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CHAPTER 1

Introduction

In this second part of the course, we shall study independent random variables. Much of

what we do is devoted to the following single question: Given independent random variables

with known distributions, what can you say about the distribution of the sum? In the process of

finding answers, we shall weave through various topics. Here is a guide to the essential aspects

that you might pay attention to.

Firstly, the results. We shall cover fundamental limit theorems of probability, such as the weak

and strong law of large numbers, central limit theorems, Poisson limit theorem, in addition to

results on random series with independent summands. We shall also talk about the various modes

of convergence of random variables.

The second important aspect will be the various techniques. These include the first and second

moment methods, Borel-Cantelli lemmas, zero-one laws, inequalities of Chebyshev and Bernstein

and Hoeffding, Kolmogorov’s maximal inequality. In addition, we mention characteristic func-

tions, a tool of great importance, as well as the less profound but very common and useful tech-

niques of proofs such as truncation and approximation.

Thirdly, we shall try to introduce a few basic problems/constructs in probability that are of

interest in themselves and that appear in many guises in all sorts of probability problems. These

include the coupon collector problem, branching processes, Pólya’s urn scheme and Brownian

motion. Many more could have been included if there was more time1.

1. The basic set up for probability

A random experiment is an undefined but intuitively unambiguous term that conveys the idea

of an “experiment” that can have one of multiple outcomes, and which one actually occurs is

unpredictable. The first question in making a theory of probability is to give a mathematical

definition that can serve as a model for the real-world notion of a random experiment.

1References: Dudley’s book is an excellent source for the first aspect and some of the second but does not have

much of the third. Durrett’s book is excellent in all three, especially the third, and has way more material than we can

touch upon in this course. Lots of other standard books in probability have various non-negative and non-positive

features.
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In basic probability class we have already seen how to do this, provided the number of out-

comes is finite or countably infinite. This is how it is done.

Definition 1: Discrete probability space

A discrete probability space is a pair (Ω, p), where Ω is a non-empty countable set and

p : Ω → [0, 1] is a function such that
∑
ω∈Ω

p(ω) = 1. Then define P : 2Ω → [0, 1] by P(A) =∑
ω∈A

p(ω).

The set Ω is called the sample space (the collection of all possible outcomes), p(ω) are called

elementary probabilities, subsets of Ω are called events, and P(A) is said to be the probability of the

event A. The way this mathematical notion is supposed to represent a random experiment is

familiar. We just illustrate with a few examples.

Example 1: A coin is tossed n times

Then Ω = {0, 1}n where if ω = (ω1, . . . , ωn) ∈ Ω denotes the outcome where the ith toss

is a head if ωi = 1 and a tail if ωi = 0. Further, p(ω) = pω1+...+ωn(1 − p)n−ω1−...−ωn (this

assignment incorporates the idea that distinct tosses are ’independent’). An example of the

event of getting k heads exactly, i.e., A = {ω : ω1 + . . . + ωn = k}, which has probability

P(A) =
(
n
k

)
pk(1− p)n−k.

Example 2: r balls are thrown into n bins at random

Then Ω = [n]r where [n] = {1, . . . , n}. Here ω = (ω1, . . . , ωn) ∈ Ω denotes the outcome

where the ith ball goes into the bin numbered ωi. Elementary probabilities are defined by

p(ω) = n−r. An example of an event is that the first bin is empty, i.e., A = {ω : ωi 6=
1 for all i}, and it has probability P(A) = (n− 1)r/nr.

But when the number of possible outcomes is uncountable, this framework does not suffice.

Three examples:

(1) A glass rod falls and breaks into two pieces.

(2) A fair coin is tossed infinitely many times.

(3) A dart is thrown at a circular dart board.

If Ω denotes the sample space (the set of all possible outcomes), then in the above cases it must

respectively be equal to
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(1) [0, 1], where we think of the glass rod as the line segment [0, 1] and the outcome denoting

the point in [0, 1] where the breakage occurs,

(2) {0, 1}N, where ω = (ω1, ω2, . . .) denotes the outcome where the kth toss turns up ωk (al-

ways 1 denotes heads and 0 denotes tails),

(3) {(x, y) : x2 + y2 ≤ 1}, where the point (x, y) denotes the location where the dart hits the

dartboard.

In all three cases Ω is uncountable. We also agree on the probabilities of many events, for example

that [0.1, 0.35] and {ω ∈ {0, 1}N : ω1 = 1, ω2 = 0} and {(x, y) : x > 0 > y} in the three examples all

have probability 1
4 . But where that comes from? If any elementary probability has to be assigned

to singletons, it can only be zero, and there is no unambiguous meaning to adding uncountably

many zeros to get 1
4 . So we need a new framework.

The first example is clearly the same as the issue of assigning lengths to subsets of the line, and

in measure theory class we have seen that it can be done satisfactorily by giving up the idea of

assigning length to every subset. As recompense, we get a notion of length that is not just finitely,

but countably additive. This framework exactly fits our need.

Definition 2: Probability space

A probability space is a triple (Ω,F ,P) where

• Ω is a non-empty set,

• F is a sigma algebra of subsets of Ω. That is, F ⊆ 2Ω; ∅ ∈ F ; A ∈ F =⇒ Ac ∈ F ;

An ∈ F =⇒ ∪nAn ∈ F .

• P is a probability measure on F . That is P : F → [0, 1] and P(tAn) =
∑

nP(An) if

An ∈ F are pairwise disjoint, and P(Ω) = 1.

Observe that n will always indicate a countable indexing (may start at 0 or 1 or vary over all

integers). For A ∈ F , we say that P(A) is the probability of A. We do not talk of the probability of

sets not in the sigma algebra. This framework will form the basis of all probability.

To return to the modeling of random experiments, what the sample space should be is usually

clear, as we have seen. What sigma-algebra to take? Except for the trivial sigma-algebras 2Ω and

{∅,Ω}, all sigma-algebras of interest arise as follows.
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Definition 3: Generated sigma-algebra

Let S be a collection of subsets of Ω. The smallest sigma-algebra containing S, also called

the sigma-algebra generated by S, exists and is defined as

σ(S) =
⋂
F⊇S
F ,

where the intersection is over all sigma-algebras that contain S.

Into S we put in all subsets which we definitely wish to define probabilities for, and then take

σ(S) as our sigma-algebra. For example, in the stick-breaking example, we may take S to be the

collection of all intervals in [0, 1]. That is called the Borel sigma-algebra on [0, 1] and denoted B or

B[0,1]. This is one of the most important sigma-algebras for us, so let us define it in general.

Definition 4: Borel sigma-algebra

Let X be a metric space. The smallest sigma-algebra containing all open sets is called the

Borel sigma-algebra of X and denoted BX .

Many different collections of subsets can give rise to the same sigma-algebra. For example, the

collection of closed subsets also generates BX . IfX = R, the collection of intervals, the collection of

intervals with rational end-points, the collection of compact sets, all these generate BR (exercise!).

Now that we are clear how the sigma-algebra associated to a random experiment is obtained,

the question remains of the probability measure. We have Ω, a collection of subsets S, and the

sigma-algebra σ(S). By symmetry considerations or experiments or something else, we know

what probability of events in S ought to be. So the primary question of designing a probability

space reduces to this:

Question 1: Extension of probability

Given P : S → [0, 1], does there exist a probability measure P on σ(S) such that P(A) =

P (A) for A ∈ S. If so, is it unique?

The answer to this comes from the construction of measures in measure theory. As it turns

out, for our purposes it suffices to assume the existence of Lebesgue measure, and everything else

follows from that.
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Example 3: Break a stick at random

Here Ω = [0, 1], the sigma algebra is B the collection of all Borel subsets of [0, 1] and the

probability measure is λ, the Lebesgue measure on [0, 1]. It is a non-trivial fact that there is

a unique measure λ on B such that λ([a, b]) = b− a whenever [a, b] ⊆ [0, 1].

Similarly the dart throwing can be captured by taking the sample space to be D = {(x, y) : x2 +

y2 < 1} and the Borel sigma algebra of D and the two-dimensional Lebesgue measure on D (nor-

malized by 1/π). How to make sense of tossing infinitely many coins? We could invoke yet

another theorem in measure theory, or more precisely the method of construction of measures via

outer measures etc. Conveniently for us, we can use the stick-breaking probability space and cre-

ate many other probability spaces, including the one for tossing a coin infinitely many times. Let

us introduce this notion first.

Definition 5: Measurable function

Let F be a sigma-algebra on X and let G be a sigma-algebra on Y . A map T : X → Y is said

to be measurable if T−1(A) ∈ F for all A ∈ G.

Lemma 1: Push-forward measure

Let (Ω,F ,P) be a probability space and let G be a sigma-algebra on Λ. Suppose T : Ω→ G is

a measurable function. Then, Q : G → [0, 1] defined by Q(A) = P(T−1(A)) is a probability

measure on (Λ,G).

PROOF. If An ∈ G are pairwise disjoint, then so are Bn := T−1(A) which are in F . Further,

T−1(∪nAn) = ∪nBn, hence

Q(∪nAn) = P(T−1(∪nAn)) =
∑
n

P(Bn) =
∑
n

Q(An).

Of course T−1(Λ) = Ω, hence Q(Λ) = P(Ω) = 1. �

We say that Q is the push-forward of P under T , and sometimes denote it as Q = P ◦ T−1.

Example 4: Tossing a coin infinitely many times

Here Ω = {0, 1}N. In S , we include all sets that are defined by finitely many co-ordinates.

These sets of the form

A = {ω = (ω1, ω2, . . .) ∈ Ω : ωi1 = ε1, . . . , ωin = εn}(1)
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for some n ≥ 1 and some 1 ≤ i1 < . . . < in and some ε1, . . . , εn ∈ {0, 1}, are called finite

dimensional cylinder sets and the corresponding sigma-algebra C = σ(S) is called the cylinder

sigma-algebra.

