~ Ct~%/logt, then b(1/n) < né(log n)_%.
Thus the exact scaling depends on the correction to t~* in the tail of p. The limit distribution does
not.

The proof of the above theorem requires another limit theorem that is of fundamental impor-

tance in itself.

7.1. Poisson limit theorems. We know that Bin(n, A\/n) LN Pois(\) as n — oo. Like the de
Moivre Laplace theorem, this is just a baby version of a rather widespread phenomenon. Here is

one particular version of it.

Theorem 44: Poisson convergence of sums of independent Bernoullis

Let &,; ~ Ber(pn;), 1 < j < n, be a triangular array of Bernoulli random variables such
that (1) For each n, the variables &, 1,...,&, , are independent, (2) p,1 + ... + Ppn — A

asn — oo, (3) p;, = MAX Py, j — 0asn — oo. Then S,, := &,1 + ... + &un converges in
sn

distribution to Pois()).

PROOF. By a direct calculation,

l
P(S,=0= > JIpes II =puy

J1<<gesni=1 iZ{j1,-Je}
n V4 Dri
n,j
Tl X TL2
i=1 1< <jpr=1 Pr.jy
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From the inequality e ™ > 1 — 2z > P (valid when |z| < %), for large enough n,
n
e Z] 1(Pn j+pnj H 1 _pN,j < e Z?len,j?

el < 1 < ePrn(14P5)
L = pn,j,

Thus,

4 y4
e~ =1 Pty ;) P Z Hpn,jrSP{S :K}Se_zyzlp"»jeﬁ(lﬂil) Z Hpn,jr

J1<..<jer=1 n<.<jer=1
Now, 3% pnj — Aand 377, P2 4 <P Y51 Pnj — 0. Thus the exponential factors outside the

sum on both left and right converge to e~*. Further,

L 1 n * ¢
Z Hpn,jT:E an,j - Z Hpn,jr

J1<..<jer=1 j=1 Jiyejer=1
where the second sum is over tuples (ji, ..., j,) of which at least two are equal. The first term

inside the brackets converges to \‘. As
-2

Z Hpn,jr = anj an,j — 0,
J

J1=ja2 r=1

and the same is true of the other (2) possible pairs of equal (jy,, js), we conclude that

> Hpn,],“% /\e

J1<.<jer=1

In summary, P{S, = {} — e_’\A for ¢ € N, and thus S,, % Pois(\). [

ALTERNATE PROOF. Fort € R,

n
ztS H — D + Pnj eit).
k=1
By Exercise 21,

n

n
|Elei*Sn] — [ eProtpase™| <37 |ePmstPric™ — (1= poj + ppje')]
P =1

n
<CY
j=1

it . . . . .
—A+Ae”™ which is the characteristic function of

which converges to 0. As [[}_; e7PritPri¢ T e
Pois()\), we see that S, L\ Pois()). [
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7.2. Proof of Theorem 43. The proof is very different from all the proofs of central limit the-
orem, because the underlying phenomena are themselves different. In CLT, all the variables con-
tribute about the same, but for the heavy tailed variables under consideration, the sum S, essen-
tially comes from the largest few X;s.

For example, if P{X; > 2} ~ Cz™%, then the expected number of X7, ..., X,, that are above =
is Cnx~“, which shows that the maximum M,, = max{ Xy, ..., X, } is not likely to be significantly

more than nl/®

. By the second moment method, one can show that M, is of the order of nt/e,

which is also the order of magnitude of S,, (as the statement of Theorem 43 asserts). Contrast this

with the Gaussian case, where the maximum is of order y/log n while the sum is of order \/n.
First we prove a Theorem that is in the same spirit as Theorem 43, but technically much sim-

pler.

Theorem 45: Poissonized version of convergence to symmetric stable distributions

Let X; be i.i.d. with symmetric distribution p and let K, ~ Pois(n) be independent of Xs.
Assume that t®([—t, t]°) is a slowly varying function. Define b(u) = inf{t : pu([—t,t]¢) = u}.
Then

Sk, d
b(i/m)

-

PROOF. The advantage of considering Sk, instead of S, is that its characteristic function can
be written in a form similar to that of z,. Define the measure y,, by i, (J) = 2npu(ay,J) for J € Bg
and let a,, = b(1/n). We claim that

(25) E [eits’{"/“”] = exp {/ (cos(tu) — l)dun(u)} .
0
To see this?, let M, = § X1/an t -+ 0xy, /a,, @ Tandom measure, in terms of which a; 'Sk, =
JtdM,(t). For 6 > 0,let I;5 = (jo,(j + 1)d] and 5 = 3 "5, jo(1r,, — 1-1,,)- Then ps(t) — t as
91 0,and |ps5(t)| < t. Hence, by DCT,
= hmZ](SM i.5) Z](SM”(—IM) a.s.

an 040 4 ot
If Jq, ..., J are pairwise disjoint 1ntervals, then M, (.J1), ..., My (J) are independent random vari-
ables with M,,(J) ~ Pois(nu(aynJ)). This is a well-known fact about thinning of Poissons. Thus,

for fixed § > 0, the quantity on the right is a weighted sum of independent Poisson random

21 you are familiar with Poisson processes, it is possible to see this formula and nod “yes, it is obvious”. The

explanation given is for those who did not nod.
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variables, hence it has characteristic function (using the symmetry u(1;5) = pu(—1;s))

00 00
exp Z np(Is)(e + e 0 — 1) § = exp Z 2npu(15)(cos(j6) — 1)
=1 j=1
The exponent is 2 [ (cos(p5(t)) — 1)dun(t), hence it converges to 2 [ (cos t — 1)dpun (t) by another
application of DCT. This proves (25).
Now we need to let n — oo. For any s > 0,
fn s, 00) = npfan,, 00) X m — %

as npfan,00) = 1/2by choice of a,, and using the fact that s“u[sa,, 00) is slowly varying. This is al-
most like saying that p,, (restricted to (0, 00)) converges in distribution to the measure jas™*~!ds.
However the limiting measure here is infinite, and hence we need to justify that

(26) 2/000(cost — 1)dpn(t) — /Ooo(cost - 1)%6&.

Once we justify (26), the proof is complete, as it shows that the characteristic function of Sk, /n'/®

converges pointwise to the characteristic function of p,, (refer back to the definition of 1,). |

To justify (26), we fix ¢ > 0 and divide the integral over (0,¢), [, 1/¢] and (1/e, c0). Since the
limiting integral is convergent, we can choose ¢ small enough to make the first and third integrals
smaller than . On [e, 1/¢], the measures are finite, and we can scale and pretend that we are

working with probability measures to conclude that (we leave the details as exercise)

1/e 1/e a
2/ (cost — 1)dpn(t) — / (cost — 1)taﬁdt'
3 &€
It only remains to show that the first and third integrals can be made arbitrarily small uniformly
over n, by choosing ¢ small. As the integrand is bounded by 2, the third integral is bounded by
plan/e, 00)

plan, oo)

by the same argument that we used above. This shows that the third integral can be made uni-

4pnl/e, 00) = dnplay, 00) ~ 2e

formly small by choosing ¢ small enough. The first integral is to complete
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CHAPTER 7

Appendix: Characteristic functions and their properties

Definition 14

Let u be a probability measure on R. The function v, : R? — R define by v,(t) =
Jg €dp(x) is called the characteristic function or the Fourier transform of p. If X is a ran-
dom variable on a probability space, we sometimes say “characteristic function of X” to

mean the c.f. of its distribution (thus 1 x (t) = E[e?*X]). We also write /i instead of ¥),,.

There are various other “integral transforms” of a measure that are closely related to the c.f.
For example, if we take v, (it) is the moment generating function of . (if it exists). For y supported
on N, its so called generating function F,(t) = > ;- p{k}t* (which exists for |t| < 1 since y is a
probability measure) can be written as v, (—ilogt) (at least for ¢ > 0!) etc. The characteristic
function has the advantage that it exists for all t € R and for all finite measures .