Define T : [0, 1] → {0, 1}N by T (x) = (x1, x2, . . .) where x =
∑

n≥1 xn2−n is the binary

expansion of x. To avoid ambiguity, for dyadic rational x = k/2n, we take the expansion

that has infinitely many ones. We claim that T is measurable. Indeed,

T−1({ω = (ω1, ω2, . . .) ∈ Ω : ω1 = ε1, . . . , ωn = εN )

is an interval of length 2−N , and for any A ∈ S, we can write T−1(A) as a union of such

intervals. For example, if A is as in (1), then by taking N = in and both possibilities for ωi
for i ∈ [n] \ {i1, . . . , in}, we see that T−1(A) is a union of 2N−n pairwise disjoin intervals

each of length 2−N .

As T is measurable, we can define P = λ ◦ T−1 as a probability measure on C. Is this the

probability measure we want? If we take an element of S, say A as in (1), from the earlier

discussion

P(A) = λ(T−1(A)) = 2N−n × 1

2N
=

1

2n
,

which is the probability we wanted to assign to A.

In fact, as it happens, every probabilty space of interest to probabilists can be got this way by

pushing forward Lebesgue measure on [0, 1] by a measurable mapping.

Theorem 2: Borel isomorphism theorem

Let (X, d) be a complete and separable metric space and let µ be a probability measure on

BX . Then there is a measurable T : [0, 1]→ X such that λ ◦ T−1 = µ.

We shall not prove this theorem, but what we primarily need is a very important case of

interest, when X = RN and µ is an infinite product of measures on R. This is intimately connected

to one of the most important notions in probability, namely independence. Instead of repeating, we

refer the reader to sections 28–30 (also 27 if not familiar with finite product measures and 31–32 to

go a little beyond the bare minimum needed) of Part-1 of these lecture notes. In section 24 there

is a brief introduction to conditional probability. In the next section, a very short introduction to

Expectation is given, but for the construction and details, refer to Part-1.
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Remark 1: History

Immediately after the initial works of Borel and Lebesgue on measure and integral, it was

realized that measure theory could provide the foundation for probability theory. But it

was only after the notions of independence and conditional probability could be satisfac-

torily captured under this framework that this became universally accepted. Many people

made contributions to the former, but it was Kolmogorov’s brilliant capturing of conditional

probability under measure theoretic framework that is usually marked as the foundation of

axiomatic definition of probability.

2. User’s guide to expectation

Let (Ω,F ,P) be a probability space. Let RV denote the set of all random variables and let

RV+ denote the set of all non-negative random variables on this probability space. Here is the

fundamental fact:

Fact: There is a unique function E : RV+ → [0,∞] such that

(1) Linearity: E[X + Y ] = E[X] + E[Y ] and E[cX] = cE[X] for all X,Y ∈ RV+ and for all

c ≥ 0.

(2) Positivity: E[X] ≥ 0 with equality if and only if X = 0 a.s.

(3) MCT (Monotone convergence theorem): If Xn, X ∈ RV+ and Xn ↑ X a.s., then E[Xn] ↑ E[X].

(4) E[1A] = P(A) for all A ∈ F .

We do not go into the construction of expectation (also called Lebesgue integral). But it is worth

noting that accepting the above fact, one has the following explicit form: For any X ∈ RV+,

E[X] = lim
n→∞

n2n−1∑
k=0

k

2n
P

{
k

2n
≤ X <

k + 1

2n

}
.

This is got by observing that Xn =
∑n2n−1

k=0
k

2n1 k
2n
≤X< k+1

2n
are increase to X pointwise, and hence

E[X] = E[Xn] by the MCT. And E[Xn] can be got from linearity.

One may also take the above formula as the definition of expectation (it is not hard to see that

the limit exists) and prove that it satisfies the four properties stated above.

For general X ∈ RV, we write it as X = X+ − X− where X+ = X ∨ 0 and X− = (−X)+ =

−(X ∧ 0). If E[X+] and E[X−] are both finite, then we say that X has expectation (or that X is

integrable) and define E[X] = E[X+]−E[X−]. Observe thatX+ +X− = |X|, hence integrability is

equivalent to E[|X|] < ∞. We also write X ∈ L1 if Xis integrable (although L1 is a space defined

via an equivalence relation). More generally, if |X|p is integrable, we write X ∈ Lp (or Lp(P) or

Lp(Ω,F ,P) if we needed).
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2.1. Limit properties. Apart from MCT we also have the following very important facts.

(1) Fatou’s lemma: If Xn ∈ RV+, then E lim inf E[Xn] ≥ E[lim inf Xn].

(2) DCT: If Xn → X a.s., if |Xn| ≤ Y for some integrable Y , then Xn, X are integrable and

E[Xn]→ E[X]. In fact, E[|Xn −X|]→ 0.

Fatou’s lemma follows directly from MCT by observing that Yn := infk≥nXk increase to Y :=

lim inf Xn and that Yn ≤ Xn. DCT follows by applying Fatou’s lemma to Y −Xn and to Y +Xn.

2.2. Inequalities. Cauchy-Schwarz, Hölder’s and Minkowski’s inequalities are important and

repeatedly used. These are explained in Part-1 of these lecture notes. Another set of all important

inequalities are those of Markov and Chebyshev, and their generalizations. These are explained

in the following sections.

2.3. Connection to independence. In general, statements for events have analogous state-

ments for random variables and vice versa. Here is an illustration of how this works for indepen-

dence of sigma-algebras (which was defined in terms of events).

Let (Ω,F ,P) be a probability space. Sub sigma-algebras G1, . . . ,Gm are independent if and

only if E[X1 . . . Xm] = E[X1] . . .E[Xm] for any bounded random variables Xi such that Xi is Gi
measurable.

12
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CHAPTER 2

Some basic tools in probability

We collect several basic tools in this section. Their usefulness cannot be overstated.

1. First moment method

In popular language, average value is often mistaken for typical value. This is not always

correct, for example, in many populations, a typical person has much lower income than the aver-

age (because a few people have a large fraction of the total wealth). For a mathematical example,

suppose X = 106 with probability 10−3 and X = 0 with probability 1 − 10−3. Then E[X] = 1000

although with probability 0.999 its value is zero. Thus the typical value is close to zero.

Since it is often easier to calculate expectations and variances (for example, expectation of a

sum is the sum of expectations) than to calculate probabilities (example, tail probability of a sum

of random variables), inequalities that bound probabilities in terms of moments may be expected

to be somewhat useful. In fact, they are extremely useful!

Lemma 3: First moment method or Markov’s inequality

Let X ≥ 0 be a r.v. For any t > 0, we have P{X ≥ t} ≤ E[X]
t .

PROOF. For any t > 0, clearly t1X≥t ≤ X . Positivity of expectations gives the inequality. �

Thus, a positive random variable is unlikely to be more than a few multiples of its mean,

e.g. there is less than 10% chance of it being more than 10 times the mean. Trivial though it

seems, Markov’s inequality is very useful, particularly as it can be applied to various functions of

the random variable of interest. Observe that in the following instances X is not assumed to be

positive, but Markov’s inequality is applied to positive functions of X .

(1) Markov’s inequality asserts that the tail of a random variable with finite expectation must

decay at least as fast as 1/t. In fact, the proof shows that if X is integrable then

P{|X| ≥ t} ≤ 1

t
E[|X|1|X|≥t] = o(1/t)

since E[|X|1|X|≥t]→ 0 by DCT.
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(2) If X has finite variance, applying Markov’s inequality to (X −E[X])2 gives

P{|X −E[X]| ≥ t} = P{|X −E[X]|2 ≥ t2} ≤ t−2Var(X),

which is called Chebyshev’s inequality. Higher the moments that exist, better the asymp-

totic tail bounds that we get, for example, P{|X −E[X]| ≥ t} ≤ t−pE[|X −E[X]|2p].

(3) If E[eλX ] < ∞ for some λ > 0, we get P{X > t} = P{eλX > eλt} ≤ e−λtE[eλX ]. This is

an even better bound as it decays exponentially as t→∞.

1.1. A different sort of strengthening of Markov’s inequality. In many situations, the fol-

lowing strengthening turns out to be useful. If X is a positive random variable, then

P{X ≥ t} ≤ E[X]

E[X
∣∣∣∣∣∣ X ≥ t] .(2)

We have not yet defined conditional expectation. For now, it can be interpreted in the elementary

fashion

E[X
∣∣∣∣∣∣ X ≥ t] =

E[X1X≥t]

P{X ≥ t}
.

In particular, if X takes values in N with pk = P{X = k}, then

E[X
∣∣∣∣∣∣ X ≥ t] =

kpk + (k + 1)pk+1 + . . .

pk + pk+1 + . . .
.

In any case, it is clear that E[X
∣∣∣∣∣∣ X ≥ t] ≥ t, hence it is stronger than Markov’s inequality. To give

a caricature of its usefulness, imagine X to be the number of fruits in a mango tree in a desert.

Most likely X is zero, but if it is above a moderate threshold, we guess that unlikely rains must

have occurred and hence X is likely to be very large. That means that E[X
∣∣∣∣∣∣ X ≥ t]� t.

2. Second moment method

The first moment method says that a positive random variable is likely to be less than a few

multiples of the mean. Can we say the converse, i.e., a random variable is likely to be larger than

a fraction of its mean? If the expectation is large, is the random variable likely to be large? This is

not true, for example, if1 Yn ∼ (1− 1
n)δ0 + 1

nδn2 , then E[Yn]→∞ but P{Yn > 0} = 1
n2 → 0.

What more information about a random variable will allow us to get the desired conclusion?