The importance of c.f comes from the following facts, which we shall discuss and prove one
by one’.

(A) It transforms well under certain operations, such as shifting, scaling and under convolu-
tions. The last of these makes it a tool of amazing power in studying sums of independent

random variables.

(B) The characteristic function determines the measure. Further, the smoothness of the char-
acteristic function encodes the tail decay of the measure, and vice versa. In general, c.f.

encodes properties of the distribution in a not-so-direct but still tractable manner.

(C) fun(t) — [u(t) pointwise, if and only if yi,, 4 . The forward implication is the key property

that is used in proving central limit theorems.

(D) There exist necessary and sufficient conditions for a function 1) : R — C to be the c.f. of a
measure. Because of this and part (B), sometimes one defines a measure by its character-

istic function.

0.1. Basic observations.

!In addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is

an excellent resource for the basics of characteristic functions. Our presentation is based on it too.
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Theorem 46

Let X,Y be random variables with distributions 1, v respectively.

(1) For any a,b € R, we have ¢, x 14(t) = e®'1px (at).

(2) If X, Y are independent, then ¢ x4y (t) = ¥x (t)y (t).

PROOF. (1) Yaxp(t) = E[e@XH0)] = E[eX e = ety (at).

@) Vixy (1) = B = Bl et) = Bl B[] = i (0 (1), .

Let 1o € P(R). Then, /1 is a uniformly continuous function on R with |f(¢)| < 1 for all ¢ with

£(0) = 1. (equality may be attained elsewhere too).

PROOF. Clearly 1(0) = 1 and |fi(t)| < [ |e®*|du(x) = 1. Further,

e+ ) = 0] < [ 1D = (o) = [ 1o~ 1d(a).

As h — 0, the integrand |e?"® — 1| — 0 and is also bounded by 2. Hence by the dominated
convergence theorem, the integral goes to zero as h — 0. The uniformity is clear as there is no

dependence on t. [ ]

Lemma 48: Parseval’s identity

If p,v € P(R), then [ adv = [0 dpu.

PROOF. Integrate ¢¥ against u ® v in two ways, using Fubini’s theorem. The two iterated

integrals are [ jidv and [ Ddp. [ |

0.2. Decay and smoothness. Smoothness of the characteristic function is related to the tail
decay of the measure and smoothness of the measure is related to the tail decay of the characteristic

function. We give some statements illustrating all four directions of implication.

Theorem 49: Decay of the measure to smoothness of Fourier transform

Let u € P(R). If [ |x|*du(x) < oo for some k € N, then /i € C*)(R) and

0 () = iz)Fedu(x).
A% (1) /R (iz)* e dp(z)

PROOF. ltis a matter of justifying the differentiation w.r.t. t under the integral i(t) = [ "@dpu(x).
We show it for £ = 1 and leave the rest as an exercise. As h~!(e/tth)r _ ¢itr) 5 jreil® a5 b — 0
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and hteltHh)e _ ¢it?| < |z| by mean value theorem, if [ |x|du(z) < oo then DCT justifies

. 1 7 T it . it
tim () () = /mwmm>

which is the same as 7/(t) = [ ize™@dpu(z). [ |

In fact, by expanding ¢ in finite order Taylor expansion and applying expectations, one can
y exp g y p pplying exp

write the Taylor expansion for /i with coefficient given by moments of .

Theorem 50: Smoothness of measure to decay of Fourier transform

Let 1o € P(R). Assume that ;1 has density f with respect to Lebesgue measure.

(1) (Riemann-Lebesgue lemma). /i(t) — 0 as t — +oo.

) If f € C™®), then ji(t) = o(|t| %) as t — +oo.

PROOF. First assume that f is smooth and that its derivatives are also integrable (and hence

vanish at infinity). Then, integrating by parts, we get
it = = [ e s a)da
it
which is bounded by ﬁH fllz1(w)- This goes to 0 as [t| — co. In general, we can approximate f by

a smooth g whose derivatives are integrable so that || f — g||1(z) < e. Then || f = §llsup < € (We use
t) for [ f(z)e"*dz). Therefore,

limsup |f(¢)| < limsup [§(t)| +& = &
t—to0

t—too
as §(t) — 0. This completes the proof of the first part.