Here is a natural approach using Chebyshev’s inequality: If X is a non-negative random variable

P

{
X ≥ 1

2
E[X]

}
≥ 1−P

{
|X −E[X]| ≥ 1

2
E[X]

}
≥ 1− 4

Var(X)

E[X]2
.

Thus, if the variance is bounded by 1
5E[X]2, we get a non-trivial lower bound for the probability.

More generally, if Var(X) < (1−δ)2E[X]2, then we get a lower bound for the probability thatX ≥

1The measure δx puts mass 1 at the point x, hence P{Yn > 0} = 1
n2 → 0.
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δE[X]. Observe that in the example given above, Var(Yn) � n3 is way larger than E[Yn]2 � n2,

hence the method does not work.

Thus, a control on the variance in terms of the square of the mean, allows us to say that a

positive random variable is at least a fraction of its mean (with considerable probability). The

following inequality is a variant of the same idea. It is better, as it gives a non-trivial lower bound

even if we only know that Var(X) ≤ 100E[X]2.

Lemma 4: Second moment method or Paley-Zygmund inequality

For any non-negative r.v. X , and any 0 ≤ α ≤ 1, we have

P {X > αE[X]} ≥ (1− α)2E[X]2

E[X2]
=

(1− α)2

1 + Var(X)
E[X]2

.

In particular, P {X > 0} ≥ E[X]2

E[X2]
.

PROOF. E[X]2 = E[X1X>0]2 ≤ E[X2]E[1X>0] = E[X2]P{X > 0}. Hence the second inequal-

ity follows. The first one is similar. Let µ = E[X]. By Cauchy-Schwarz,

E[X1X>αµ]2 ≤ E[X2]P{X > αµ}.

Further, µ = E[X1X<αµ]+E[X1X>αµ] ≤ αµ+E[X1X>αµ], whence, E[X1X>αµ] ≥ (1−α)µ. Thus,

P{X > αµ} ≥
E[X1X>αµ]2

E[X2]
≥ (1− α)2E[X]2

E[X2]
.

The remaining conclusions follow easily. �

Remark 2

Alternately, the first inequality can be derived by applying the second one to Y = (X−αµ)+,

as (1) P{Y > 0} = P{X > αµ}, (2) E[Y ] ≥ E[X − αµ] = (1− α)µ and (3) E[Y 2] ≤ E[X2].

3. Borel-Cantelli lemmas

If An is a sequence of events in a common probability space, lim supAn consists of all ω that

belong to infinitely many of these events. Probabilists often write the phrase “An infinitely often”

(or “An i.o” in short) to mean lim supAn.

Lemma 5: Borel Cantelli lemmas

Let An be events on a common probability space.

(1) If
∑

nP(An) <∞, then P(An infinitely often) = 0.

(2) If An are independent and
∑

nP(An) =∞, then P(An infinitely often) = 1.
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PROOF. (1) For any N , P (∪∞n=NAn) ≤
∑∞

n=N P(An) which goes to zero as N → ∞.

Hence P(lim supAn) = 0.

(2) For any N < M , P(∪Mn=NAn) = 1 −
∏M
n=N P(Acn). Since

∑
nP(An) = ∞, it follows

that
∏M
n=N (1 − P(An)) ≤

∏M
n=N e

−P(An) → 0, for any fixed N as M → ∞. Therefore,

P (∪∞n=NAn) = 1 for all N , implying that P(An i.o.) = 1. �

We shall give another proof later, using the first and second moment methods. It will be seen

then that pairwise independence is sufficient for the second Borel-Cantelli lemma!

4. Kolmogorov’s zero-one law

If (Ω,F ,P) is a probability space, the set of all events that have probability equal to 0 or to

1 form a sigma algebra. Zero-one laws are theorems that (in special situations) identify specific

sub-sigma-algebras of this. Such σ-algebras (and events within them) are sometimes said to be

trivial. An equivalent statement is that any random variable measurable with respect to such a

sigma algebra is an almost sure constant.

Definition 6

Let (Ω,F) be a measurable space and let Fn be sub-sigma algebras of F . Then the tail σ-

algebra of the sequence Fn is defined to be T := ∩nσ (∪k≥nFk). For a sequence of random

variables X1, X2, . . ., the tail sigma algebra (also denoted T (X1, X2, . . .)) is the tail of the

sequence σ(Xn).

How to think of it? If A is in the tail of (Xk)k≥1, then A ∈ σ(Xn, Xn+1, . . .) for any n. That is,

the tail of the sequence is sufficient to tell you whether the even occurred or not. For example, A

could be the event that infinitely many Xk are positive. Or that lim supXn = 1, etc.

Theorem 6: Kolmogorov’s zero-one law

Let (Ω,F ,P) be a probability space and let Fn be independent sub sigma algebras. Then

the tail sigma-algebra T is trivial.

PROOF. Define Tn := σ (∪k>nFk). Then, F1, . . . ,Fn, Tn are independent. Since T ⊆ Tn, it fol-

lows that F1, . . . ,Fn, T are independent. Since this is true for every n, we see that T ,F1,F2, . . .

are independent. Hence, T and σ (∪nFn) are independent. But T ⊆ σ (∪nFn), hence, T is inde-

pendent of itself. This implies that for anyA ∈ T , we must have P(A)2 = P(A∩A) = P(A) which

forces P(A) to be 0 or 1. �
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Corollary 7

If X1, X2, . . . are independent random variables, and Y is another random variables such

that Y is a function of (Xn, Xn+1, . . .) for any n, then Y is a constant a.s.

Independence is crucial (but observe that Xk need not be identically distributed). If Xk = X1

for all k, then the tail sigma-algebra is the same as σ(X1) which is not trivial unless X1 is constant

a.s. As a more non-trivial example, let ξk, k ≥ 1 be i.i.d. N(0.1, 1) and let η ∼ Ber±(1/2). Set Xk =

ηξk. Intuitively it is clear that a majority of ξks are positive. Hence, by looking at (Xn, Xn+1, . . .)

and checking whether positive or negatives are in majority, we ought to be able to guess η. In

other words, the non-constant random variable η is in the tail of the sequence (Xk)k≥1.

The following exercise shows how Kolmogorov’s zero-one law may be used to get non-trivial

conclusions. Another interesting application will be given in a later section.

Exercise 1

Let Xi be independent random variables. Which of the following random variables must

necessarily be constant almost surely? lim supXn, lim inf Xn, lim supn−1Sn, lim inf Sn.

Remark 3: Reformulation in terms of product measures

Let (Ωk,Fk, µk) be probability spaces and consider (Ω = ×iΩi,F = ⊗iFi, µ = ⊗iµi). The

tail sigma-algebra of the sequence Gk = σ{Πk,Πk+1, . . .} is trivial.

5. Ergodicity of i.i.d. sequence

We now prove another zero-one law now, which covers more events, but for i.i.d. sequences

only. We formulate it in the language of product spaces first. Let (Ω,F) be a measure space and

consider the product space ΩN with the product sigma algebra F⊗N. Let Pik be the projection onto

the kth co-ordinate. For k ∈ N, let θk : ΩN 7→ ΩN denote the shift map defined by Πn ◦ θk = Πn+k

for all n ≥ 1. In other words, (θkω)(n) = ω(n+ k) where ω = (ω(1), ω(2), . . .).

Definition 7: Invariant sigma-algebra

An event A ∈ F⊗N is said to be invariant if ω ∈ A if and only θkω ∈ A for any k ≥ 1. The

collection of all invariant events forms a sigma algebra that is called the invariant sigma

algebra and denoted I. An invariant random variable is one that is measurable with respect

to I.
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Note that a random variable X on the product space is invariant if and only if X ◦ θk = X for

all k ≥ 1. We could also have taken this as the definition of an invariant random variable and then

defined A to be an invariant event if 1A is an invariant random variable.

Example 5

Let A be the set of all ω such that limn→∞ ωn = 0 and let B be the set of all ω such that

|ωk| ≤ 1 for all k ≥ 1. Then A is an invariant event as well as a tail event while B is an

invariant event but not a tail event.

Exercise 2

In the setting above, show that T ⊆ I.

Lemma 8: Ergodicity of i.i.d. measures

Let P be a probability measure on (Ω,F). Then the invariant sigma algebra I on ΩN is

trivial under P⊗N.

PROOF. Let µ = P⊗N. Suppose A ∈ I. Since A :=
⋃
n σ{Π1, . . . ,Πn} is an algebra that

generates the sigma algebra F⊗N, for any ε > 0, there is some B ∈ A such that µ(A∆B) < ε. Let

N be large enough that B ∈ σ{Π1, . . . ,ΠN}. Then θNB ∈ σ{ΠN+1, . . . ,Π2N}. Under the product

measure, Πks are independent, hence µ(B ∩ θN (B)) = µ(B)µ(θN (B)). But µ = µ(B) = µ(θN (B))

(because the measure is an i.i.d. product measure and hence invariant under the shift θN ). Thus,

µ(B ∩ θNB) = µ(B)2. Now, µ(B∆A) < ε and hence

|µ(B ∩ θN (B))− µ(A ∩ θN (A))| ≤ µ(B∆A) + µ((θNB)∆(θNA)) ≤ 2ε,

|µ(B)2 − µ(A)2| ≤ |µ(B)− µ(A)||µ(B) + µ(A)| ≤ 2ε.

This shows that µ(A ∩ θNA) and µ(A)2 are within 4ε of each other. But A ∈ I, meaning that

θNA = A. Therefore, µ(A) is within 4ε of µ(A)2. As ε is arbitrary, µ(A) = µ(A)2. This forces that

µ(A) = 0 of µ(A) = 1. �

Remark 4: Reformulation in terms of sequences of random variables

Let X1, X2, . . . be a sequence of random variables on a common probability space such that

(Xk, Xk+1, . . .) has the same distribution as (X1, X2, . . .) for any k. Let Y be another random

variables such that Y = F (Xk, Xk+1, . . .) for any k ≥ 1 for some F : RN → R. Then Y is an

almost sure constant.
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It is often more natural to consider the invariant sigma-algebra on the 2-sided infinite product

ΩZ with shifts being defined in the obvious way. Under any i.i.d. product measure, the invariant

sigma-algebra is trivial.