Observe that the positivity of f was not used, only its integrability. Hence if f is k times
differentiable and f*) € L'(R), then f/(;)(t) = o(1) as t — £oo. Now, integrating by parts we see
that f() = (—i/t)* f®)(t), which is o(t*). n

Theorem 51: Smoothness of the characteristic function to the decay of the measure

Let ;o € P(R). Then, for any M > 0,

M
;M4M2M3SM/?O—MWM

PROOF. Let§ = 1/M and write

/( dt//—mdu // (1= ™) dt du(x)
:A<25—W> du(z) = 25/R (1— Sln$§5)> dp(z).
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When §|z| > 2, we have % < % (since sin(zd) < 1). Therefore, the integrand is at least % when

|z| > 2 and the integrand is always non-negative since |sin(z)| < |z|. Therefore we get

o
[ = = d (=25, 2/81).

This is the claim. [ |

Theorem 52: Decay of the Fourier transform to the smoothness of the measure

If i € L'(R), then y has a bounded continuous density f given by

f<x>:217T/e i ().

If further t*/i(t) is integrable over R, then f is k times differentiable.

The first part is proved below under the heading of Fourier inversion formula. Once that is
proved, we have essentially express f as the Fourier transform of /i (except for the negative sign
in the exponent and the factor of 1/27). Hence, the earlier proof, where we showed that if the kth
moment is finite, then the characteristic function is k& times differentiable, applies here with /i(¢)dt

taking the place of the measure.

0.3. Examples. We give some examples.

(1) If 4 = o, then ji(t) = 1. More generally, if 4 = p164, + ... + Drda,, then fi(t) = pre® +

itag

..+ pre

(2) If X ~ Ber(p), then ¥x(t) = pe* + ¢ where ¢ = 1 — p. If Y ~ Binomial(n,p), then,
y £ X1+ ...+ X, where X}, are i.i.d Ber(p). Hence, 1y (t) = (pe’ + q)".

(3) Let X, X’ ~ unif[—1,1] be independent and let Y = X + X’. The density of X is  on
[—1, 1] while that of Y is (1 — |z|) for || < 2. The characteristic function of X is easily

computed to be sin t/t and hence the characteristic function of Y is (sint/t)2.

(4) The characteristic function of Pois(\) distribution is
Z eikte—)\& _ o AAei
k! '
k>0
(5) If X ~ Exp()), then Vx(t) = [;° AeMel@dy = A= If Y ~ Gamma(v, A), then if v is an
integer, then Y’ 4 Xi+.. .—i—Xl, where X, areii.d Exp( ). Therefore, 1y (t) = o zt)” This

is true even if v is not an integer, but the proof would have to be a direct computation.

(6) Laplace distribution having density 1e~1?! on all of R has characteristic function H#tz

This is similar to the previous example and left as an exercise.
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(7) Y ~ Normal(u,0?). Then, Y = u+ ¢X, where X ~ N(0,1) and by the transofrmatin
rules, Yy (t) = e*typx (ot). Thus it suffices to find the c.f of N(0,1). Denote it by .

W(t) = \/ﬁ/ m2d:v—e2<m/ -~ >

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of
a normal density with mean it and variance 0. But if the mean is complex, what does
it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff
inside brackets is indeed equal to 1%

The final conclusion is that N (p, 02) has characteristic function eit“_#. We gave an

alternate rigorous proof using Stein’s identity in the notes.

(8) Let 1 be the standard Cauchy measure = + )dx Lett > 0and consider ¢(t) = 1 f 1 +932 dx.
We use contour integration. Let y(u) = u for —R < u < Rand n(u) = Re® for 0 < s < .

Then by the residue theorem

1 itz 1 itz 1 itz
/ c 2dz—|—/ ¢ 2dz:><27m'Res< € 2,i> =e
T 7l—i—z T nl—i—z T 1+ 2

—tImz

However, on 7, the integrand is bounded by £ T < R21 7, since t > 0. The length of
the contour is 7R, hence the total integral over n is O(1/R) as R — cc. Thus, 2 f Hn; dx

converges to e~ for t > 0. By the symmetry of the underlying measure, ¢ (—t) = 9(t),

whence we arrive at 1)(t) = e~ Il

Theorem 53

PROOF. Let 6, denote the N(0, 0%) distribution and let ¢, (z) = ﬁe‘ﬁ/%g and ¢, (x) =
[* . ¢o(u)duand 0,(t) = e~7°t*/2 denote the density and cdf and characteristic functions, respec-

tively. Then, by Parseval’s identity, we have for any «,
[eawasnt) = [ bafe - adu(o)

L

2Here is the argument: Fix R > 0 and let v(u) = wand n(t) = u + it for —R < uw < R and let n;,(s) = x + s for
0 < s < t. The integral that we want is the limit of the contour integrals fn e~ 27" dzas R — oo. Since the integrand has
no poles, this is the same as the integral [ + fn}2 [ R of e=*"/2. The integral over  converges to Jz e~*/2dz which
is v/27. The integrals over 1 and " converge to zero as R — oo. This is because the absolute value of the integrand
is e~z (45" < o= F/2 for any 0 < s < t. Thus the two integrals are bounded in absolute value by e’R2/2|t\ which

goes to 0 as R — oo.
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where the last line comes by the explicit Gaussian form of 6,. Let f, () := \ﬁ Je

and integrate the above equation to get that for any finite a < b,

[ soteria = [ [ pria—) autw) da

_ /R /a p1(a— ) da dp(x)  (by Fubini)
= /R (@l(b—x) —q)%(a—x)> du(z).

o

Now, we let 0 — oo, and note that
0 ifu<O.
§>%(U)—> 1 ifu>0.

ifu=0.

[N

Further, ®: is bounded by 1. Hence, by DCT, we get

b
i [ fole)da = [ [1an(e) + 5110 (@)| duto) = ulad) + gufat)

ag—00 a

zat

(t)dbo(t)

Now we make two observations: (a) that f, is determined by /i, and (b) that the measure p is

determined by the values of ji(a,b) + 1p{a, b} for all finite a < b. Thus, /i determines 4.

We can continue the reasoning in the above proof to get a formula for recovering a measure

from its characteristic function.

Corollary 54: Fourier inversion formula

Let 1 € P(R).
(1) For all finite a < b, we have
1 1 1 —iat _ ,—ibt 42
1) p(a) + gila) + guft} = Jim o= [ e

o—00 27T

(2) If [ |A(t)|dt < oo, then p has a continuous density given by

fl@) = — / A(t)e Tt dt.

27TR

\

PROOF. (1) Recall that the left hand side of (1) is equal to li\m f; fo where

folo) 1= <= [ e 4i(t)a0, 1)
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Writing out the density of 6, we see that

b 1 b ) /2
/ fola)da = / / e h(t)e” 202 dtda
a 27 a JR

1 b . t2
= // e "i(t)e 202dadt  (by Fubini)
2 R Ja

1 e—iat o e—ibt . 42
= % . 7/Lt M(t)e 202 dt

Thus, we get the first statement of the corollary.

(2) With f, as before, we have f,(a) := 5 [ e‘iatﬂ(t)ef%dt. Note that the integrand con-
verges to e " fi(t) as ¢ — oo. Further, this integrand is bounded by |/i(t)| which is as-
sumed to be integrable. Therefore, by DCT, for any a € R, we conclude that f,(«) — f(«a)
where f(a) = 5= [ e a(t)dt.

Next, note that for any o > 0, we have |f,(a)| < C for all & where C' = [ |i(t)|dt.
Thus, for finite a < b, using DCT again, we get f; fo — ff faso — oo.
But the proof of Theorem 53 tells us that

, b 1 1
lim [ fo(a)da = pla,b) + 5pfa} + 5 p{d}.