6. Bernstein/Hoeffding inequality

Chebyshev’s inequality tells us that the probability for a random variable to differ from its

mean by k multiples of its standard deviation is at most 1/k2. Its power comes from its generality,

but the bound is rather weak. If we know more about the random variable under consideration,

we can improve upon the bound considerably. Here is one such inequality that is very useful.

Sergei Bernstein was the first to exploit the full power of the Chebyshev inequality (by applying

it to powers or exponential of a random variable), but the precise lemma given here is due to

Hoeffding.

Lemma 9: Hoeffding’s inequality

LetX1, . . . , Xn be independent random variables having zero mean. Assume that |Xk| ≤ ak
a.s. for some positive numbers ak. Then, writing S = X1+. . .+Xn andA =

√
a2

1 + . . .+ a2
k,

we have P {S ≥ tA} ≤ e−
1
2
t2 for any t > 0.

Before going to the proof, let us observe the following simple extensions.

(1) Applying the same to −Xks, we can get the two-sided bound P{|S| ≥ tA} ≤ 2e−t
2/2.

(2) If |Xk| ≤ ak are independent but do not necessarily have mean zero, then we can apply

Hoeffding’s inequality to Yk = Xk − E[Xk]. Since |Xk| ≤ ak, we also have |E[Xk]| ≤ ak

and hence |Yk| ≤ 2ak. This gives a conclusion that is slightly weaker but qualitatively no

different: With S = X1 + . . .+Xn,

P

{
S −E[S] ≥ t

√
a2

1 + . . .+ a2
n

}
≤ e−

1
8
t2 .

PROOF. Fix θ > 0 and observe that

P{S ≥ tA} = P{eθS ≥ eθtA} ≤ e−θtAE[eθS ] = e−θtAE

[
n∏
k=1

eθXk

]
.(3)

The inequality in the middle is Markov’s, applied to eθS . Since x 7→ eθx is convex, on the interval

[−ak, ak], it lies below the line x 7→ ak−x
2ak

e−θak + x+ak
2ak

eθak . Since −ak < Xk < ak, we get that

eθXk ≤ αk + βkXk, where αk = 1
2(eθak + e−θak) and βk = 1

2ak
(eθak − e−θak). Plug this into (3) to get

P{S ≥ tA} ≤ e−θtAE

[
n∏
k=1

(αk + βkXk)

]
= e−θtA

n∏
k=1

αk

19



since all terms in the expansion of the product that involve at least one Xks vanishes upon tak-

ing expectation (as they are independent and have zero mean). We now wish to optimize this

bound over θ, but that is too complicated (note that αks depend on θ). We simplify the bound by

observing that αk ≤ eθ
2a2k/2. This follows from the following observation:

1

2
(ey + e−y) =

∞∑
n=0

y2n

(2n)!
(the odd powers cancel)

≤
∞∑
n=0

y2n

2n n!
(as (2n)! ≥ 2n× (2n− 2)× . . .× 2 = 2n n!)

= ey
2/2.

Consequently, we get that
n∏
k=1

αk ≤ eθ
2A2/2. Thus, P{S ≥ tA} ≤ e−θtA+ 1

2
θ2A2

. Now it is easy to see

that the bound is minimized when θ = t/A and that gives the bound e−t
2/2. �

Clearly the Hoeffding bound is much better than the bound 1/t2 got by a direct application of

Chebyshev’s inequality. It is also a pleasing fact that e−t
2/2 is a bound for the tail of the stan-

dard Normal distribution. In many situations, we shall see later that a sum of independent ran-

dom variables behaves like a Gaussian, but that is a statement of convergence in distribution

which does not say anything about the tail behaviour at finite n. Hoeffding’s inequality is a non-

asymptotic statement showing that S behaves in some ways like a Gaussian.

7. Kolmogorov’s maximal inequality

It remains to prove the inequality invoked earlier about the maximum of partial sums of Xis.

Note that the maximum of n random variables can be much larger than any individual one. For

example, if Yn are independent Exponential(1), then P(Yk > t) = e−t, whereas P(maxk≤n Yk >

t) = 1− (1− e−t)n which is much larger. However, when we consider partial sums S1, S2, . . . , Sn,

the variables are not independent and it is not clear how to get a bound for the maximum. Kol-

mogorov found an amazing inequality - there seems to be no reason to expect a priori that such

an inequality must hold!

Lemma 10: Kolmogorov’s maximal inequality

LetXn be independent random variables with finite variance and E[Xn] = 0 for all n. Then,

P {maxk≤n |Sk| > t} ≤ t−2
∑n

k=1 Var(Xk).

Observe that the right hand side is the bound that Chebyshev’s inequality gives for the prob-

ability that |Sn| ≥ t. Here the same quantity is giving an upper bound for the (presumably) much

larger probability that one of |S1|, . . . , |Sn| is greater than or equal to t.
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PROOF. Fix n and let τ = inf{k ≤ n : |Sk| > t} where it is understood that τ = n if |Sk| ≤ t for

all k ≤ n. Then, by Chebyshev’s inequality,

P(max
k≤n
|Sk| > t) = P(|Sτ | > t) ≤ t−2E[S2

τ ].(4)

We control the second moment of Sτ by that of Sn as follows.

E[S2
n] = E

[
(Sτ + (Sn − Sτ ))2

]
= E[S2

τ ] + E
[
(Sn − Sτ )2

]
+ 2E[Sτ (Sn − Sτ )]

≥ E[S2
τ ] + 2E[Sτ (Sn − Sτ )].(5)

We evaluate the second term by splitting according to the value of τ . Note that Sn − Sτ = 0 when

τ = n. Hence,

E[Sτ (Sn − Sτ )] =

n−1∑
k=1

E[1τ=kSk(Sn − Sk)]

=

n−1∑
k=1

E [1τ=kSk]E[Sn − Sk] (because of independence)

= 0 (because E[Sn − Sk] = 0).

In the second line we used the fact that Sk1τ=k depends on X1, . . . , Xk only, while Sn − Sk de-

pends only on Xk+1, . . . , Xn. From (5), this implies that E[S2
n] ≥ E[S2

τ ]. Plug this into (4) to get

P(maxk≤n Sk > t) ≤ t−2E[S2
n]. �

Remark 5

In proving this theorem, Kolmogorov implicitly introduced stopping times and martingale

property (undefined terms for now). When martingales were defined later by Doob, the

same proof could be carried over to what is called Doob’s maximal inequality. In simple

language, it just means that Kolmogorov’s maximal inequality remains valid if instead of

independence of Xks, we only assume that E[Xk | X1, . . . , Xk−1] = 0.

8. Coupling of random variables

Coupling is the name probabilists give to constructions of random variables on a common

probability space with given marginals and joint distribution according to the need at hand. If

you have studied Markov chains, then you would have perhaps seen a proof of convergence to

stationarity by a coupling method due to Doeblin. In this method, two Markov chains are run, one

starting from the stationary distribution and another starting at an arbitrary state. It is shown that

the two Markov chains eventually meet. Once they meet, when they separate, it is impossible to
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tell which is which (by Markov property), hence the second chain “must have reached stationarity

too”. Here are some simpler general situations where the method is useful.

Proving inequalities between numbers by coupling: Suppose we wish to show that a ≤ b. If

we could find random variables X,Y on a common probability space such that X ≤ Y a.s., and

E[X] = a and E[Y ] = b, then the inequality would follow. If the numbers are in [0, 1], this may be

be possible to prove by finding events A ⊆ B such that P(A) = a and P(B) = b. What is called

the probabilistic method is of this kind: We show that a set A (described in some way), is non-empty

by showing that P(A) > 0 under some probability measure P.

Example 6

Let X ∼ Bin(100, 3/4) and Y ∼ Bin(100, 1/2). Then it must be true that P{X ≥ 71} ≥
P{Y ≥ 71}, but can you show it by writing out the probabilities? It is possible, but here is

a less painful way. Let U1, . . . , U100 be i.i.d. Unif[0, 1] random variables on some probability

space. LetX ′ =
∑

k 1Uk≤3/4 and Y ′ =
∑

k 1Uk≤1/2. ThenX ′ ≥ Y ′, hence the event {Y ′ ≥ 71}
is a subset of {X ′ ≥ 71} showing that P{X ′ ≥ 71} ≥ P{Y ′ ≥ 71}. But X ′ has the same

distribution asX and Y ′ has the same distribution as Y , showing the inequality we wanted!

More generally, if X ∼ µ and Y ∼ ν and X ≥ Y a.s., then Fµ(t) ≤ Fν(t) for all t ∈ R. If the

latter relationship holds, we say that ν is stochastically dominated by µ.
Exercise 3

If ν is stochastically dominated by µ, show that there is a coupling of X ∼ µ with Y ∼ ν in

such a way that X ≥ Y a.s.