T—00 a
Therefore, yu(a,b) + s u{a} + su{b} = fab f(a)da. Fixing a and letting b | a, this shows that
p{a} = 0 and hence p(a,b) = f; f(a)da. Thus f is the density of f.
The proof that a c.f. is continuous carries over verbatim to show that f is continuous

(since f is the Fourier transform of /i, except for a change of sign in the exponent). |

An application of Fourier inversion formula Recall the Cauchy distribution ;» with with density

m whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is
a way to compute this integral).
Consider the seemingly unrelated p.m v with density %e""”‘ (a symmetrized exponential, this

is also known as Laplace’s distribution). Its c.f is easy to compute and we get

1 [~ . 1 [0 1 1 1 1
() = = zt:c—a:d - ztx+acd —_ — .
o(t) 2/0 c $+2/_Ooe o\t Tira) i

By the Fourier inversion formula (part (b) of the corollary), we therefore get
1 1 ; 1 R
ol St dt = — e g

2° 27r/”( )e or ) 1+2°

This immediately shows that the Cauchy distribution has c.f. e~ !l without having to compute the

integral!!
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0.5. Continuity theorem. Now we come to the key result that was used in the proof of cen-
tral limit theorems. This is the equivalence between convergence in distribution and pointwise

convergence of characteristic functions.

Theorem 55: Lévy’s continuity theorem

Let pin, 1 € P(R).
(1) If pp 4 p then fi,(t) — fi(t) pointwise for all ¢.

(2) If fin(t) — ¢ (t) pointwise for all ¢t and ¢ is continuous at 0, then ¢) = i for some

p € P(R) and pn, A L

\_

Observe that in the second statement, we did not a priori assume that 1 is a characteristic

function. It of course implies that if fi,, — i pointwise for some p € P(R), then A 1.

PROOF. 1) If pp LA w, then [ fdu, — [ fdu for any f € Cy(R) (bounded continuous

function). Since  — ¢ is a bounded continuous function for any ¢ € R, it follows that

fin (t) — [1(t) pointwise for all ¢.

(2) Now suppose fi,(t) — ¥(t) pointwise for all ¢ and ) is continuous at zero. We first claim
that the sequence {uy, } is tight. Assuming this, the proof can be completed as follows.
Let ju,, be any subsequence that converges in distribution, say to v. By tightness,
v € P(R). Therefore, by the first part, ji,, — © pointwise. But obviously, fi,, — [ since
fin, — fi. Thus, o = fi which implies that v = p. That is, any convergent subsequence of
{1n} converges in distribution to p. This shows that s, LA 1h.

It remains to show tightness®. From Lemma 56 below, as n — oo,

é §
i (-2/8.2/0) < 5 [= unar— 5 [ - vna
=5 =5

where the last implication follows by DCT (since 1 — fi,(t) — 1 — ¢(t) for each ¢ and
also |1 — fin(t)] < 2 for all t). Further, as 6 | 0, we get %fi;(l — (t))dt — 0 (be-
cause, 1 — 1(0) = 0 and ¢ is continuous at 0). Thus, given ¢ > 0, we can find § > 0
such that limsup,,_, . pn ([—2/6,2/6]¢) < e. This means that for some finite N, we have
pn ([—2/0,2/6]°) < e forallm > N. Now, find A > 2/§ such that for any n < N, we
get un ([-2/0,2/6]°) < e. Thus, for any ¢ > 0, we have produced an A > 0 so that

tn ([—A, A]¢) < ¢ for all n. This is the definition of tightness. |

31 would like to thank Pablo De Népoli for pointing out a flaw in the statement and proof of the second part.
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Let ;o € P(R). Then, for any 6 > 0, we have

u ([-gg] ) <1 Z (1= ().

PROOE. We write

_ /R /_ 2(1 — Y dtdu(x)
= /R (26 — 28%@5)) du(z)
_ 25/}R <1 _sin

ga)) du(z).

When §|z| > 2, we have % < 1 (since sin(z0) < 1). Therefore, the integrand is at least 1 when

|z| > 2 and the integrand is always non-negative since |sin(z)| < |z|. Therefore we get

5
|- atenae=du(-2/5.2/50).
-5

From the continuity theorem, it follows that if /i, converge to a continuous function, then the

limit is a characteristic function too. Here is an application of this.