Getting bounds on the distance between two measures: Suppose µ and ν are two probability

measures on R and we wish to get an upper bound on their Lévy-Prohorov distance. One way

is to use the definition and work with the measures. Here is another: Suppose we are able to

construct two random variables X,Y on some probability space such that X ∼ µ, Y ∼ ν and

|X − Y | ≤ r with probability at least 1− r. Then we can claim that d(µ, ν) ≤ r. Indeed,

Fν(t) = P{Y ≤ t} ≥ P{X ≤ t− r} −P{|X − Y | > r} ≥ Fµ(t− r)− r.

and similarly Fµ(t) ≥ Fν(t − r) − r. It is a fact that if d(µ, ν) = r, then such a coupled pair of

random variables does exist but it requires a bit of work (it is akin to Hall’s marriage problem), so

we skip it.
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Similar ideas can be used for other distances. For example, on a finite set [n] = {1, 2, . . . , n}, let

µ, ν be two probability measures. Their total variation distance is defined as dTV (µ, ν) = max
A⊆[n]

|µ(A)−

ν(A)|. One way to get a bound on the total variation distance is to construct two random variables

X,Y on some probability space such that X ∼ µ, Y ∼ ν and P{X 6= Y } = r. Then dTV (µ, ν) ≤ r.

Indeed, for any A, we have

µ(A) = P{X ∈ A} ≤ P{Y ∈ A}+ P{Y 6∈ A,X ∈ A} ≤ ν(A) + P{X 6= Y }.

Getting the inequality with µ and ν reversed, we see that dTV (µ, ν) ≤ P{X 6= Y }. It is an easy fact

that one can always couple random variables this way.
Exercise 4

Show that there is a coupling (X,Y ) that achieves equality, i.e., P{X 6= Y } = dTV (µ, ν).

Defining distances using coupling: The fact that Lévy distance and total variation distance can be

rephrased in terms of coupling suggests that one can define other distances between probability

measures by minimizing some cost over all possible couplings. The following is a very useful

definition (we shall not use it in this course though).

Definition 8: Transportation distance

Let µ and ν be two measures on Rd. For c : Rd × Rd → [0,∞), define Tc(µ, ν) :=

inf{E[c(X,Y )] : X ∼ µ, Y ∼ ν}, where the infimum is over all couplings with the given

marginals (and one can choose the probability space too).

Popular choices of the cost function are c(x, y) = ‖x − y‖ (Euclidean distance) and c(x, y) =

‖x − y‖2. In the latter case, the transportation distance is widely referred to as Wasserstein metric,

although it has been well-argued that it should be called Kantorovich metric.
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CHAPTER 3

Applications of the tools

We illustrate the use of the tools introduced in the previous chapter. Simultaneously, this is an

excuse to showcase a few probability situations of interest on their own. Further, coupon collector

problem, branching processes, random walks, etc., are not only interesting on their own, they also

appear embedded within various other problems. A good understanding of probability requires

one to know these well.

1. Borel-Cantelli lemmas

If X takes values in R ∪ {+∞} and E[X] < ∞ then X < ∞ a.s. (if you like you may see

it as a consequence of Markov’s inequality!). Apply this to X =
∑∞

k=1 1Ak which has E[X] =∑∞
k=1 P(Ak) which is given to be finite. Therefore X < ∞ a.s. which implies that for a.e. ω, only

finitely many 1Ak(ω) are non-zero. This is the first Borel-Cantelli lemma.

The second one is more interesting. Fix n < m and define X =
∑m

k=n 1Ak . Then E[X] =∑m
k=nP(Ak). Also,

E[X2] = E

[
m∑
k=n

m∑
`=n

1Ak1A`

]
=

m∑
k=n

P(Ak) +
∑
k 6=`

P(Ak)P(A`)

≤

(
m∑
k=n

P(Ak)

)2

+

m∑
k=n

P(Ak).

Apply the second moment method to see that for any fixed n, as m → ∞ (note that X > 0 is the

same as X ≥ 1),

P(X ≥ 1) ≥
(
∑m

k=nP(Ak))
2

(
∑m

k=nP(Ak))
2 +

∑m
k=nP(Ak)

=
1

1 + (
∑m

k=nP(Ak))
−1

which converges to 1 as m → ∞, because of the assumption that
∑

P(Ak) = ∞. This shows that

P(∪k≥nAk) = 1 for any n and hence P(lim supAn) = 1.

Note that this proof used independence only to claim that P(Ak ∩ A`) = P(Ak)P(A`). There-

fore, not only did we get a new proof, but we have shown that the second Borel-Cantelli lemma

holds for pairwise independent events too!
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2. Coupon collector problem

A bookshelf has (a large number) n books numbered 1, 2, . . . , n. Every night, before going to

bed, you pick one of the books at random to read. The book is replaced in the shelf in the morning.

How many days pass before you have picked up each of the books at least once?

Theorem 11: Coupon collector problem

Let Tn denote the number of days till each book is picked at least once. Then Tn is con-

centrated around n log n in a window of size n by which we mean that for any sequence of

numbers θn →∞, we have

P(|Tn − n log n| < nθn)→ 1.

The proof will proceed by computing the expected value of Tn and then showing that Tn is

typically near its expected value.

A very useful elementary inequality: In the following proof and many other places, we shall have

occasion to make use of the elementary estimate

1− x ≤ e−x for all x, 1− x ≥ e−x−x2 for |x| < 1

2
.

To see the first inequality, observe that e−x− (1− x) is equal to 0 for x = 0, has positive derivative

for x > 0 and negative derivative for x < 0. To prove the second inequality, recall the power series

expansion log(1− x) = −x− x2/2− x3/3− . . . which is valid for |x| < 1. Hence, if |x| < 1
2 , then

log(1− x) ≥ −x− x2 +
1

2
x2 − 1

2

∞∑
k=3

|x|k

≥ −x− x2

since
∑∞

k=3 |x|3 ≤ x2
∑∞

k=3 2−k ≤ 1
2x

2.

PROOF OF THEOREM 11. Fix an integer t ≥ 1 and let Xt,k be the indicator that the kth book is

not picked up on the first t days. Then, P(Tn > t) = P(St,n ≥ 1) where St,n = Xt,1 + . . .+Xt,n is

the number of books not yet picked in the first t days. As E[Xt,k] = (1 − 1/n)t and E[Xt,kXt,`] =

(1− 2/n)t for k 6= `, we also compute that thefirst two moments of St,n and use (??) to get

ne−
t
n
− t
n2 ≤ E[St,n] = n

(
1− 1

n

)t
≤ ne−

t
n .(6)

and

E[S2
t,n] = n

(
1− 1

n

)t
+ n(n− 1)

(
1− 2

n

)t
≤ ne−

t
n + n(n− 1)e−

2t
n .(7)

The left inequality on the first line is valid only for n ≥ 2 which we assume.
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Now set t = n log n+ nθn and apply Markov’s inequality to get

(8) P(Tn > n log n+ nθn) = P(St,n ≥ 1) ≤ E[St,n] ≤ ne−
n logn+nθn

n ≤ e−θn = o(1).

On the other hand, taking t = n log n− nθn (where we take θn < log n, of course!), we now apply

the second moment method. For any n ≥ 2, by using (7) we get E[S2
t,n] ≤ eθn + e2θn . The first

inequality in (6) gives E[St,n] ≥ eθn−
logn−θn

n . Thus,

(9) P(Tn > n log n− nθn) = P(St,n ≥ 1) ≥ E[St,n]2

E[S2
t,n]
≥ e2θn−2 logn−θn

n

eθn + e2θn
= 1− o(1)

as n→∞. From (8) and (9), we get the sharp bounds

P (|Tn − n log(n)| > nθn)→ 0 for any θn →∞. �

Here is an alternate approach to the same problem. It brings out some other features well. But

we shall use elementary conditioning and appeal to some intuitive sense of probability.

ALTERNATE PROOF OF THEOREM 11. Let τ1 = 1 and for k ≥ 2, let τk be the number of draws

after k−1 distinct coupons have been seen till the next new coupon appears. Then, Tn = τ1 + . . .+

τn.

We make two observations about τks. Firstly, they are independent random variables. This is

intuitively clear and we invite the reader to try writing out a proof from definitions. Secondly, the

distribution of τk is Geo(n−k+1
n ). This is so since, after having seen (k−1) coupons, in every draw,

there is a chance of (n− k + 1)/n to see a new (unseen) coupon.

If ξ ∼ Geo(p) (this means P(ξ = k) = p(1 − p)k−1 for k ≥ 1), then E[ξ] = 1
p and Var(ξ) = 1−p

p2
,

by direct calculations. Therefore, remembering that 1 + 1
2 + . . .+ 1

n = log n+O(1), we get

E[Tn] =

n∑
k=1

n

n− k + 1
= n log n+O(n),

Var(Tn) = n
n∑
k=1

k − 1

(n− k + 1)2
≤ n2

n∑
j=1

1

(n− k + 1)2
≤ Cn2

with C =
∑∞

j=1
1
j2

. Thus, if θn ↑ ∞, then fix N such that |E[Tn]− n log n| ≤ 1
2nθn for n ≥ N . Then,

P {|Tn − n log n| ≥ nθn} ≤ P

{
|Tn −E[Tn]| ≥ 1

2
nθn

}
≤ Var(Tn)

1
4n

2θ2
n

≤ 4C

θ2
n

which goes to zero as n→∞, proving the theorem. �
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3. Branching processes:

Consider a Galton-Watson branching process with offsprings that are i.i.d ξ. We quickly recall

the definition informally. The process starts with one individual in the 0th generation who has

ξ1 offsprings and these comprise the first generation. Each of the offsprings (if any) have new

offsprings, the number of offsprings being independent and identical copies of ξ. The process

continues as long as there are any individuals left1.

Let Zn be the number of offsprings in the nth generation. Take Z0 = 1.

Theorem 12: The fundamental theorem on Branching processes

Let m = E[ξ] be the mean of the offspring distribution.

(1) If m < 1, then w.p.1, the branching process dies out. That is P(Zn =

0 for all large n) = 1.

(2) If m > 1, then the process survives with positive probability, i.e., P(Zn ≥
1 for all n) > 0.

PROOF. In the proof, we compute E[Zn] and Var(Zn) using elementary conditional probability

concepts. By conditioning on what happens in the (n − 1)st generation, we write Zn as a sum

of Zn−1 independent copies of ξ. From this, one can compute that E[Zn|Zn−1] = mZn−1 and

if we assume that ξ has variance σ2 we also get Var(Zn|Zn−1) = Zn−1σ
2. Therefore, E[Zn] =

E[E[Zn|Zn−1]] = mE[Zn−1] from which we get E[Zn] = mn. Similarly, from the formula Var(Zn) =

E[Var(Zn|Zn−1)] + Var(E[Zn|Zn−1]) we can compute that

Var(Zn) = mn−1σ2 +m2Var(Zn−1)

=
(
mn−1 +mn + . . .+m2n−1

)
σ2 (by repeating the argument)

= σ2mn−1m
n+1 − 1

m− 1
.

(1) By Markov’s inequality, P{Zn > 0} ≤ E[Zn] = mn → 0. Since the events {Zn > 0} are

decreasing, it follows that P(extinction) = 1.

1For those who are not satisfied with the informal description, here is a precise definition: Let V =
⋃∞
k=1 N

k
+ be the

collection of all finite tuples of positive integers. For k ≥ 2, say that (v1, . . . , vk) ∈ Nk+ is a child of (v1, . . . , vk−1) ∈ Nk−1
+ .

This defines a graph G with vertex set V and edges given by connecting vertices to their children. Let G1 be the

connected component of G containing the vertex (1). Note that G1 is a tree where each vertex has infinitely many

children. Given any η : V → N (equivalently, η ∈ NV ), define Tη as the subgraph of G1 consisting of all vertices

(v1, . . . , vk) for which vj ≤ η((v1, . . . , vj−1)) for 2 ≤ j ≤ k. Also define Zk−1(η) = #{(v1, . . . , vk) ∈ T} for k ≥ 2 and

let Z0 = 1. Lastly, given a probability measure µ on N, consider the product measure µ⊗V on NV . Under this measure,

the random variables η(u), u ∈ V are i.i.d. and denote the offspring random variables. The random variable Zk denotes

the number of individuals in the kth generation. The random tree Tη is called the Galton-Watson tree.
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(2) If m = E[ξ] > 1, then as before E[Zn] = mn which increases exponentially. But that is not

enough to guarantee survival. Assuming that ξ has finite variance σ2, apply the second

moment method to write

P{Zn > 0} ≥ E[Zn]2

Var(Zn) + E[Zn]2
≥ 1

1 + σ2

m−1

which is a positive number (independent of n). Again, since {Zn > 0} are decreasing

events, we get P(non-extinction) > 0.

The assumption of finite variance of ξ can be removed as follows. Since E[ξ] = m > 1,

we can find A large so that setting η = min{ξ, A}, we still have E[η] > 1. Clearly, η has

finite variance. Therefore, the branching process with η offspring distribution survives

with positive probability. Then, the original branching process must also survive with

positive probability! (A coupling argument is the best way to deduce the last statement:

Run the original branching process and kill every child beyond the first A, a brutal form

of family planning. If inspite of the violence, the population survives, then the original

must also survive...) �

The proof does not cover the critical case which may be skipped on first reading.

The critical case m = 1: This case is a little more delicate as E[Zn] = 1 stays constant. Here the

strengthened form of Markov’s inequality (2) comes in handy. The intuitive explanation why it

can help is that if there is one survivor in the nth generation, then it is likely that there are many

survivors. For simplicity we give a not entirely rigorous argument in a particular example.

A HEURISTIC PROOF OF EXTINCTION IN THE CRITICAL CASE FOR BINARY BRANCHING. Assume

that p0 = p2 = 1
2 . Then m = 1. If Zn ≥ 1, pick an individual in the nth generation (this is where

the argument is loose - one needs to specify how this individual is picked). Call this individual

vn and let her ancestors be vn−1, vn−2, . . . , v0 (where vk belongs to the kth generation). Let Mk

be the number of descendents of vk that are alive in generation n, excluding those that are also

descendents of vk+1. Then,

Zn = 1 +Mn−1 + . . .+M0.

We claim that E[Mk] = 1. Indeed, as vk has at least one offspring (i.e., vk+1), she must have exactly

one more off-spring, call it v′k+1. Then Mk is exactly the number of descendents of v′k+1 who are

in the nth generation of the original process (which is the n− k − 1st generation of the tree under

v′k+1). But as the branching is critical, E[Mk] = 1. This shows that E[Zn
∣∣∣∣∣∣ Zn ≥ 1] = n + 1 and
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consequently, by the strengthening of Markov’s inequality given above,

P{Zn ≥ 1} ≤ E[Zn]

E[Zn
∣∣∣∣∣∣ Zn ≥ 1]

=
1

n+ 1

which converges to 0. �

4. How many prime divisors does a number typically have?

For a natural number k, let ν(k) be the number of (distinct) prime divisors of n. What is the

typical size of ν(n) as compared to n? We have to add the word typical, because if p is a prime

number then ν(p) = 1 whereas ν(2 × 3 × . . . × p) = p. Thus there are arbitrarily large numbers

with ν = 1 and also numbers for which ν is as large as we wish. To give meaning to “typical”, we

draw a number at random and look at its ν-value. As there is no natural way to pick one number

at random, the usual way of making precise what we mean by a “typical number” is as follows.

Formulation: Fix n ≥ 1 and let [n] := {1, 2, . . . , n}. Let µn be the uniform probability measure on

[n], i.e., µn{k} = 1/n for all k ∈ [n]. Then, the function ν : [n] → R can be considered a random

variable, and we can ask about the behaviour of these random variables. Below, we write En to

denote expectation w.r.t µn.

Theorem 13: Hardy-Ramanujan

With the above setting, for any δ > 0, as n→∞we have

(10) µn

{
k ∈ [n] :

∣∣∣ ν(k)

log logn
− 1

∣∣∣ > δ

}
→ 0.

PROOF. (Turan). Fix n and for any prime p define Xp : [n] → R by Xp(k) = 1p|k. Then,

ν(k) =
∑
p≤k

Xp(k). We define ψ(k) :=
∑

p≤ 4√
k

Xp(k). Then, ψ(k) ≤ ν(k) ≤ ψ(k) + 4 since there can be

at most four primes larger than 4
√
k that divide k. From this, it is clearly enough to show (10) for ψ

in place of ν (why?).

We shall need the first two moments of ψ under µn. For this we first note that En[Xp] =

⌊
n
p

⌋
n

and En[XpXq] =

⌊
n
pq

⌋
n . Observe that 1

p −
1
n ≤

⌊
n
p

⌋
n ≤

1
p and 1

pq −
1
n ≤

⌊
n
pq

⌋
n ≤ 1

pq .
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By linearity En[ψ] =
∑

p≤ 4√n
E[Xp] =

∑
p≤ 4√n

1
p +O(n−

3
4 ). Similarly

Varn[ψ] =
∑
p≤ 4√n

Var[Xp] +
∑

p 6=q≤ 4√n

Cov(Xp, Xq)

=
∑
p≤ 4√n

(
1

p
− 1

p2
+O(n−1)

)
+

∑
p 6=q≤ 4√n

O(n−1)

=
∑
p≤ 4√n

1

p
−
∑
p≤ 4√n

1

p2
+O(n−

1
2 ).

We make use of the following two facts. Here, an ∼ bn means that an/bn → 1.∑
p≤ 4√n

1

p
∼ log log n

∞∑
p=1

1

p2
<∞.

The second one is obvious, while the first one is not hard, (see exercise 5 below)). Thus, we get

En[ψ] = log log n+O(n−
3
4 ) and Varn[ψ] = log log n+O(1). Thus, by Chebyshev’s inequality,

µn

{
k ∈ [n] :

∣∣∣ ψ(k)−En[ψ]

log log n

∣∣∣ > δ

}
≤ Varn(ψ)

δ2(log log n)2
= O

(
1

log logn

)
.

From the asymptotics En[ψ] = log log n+O(n−
3
4 ) we also get (for n large enough)

µn

{
k ∈ [n] :

∣∣∣ ψ(k)

log logn
− 1

∣∣∣ > δ

}
≤ Varn(ψ)

δ2(log log n)2
= O

(
1

log logn

)
.�

Exercise 5∑
p≤ 4√n

1
p ∼ log logn. [Note: This is not trivial although not too hard.]

5. A random graph question

The complete graphKn has vertex set [n] = {1, 2, . . . , n} and edge set E = {{i, j} : 1 ≤ i < j ≤
n}. We now define a random graph model as a random sub-graph of Kn. This model has been

studied extensively by probabilists in the last fifty years.

Definition 9: Erdös-Rényi random graph

Fix 0 < p < 1. Let Xi,j , 1 ≤ i < j ≤ n, be i.i.d. Ber(p) random variables. Let G be the graph

with vertex set [n] and edge-set {{i, j} : Xi,j = 1}. Then G is called the Erdös-Rényi random

graph with parameters n and p and denoted G(n, p).

There are many interesting questions about G(n, p). Here we ask only one: Is G(n, p) connected?

If p = 1, the answer is clearly yes, and if p = 0, the answer is clearly no. It is not hard to see that

(use coupling!) to show that the probability that G(n, p) is connected increases with p. Where
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does the change from disconnected to connected take place? The answer is given in the following

theorem.

Theorem 14: Connectivity threshold for Erdös-Renyi random graph

Fix δ > 0 and let p±n = (1± δ) logn
n . Then, as n→∞,

P{G(n, p+
n ) is connected } → 1 and P{G(n, p−n ) is connected } → 0.

Unlike in the other problems, here the second moment method is easier, because we show dis-

connection by showing that there is at least one isolated vertex ( i.e., a vertex that is not connected

to any other vertex). To show connectedness, we must go over all proper subsets of vertices.