0.6. Positive semi-definiteness. What functions arise as characteristic functions of probability
measures on R? If p(t) = [ e***dy(x) for a probability measure y, then p(—t) = ¢(t) forall t € R.
Further, for any m > 1 and any complex numbers ¢y, ..., ¢, and any real numbers t1,...t,,, we
must have

2 i 4
du(z) = Z ck@/ez(t’“_mmdu(m’)

k=1

m
0 S/‘cheith
k=1
n

= > cntep(ty — to).

k=1

This motivates the following definition.

Definition 15: Positive definite functions

A function ¢ : R — R is said to be positive definite if the matrix My[t1,...,t,] = (¢(t; —

tr))1<jk<n is Hermitian and positive semi-definite for any n > 1 and any t1,...,¢, € R.
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Thus characteristic functions are necessarily positive definite functions. We have also seen that
they are continuous and take the value 1 at 0. These are all the properties that it takes to make a

characteristic function.
Theorem 57: Bochner’s theorem

A function ¢ : R — R is a characteristic function of a Borel probability measure on R if and

only if ¢ is continuous, positive definite and ¢(0) = 1.

Before starting the proof, we make some basic observations about positive definite functions.

e If ¢ is positive definite, then |¢| < 1. Indeed, for any ¢, the positive semi-definiteness

of M,|0,t] shows that 1 — |¢(¢)|?> > 0 (note that o(—t) = ¢(t) is part of the condition of

positive definiteness).

e If v and ¢ are positive definite functions and 6(t) = ¢(t)y(¢), then 0 is also positive
definite. The matrix C' = Mp][t1,...,t,] is the Hadamard product (entry-wise product)
of A = My[tq,...,ty) and B = Mylty,...,t,]. Itis a theorem of Schur that a Hadamard
product of positive semi-definite matrices is also positive demi-definite. It is not hard to
see: As A is positive semi-definite, we can find random variables X1, ..., X,, such that
a;; = BE[X;Xj]. Similarly B = E[Y;Y}] for some random variables Y7,...,Y,. We can
construct X;s and Yjs on the same probability space, so that (X1,..., X,,) is independent
of (Y1,...,Y},). Then, the covariance matrix of Z; = X;Y;, 1 < i < n, is precisely C. Hence

C is positive semi-definite.

e For any nice function ¢ : R — C, we have

(2) // c(t)e(s)p(t — s)dtds > 0.
This is just a continuum analogue of 3, ;. ¢;C(t; — tx) and can be got by approximating

the integral by sums. We omit details.

Now we come to the proof of Bochner’s theorem. What we need to prove is that given a continu-
ous positive definite function ¢ satisfying ¢(0), there is a probability measure whose characteristic
function it is. The idea is the natural one. We have already seen inversion formulas that recover a
measure from its characteristic function. We just apply these inversion formulas to ¢ and then try

to show that the object we get is a probability measure.

PROOF OF BOCHNER’S THEOREM. Let ¢ be continuous, positive-definite and ¢(0) = 1.
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Case: ¢ is absolutely integrable: Taking a cue from the Fourier inversion formula, define

flo) = o /R p(t)e vt

The integral is well-defined as ¢ is bounded. We want to show that f is a probability density. First

we show that f is non-negative®. Fix an interval Ij; = [~ M, M] and observe that

flz) = 1 / / =) p(t — s)dtds (the inner integral does not depend on s)
20 (2M) J;,

1 / / iz (t—s) 1 / / ix(t—s)
= — e t — s)dtds + ———— e t — s)dtds.
27T(2M) I Jd Iy SO( ) 27T(2M) Ins JCVI SO( )

The first integral is positive by (2) (take c(t) = em1|t|§ ). As for the second integral, we claim
that it goes to zero as M — oo. Indeed, fix 6 > 0 and observe that for |s| < (1 — §)M, the inner
integral is less than ¢y := fI(SJWC lo(u)|du (as [t — s| > 0M for any |s| < (1 — )M and any [t| > M).
If |s| > (1 — §)M, we just use the trivial bound C' := [} |¢| for the inner integral. Overall, the

bound for the second term becomes
1

27 (2M)