PROOF THAT G(n, p−n ) IS UNLIKELY TO BE CONNECTED. Let Y be the number of isolated ver-

tices, i.e., Y =
∑n

i=1 Yi, where Yi is the indicator of the event that vertex i is not connected to any

other vertex. Then,

E[Y ] =
n∑
i=1

E[Yi] = n(1− p)n−1 ≥ ne−np−np2

if p < 1
2 (so that 1− p ≥ e−p−p2). Further, YiYj = 1 if and only if all the 2n− 3 edges coming out of

i or j (including the one connecting i and j) are absent (i.e., Xi,k, Xj,k are all 0). Therefore,

E[Y 2] =
n∑
i=1

E[Yi] + 2
∑
i<j

E[Yi]E[Yj ]

= n(1− p)n−1 + n(n− 1)(1− p)2n−3

≤ ne−p(n−1) + n2e−(2n−3)p.

When p = p−n , by the second moment method that

P{Y ≥ 1} ≥ E[Y ]2

E[Y 2]
≥ n2e2np−2np2

ne−p(n−1) + n2e−(2n−3)p
=

e−2np2

1
ne

p(n+1) + e3p

which goes to 1 as n → ∞ (as pn → 0 and 1
ne

npn → 0). When Y ≥ 1, G(n, p) is disconnected,

completing the proof. �

PROOF THAT G(n, p+
n ) IS UNLIKELY TO BE DISCONNECTED. We get a crude estimate as follows.

SupposeA ⊆ [n]. ThenA is disconnected fromAc if and only ifXi,j = 0 for all i ∈ A and all j ∈ Ac.
This has probability (1 − p)|A|(n−|A|). If the graph is disconnected, then there must be some such

set A with |A| ≤ n/2. Thus, by the union bound,

P{G(n, p) is not connected} ≤
bn/2c∑
k=1

(
n

k

)
(1− p)k(n−k).

Now, we set p = p+
n and divide the sum into k ≤ εn and k > εn.
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In the second sum, we use the simple bounds
(
n
k

)
≤ 2n and k(n − k) ≥ ε(1 − ε)n2. Since

1− p ≤ e−p, and there are at most n terms, we get (recall the definition of p+
n )∑

k>εn

(
n

k

)
(1− p)k(n−k) ≤ n2ne−ε(1−ε)(1+δ)n logn.

Obviously this goes to zero as n→∞ (for any choice of ε > 0, which will be made later).

The sum over k ≤ ε is handled by setting
(
n
k

)
≤ nk and 1− p ≤ e−p. We get∑

1≤k≤εn

(
n

k

)
(1− p)k(n−k) ≤

∑
k≤εn

e−k[(n−k)p−logn]

≤
∑

1≤k≤εn
e−k logn[(1+δ)(1− k

n
)−1]

≤
∞∑
k=1

e−k logn[(1+δ)(1−ε)−1].

If ε > 0 is chosen small enough that (1 + δ)(1 − ε) − 1 ≥ 1
2δ, then the above sum becomes a

geometric series whose sum is

e−
1
2
δ logn

1− e−
1
2
δ logn

≤ 1

2
n−δ/2,

the inequality holding for large n. Thus, P{G(n, p+
n ) is connected } → 1. �

6. A probabilistic version of Fermat’s last theorem

Fermat’s last theorem is the statement that there are no strictly positive integers a, b, c such that

ap + bp = cp, if p ≥ 3 is an integer. For p = 2 there are solutions of course, e.g., 3, 4, 5. What is the

intuition behind why it fails for larger p? There are more squares than cubes than fourth powers

and so on (in the sense that the number of p-th powers below N grows like N1/p). In a sparser

sequence, there should be less coincidences of the kind where sum of two terms is another term.

Here is a way to make a random version of the question that shows that p = 3 is precisely where

there is a change of behaviour!

Fix α > 0 and let ξn ∼ Ber(n−α) be independent. This gives us a random subset of positive

integers Sα = {n : ξn = 1}. By considering the summability of P{ξn = 1}, from the Borel-Cantelli

lemmas we see that Sα is a finite set w.p.1. if and only if α > 1. Hence let us fix α ≤ 1 and observe

that |Sα ∩ [N ]| = ξ1 + . . .+ ξN . Therefore,

E[|Sα ∩ [N ]|] =
N∑
k=1

1

kα
∼


1

1−αN
1−α if α < 1,

logN if α = 1.

Alternately, for α < 1 the N th term is of the order of Np where p = 1
1−α . Thus p > 3 corresponds

to α < 2
3 .

33



Theorem 15: Erdös–Ulam

If α < 2
3 , then with probability 1, there are at most finitely many triples (a, b, c) ∈ S3

α such

that a < b < c and a + b = c. If α ≥ 2
3 , then with probability 1, there are infinitely many

such triples.

Just to avoid some computations, we have not allowed a = b in our solution space. It does

not make a difference to the result if allowed. The proof will proceed by computing the first and

second moment of the random variable TN denoting the number of solution triples with c ≤ N .

PROOF. Fix any 1 ≤ a < b < c = (a+ b). The probability that (a, b, c) is in S3
α is 1/(ab(a+ b))α.

As a+ b ≥
√
ab,

E[TN ] ≤
∑

1≤a<b<N

1

(ab)
3α
2

(because a+ b ≥
√
ab)

≤

( ∞∑
k=1

1

k
3α
2

)2

This sum finite if α > 2
3 . Since the total number of solutions T is the increasing limit of TN , MCT

shows that E[T ] <∞ and hence T <∞ a.s. This proves the first statement.

For the second statement, we work out the case α = 2
3 and leave α < 2

3 as an (easier) exercise.

E[TN ] =
N∑
c=1

1

c
2
3

∑
a< c

2

1

(a(c− a))
2
3

.

The inner sum can be written as
1

c
1
3

× 1

c

∑
a< c

2

1

(ac (1− a
c ))

2
3

∼ 1

c
1
3

∫ 1/2

0

dx

x
2
3 (1− x)

2
3

.

for c large. Denoting the integral as C (and a small argument needed to ignore small c), we get

E[TN ] ∼ C
∑N

c=1
1
c ∼ C logN . This expectation goes to infinity and hence E[T ] = ∞. But to say

that T is infinite a.s., we compute the second moment of TN .

E[T 2
N ] =

N∑
c,c′=1

∑
a≤c, a′≤c′

E[ξaξc−aξcξa′ξc′−a′ξc′ ].

When the two triples are disjoint, the expectations factor and hence we can write

E[T 2
N ] = E[TN ]2 +

∑
∗

E[ξaξc−aξcξa′ξc′−a′ξc′ ]−E[ξaξc−aξc]E[ξa′ξc′−a′ξc′ ]

≤ E[TN ]2 +
∑
∗

E[ξaξc−aξcξa′ξc′−a′ξc′ ]

where the asterisk indicates summing over pairs of triples such that {a, c−a, c}∩{a′, c′−a′, c′} 6= ∅.
We show that this entire sum is O(logN), which then shows that the standard deviation of TN is
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O(
√

logN). As E[TN ] ∼ C logN , by Chebyshev inequality we get

P{TN ≤ (1− δ)C logN} ≤ Var(TN )

C2δ2 log2N
→ 0

as N →∞. This shows that T =∞ a.s. and in fact gives a more quantitative statement about how

many solutions there are.

It remains to show that the asterisked sum isO(logN). Now we must divide into several cases.

�

7. Random series

LetXn be independent random variables. The event that the series
∑

nXn converges is clearly

a tail event, hence has probability zero or one. Is it zero or one? Depends on the variables.

Let Xn ∼ Ber(pn). Then the series converges if and only if Xn = 0 for all but finitely many n.

By the Borel-Cantelli lemma,

P{Xn = 1 i.o.} =

0 if
∑

n pn <∞,

1 if
∑

n pn =∞.

Thus, the series
∑

nXn converges almost surely if
∑

n pn < ∞ and diverges almost surely if∑
n pn =∞.

Since pn = E[Xn], this may give the impression that what matters is the sum of expectations.

Not entirely correct. For example, let Xn be independent with P{Xn = 1} = P{Xn = −1} = pn/2

and P{Xn = 0} = 1 − pn. Then again, the random series converges if and only if Xn 6= 0 only

finitely often. Again by Borel-Cantelli lemma, this is equivalent to the convergence of
∑

n pn. Here

E[Xn] = 0 for all n, what pn measures is the variance.

In general, Kolmogorov (after Khinchine and others) found a complete and satisfactory answer

to the general question. His answer is that the random series converges almost surely if and only

if three (non-random) series constructed from the distributions of Xns converge. We shall prove

Kolmogorov’s three series theorem later.

8. Random series of functions

One can similarly ask about convergence of
∑

nXnun, where Xn are independent random

variables and un are elements of a Banach space. In particular, let fn : [0, 1] 7→ R be given contin-

uous functions and consider the series
∑

nXnfn(t). The following events are clearly tail events.

• The event C that the series converges uniformly on [0, 1].

• The event ND that the sum is a nowhere differentiable function (it makes sense to ask this

only if P(C) = 1).
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Again, whether these events have probability 0 or 1 depends on the variables Xns and the func-

tions fns. For example, if fn(t) = sin(πnt)/n and Xn are i.i.d. N(0, 1), then Wiener showed that

P(C) = 1 and P(ND) = 1.

We shall see this in the next part of the course on Brownian motion. For now, you may simply

compare it with Weierstrass’ nowhere differentiable function
∑

n sin(3nπt)/3n. In contrast, the

random series does not require such rapid increase of frequencies. However, although P(C ∩
ND) = 1, it is not easy to produce a particular sequence xn ∈ R such that the function

∑
n xn

sin(πnt)
n

converges uniformly but gives a nowhere differentiable function!