Let M — oo and then ¢ | 0 (or just take 6 = ﬁ) to see that this goes to zero as M — oo. This

proves that f(z) > 0 for all . We now claim that [ f(z)dz = 1. To start with, since | f| < ||¢||1, for

/f(l' —o x2/2d // et —Ux/2d dt
R
2 go(t)/eme_" 120t da
T JR R

where the application of Fubini’s theorem is justified because |p(t)|e™7 *2?/2 ¢ 1 (]R xR). The inner

(2(1 — 8)Meys + COM) < epy + oC.

any o > 0 we have

integral is essentially the Fourier transform of the Gaussian and equal to v2me 202 Plugging this

in, we see that

—0 Z‘Z/zd / 202 dt
/R f(x o\ 2w e
The right side is E[¢(0Z)] where Z ~ N (0, 1). By continuity and boundedness of ¢, DCT implies

that it converges to ¢(0) = 1 as o | 0. The integrand on the left side increases (as f > 0) to f(z).

41t may be easier to first see the following formal argument. Fix 2 € R and use ¢(t) = ¢*** in (2) to get

0< //e“f(f*s)@(t—s)dtds = /Uemga(u)du] ds
- @) ( / 1ds> .

Of course, the integral here is infinite, hence the proof is only formal, but it gives a hint why f(z) > 0. The actual proof

makes this precise by integrating s over a finite interval.
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hence by MCT, the limit as ¢ | 0 of the integral is [, f(x)dz. This shows that f is a probability
density.
As fis integrable, the Fourier inversion formula applies to show that [, f(z)e™""dz = ¢(t) for

all t. Thus, ¢ is the characteristic function of the probability measure f(z)dzx.

General case: For any ¢ > 0, define ¢, (t) = ©(t)e~7"t/2 (the idea behind: If ¢ is the characteristic
function of a random variable X, then ¢, would be that of X + 0Z, where Z ~ N(0,1)). Since
¢ is bounded, ¢, is absolutely integrable for any o > 0. Further, ¢, is continuous and positive
definite by the Schur product theorem. Thus, by the first case, ¢, is the characteristic function of
a measure /i, (in fact, duy(z) = f,(x)dz, where f,(z) = 5= [ e o, (t)dt).

v, — ¢ point-wise as o | 0. By the second part of Lévy’s continuity theorem, we see that

,uag,uasai()forsome,uEP(R)andthatﬂzw. [ |

0.7. Multivariate situation. Let X ~ u € P(R%). Its Fourier transform or characteristic func-
tion is a function /i : R? — C defined as i(t) = [ e!“®du(z) = E[e!"X)]. All the theorems proved
in the univariate case go through with the most obvious modifications. In particular, we have

(1) Parseval relation: [, fidv = [pa Ddp.

(2) Fourier inversion formula: If /i = 7, then p« = v. In particular, if /i is integrable, then p has

bounded continuous density given by f(z) = (27)~¢ [o. fi(t)e'"®) dt.
(3) Lévy’s continuity theorem: Identical to the one-dimensional case.

(4) Joint moments of X;s are related to partial derivatives of the characteristic function at the
origin.

And these tools can be used to prove CLT just as before.

Fourier analysis on general locally compact abelian groups goes almost in parallel to that
on the real line. If G is a locally compact abelian group (eg., RY, (S1)4, 74, finite abelian
groups, their products), then the set of characters (continuous homomorphisms from G to
S1) form a collection G called the dual of G. It can be endowed with a topology (basically
of point-wise convergence on G) and these characters form a dense set in L?(G) (w.r.t. Haar
measure). For a measure . on G, one defines its Fourier transform /i : G — C by fi(x) =
Jo x(@)dp(z). Plancherel’s theorem, Lévy’s theorem, Bochner’s theorem all go through with

minimal modification of language”.

A good resource is the book Fourier analysis on groups by Walter Rudin.

-
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