9. Random power series

Let Xn be i.i.d. Exp(1). As a special case of the previous examples, consider the random

power series
∑∞

n=0Xn(ω)zn. For fixed ω, we know that the radius of convergence is R(ω) =

(lim sup |Xn(ω)|1/n)−1. Since this is a tail random variable, by Kolmogorov’s zero-one law, it must

be constant. In other words, there is a number r0 such that R(ω) = r0 a.s.

But what is the radius of convergence? It cannot be determined by the zero-one law. We may

use Borel-Cantelli lemma to determine it. Observe that P(|Xn|
1
n > t) = e−t

n
for any t > 0. If

t = 1 + ε with ε > 0, this decays very fast and is summable. Hence, |Xn|
1
n ≤ 1 + ε a.s.. and hence

R ≤ 1 + ε a.s. Take intersection over rational ε to get R ≤ 1 a.s.. For the other direction, if t < 1,

then e−t
n → 1 and hence

∑
n e
−tn =∞. Since Xn are independent, so are the events {|Xn|

1
n > t}.

By the second Borel-Cantelli lemma, it follows that with probability 1, there are infinitely many n

such that |Xn|
1
n ≥ 1 − ε. Again, take intersection over rational ε to conclude that R ≥ 1 a.s. This

proves that the radius of convergence is equal to 1 almost surely.

In a homework problem, you are asked to show the same for a large class of distributions and

also to find the radius of convergence for more general random series of the form
∑∞

n=0 cnXnz
n.

10. Growth of a supercritical branching process

We showed that a super-critical branching process survives with strictly positive probability.

One can ask how the generation sizes Zn grow when the branching is supercritical. An important

theorem of Kesten and Stigum asserts that under the extra condition that E[L log+ L] < ∞, the

generation sizes grow exponentially in the sense that

P

{
lim sup

Zn
mn

> 0

}
= P{non-extinction}.

Actually it says that with limZn/m
n in place of lim sup (the existence of the limit must be proved,

of course), but we stick to the above form. Obviously the event on the left is contained in the event
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on the right, hence the asserion is really that whenever non-extinction occurs, it occurs by the Zn
grown exponentially fast.

We prove a very special case of this, as the main goal here is to illustrate the tools introduced

in the previous chapter. Recall that the off-spring variable L has distribution pk = P{L = k} and

m =
∑

k kpk is its mean.

Theorem 16: Growth of supercritical branching process

Assume that p0 = 0 and m > 1 and that σ2 := Var(L) <∞. Then, lim supm−nZn > 0 a.s.

PROOF. Under the assumption that p0 = 0, extinction never occurs. Further, if

Let Wn = Zn/m
n and let W = lim supWn. Also recall the way we constructed a branching

process from i.i.d. random variables Ln,k, n, k ≥ 1 by using Ln,1, Ln,2 . . . to determine the numbers

of offsprings of those individuals in the (n− 1)st generation.

First we claim that P{W > 0} > 0.

The same proof that we used (second moment method) to show that non-extinction has strictly

positive probability in fact shows that

lim inf P

{
Zn ≥

1

2
mn

}
≥ 1

4 + 4σ2

m−1

.

Now let W = lim supZn/m
n and let NE be the event of non-extinction. Clearly {W > 0} ⊆ NE.

What we need to show is that P{W > 0} = P{NE}, which then implies that P{{W > 0}∩NE} = 0

as claimed.

First we claim that P{W > 0} > 0. As {W < ε} ⊆ ∪N ∩n≥N {Zn < εmn}, it follows that if

P{W > 0} = 0, then for any ε > 0, there is some N < ∞ such that P{Zn > εmn for some n ≥
N} < ε. �

11. Percolation on a lattice

This application is really an excuse to introduce a beautiful object of probability. Consider the

lattice Z2, points of which we call vertices. By an edge of this lattice we mean a pair of adjacent

vertices {(x, y), (p, q)} where x = p, |y − q| = 1 or y = q, |x − p| = 1. Let E denote the set of all

edges. Xe, e ∈ E be i.i.d Ber(p) random variables indexed by E. Consider the subset of all edges

e for which Xe = 1. This gives a random subgraph of Z2 called the bond percolation graph at level p.

We denote the subgraph by Gω for ω in the probability space.

Question: What is the probability that in the percolation subgraph, there is an infinite con-

nected component?

Let A = {ω : Gω has an infinite connected component}. If there is an infinite component,

changing Xe for finitely many e cannot destroy it. Conversely, if there was no infinite cluster
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to start with, changing Xe for finitely many e cannot create one. In other words, A is a tail event

for the collection Xe, e ∈ E! Hence, by Kolmogorov’s 0-1 law2, Pp(A) is equal to 0 or 1. Is it 0 or is

it 1?

In a pathbreaking work of Harry Kesten, it was proved in 1980s that Pp(A) = 0 if p ≤ 1
2 and

Pp(A) = 1 if p > 1
2 . The same problem can be considered on G = Z3, keeping each edge with

probability p and deleting it with probability 1 − p, independently of all other edges. It is again

known (and not too difficult to show) that there is some number pc ∈ (0, 1) such that Pp(A) = 0

if p < pc and Pp(A) = 1 if p > pc. The value of pc is not known, and more importantly, it is not

known whether Ppc(A) is 0 or 1! This is a typical situation; zero-one laws may tell us that the

probability of an event is 0 or 1, but deciding between these two possibilities can be very difficult!

12. Random walk

Let Xi be i.i.d. Ber±(1/2) and let Sn = X1 + . . .+Xn for n ≥ 1 and S0 = 0 (S = (Sn) is called

simple, symmetric random walk on integers). Let A be the event that the random walk returns to the

origin infinitely often, i.e., A = {ω : Sn(ω) = 0 infinitely often}.
Then A is not a tail event. Indeed, suppose Xk(ω) = (−1)k for k ≥ 2. Then, if X1(ω) = −1, the

event A occurs (i.e., A 3 ω) while if X1(ω) = +1, then A does not occur (i.e., A 63 ω). This proves

that A 6∈ σ(X2, X3, . . .) and hence, it is not a tail event.

Alternately, you may write A = lim supAn where An = {ω : Sn(ω) = 0} and try to use Borel-

Cantelli lemmas. It can be shown with some effort that P(A2n) � 1√
n

and hence
∑

nP(An) = ∞.

However, the events An are not independent (even pairwise), and hence we cannot apply the

second Borel-Cantelli to conclude that P(A) = 1.

Nevertheless, the last statement that P(A) = 1 is true. It is a theorem of Pólya that the random

walk returns to the origin in one and two dimensions but not necessarily in three and higher

dimensions! If you like a challenge, use the first or second moment methods to show it in the

one-dimensional case under consideration (Hint: Let Rn be the number of returns in the first n

steps and try to compute/estimate its first two moments).

2You may be slightly worried that the zero-one law was stated for a sequence but we have an array here. Simply

take a bijection f : N→ Z2 and define Yn = Xf(n) and observe that the event that we want is in the tail of the sequence

(Yn)n∈N. This shows that we could have stated Kolmogorov’s zero one law for a countable collection Fi, i ∈ I , of

independent sigma algebras. The tail sigma algebra should then be defined as
⋂

F⊆I,|F |<∞
σ(

⋃
i∈I\F

Fi)
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CHAPTER 4

Modes of convergence

1. A metric on the space of probability measures on Rd

What kind of space is P(Rd), the space of Borel on Rd? It is clearly a convex set (this is true

for the space of probability measures on any measurable space). We want to measure closeness of

two probability distributions. Two possible definitions come to mind.

(1) For µ, ν ∈ P(Rd), defineD1(µ, ν) := supA∈Bd |µ(A)−ν(A)|. Since µ and ν are functions on

the Borel σ-algebra, this is just their supremum distance, usually called the total variation

distance. It is easy to see that D1 is indeed a metric on P(Rd).

One shortcoming of this metric is that D1 is too strong. If µ is a discrete measure

and ν is a measure with density, then D1(µ, ν) = 1. But if µ is uniform distribution on

[0, 1] and µn is uniform distribution on the finite set {j/n : 1 ≤ j ≤ n}, then for large n

we would like to think that µ and µn are close (after all, if we want a sample from µ, a

random number generator will in fact give us a sample from ν for some large n, and we

accept that). But in the metric D1, they remain far apart.

(2) We can restrict the class of sets over which we take the supremum. For instance, taking

all semi-infinite intervals, we define the Kolmogorov-Smirnov distance

D2(µ, ν) = sup
x∈Rd

|Fµ(x)− Fν(x)|.

If two CDFs are equal, the corresponding measures are equal. Hence D2 is also a genuine

metric on P(Rd).

ClearlyD2(µ, ν) ≤ D1(µ, ν), henceD2 is weaker thanD1. Unlike withD1, it is possible

to have discrete measures converging in D2 to a continuous one, see Exercise 6. But it is

still too strong.

For example, if a 6= b are points in Rn, then it is easy to see thatD1(δa, δb) = D2(δa, δb) =

1. Thus, even when an → a in Rd, we do not get convergence of δan to δa in these metrics.

This is an undesirable feature as we must accept errors in measurement, for example, a

10 digit number as an approximation to a real number. Alternately, let us just say that we

would like the embedding R 7→ P(R) defined by a 7→ δa to be continuous.
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Thus, we would like a weaker metric, where more sequences converge. The problem with the

earlier two definitions is that they compare closeness of µ(A) with ν(A). But we must allow for

finite precision of measurement, meaning that we cannot be too sure if a number belongs to A or

is close to it. The next definition allows for this imprecision.

Definition 10

For µ, ν ∈ P(Rd), define the Lévy distance between them as (here 1 = (1, 1, . . . , 1))

d(µ, ν) := inf{u > 0 : Fµ(x+ u1) + u ≥ Fν(x), Fν(x+ u1) + u ≥ Fµ(x) ∀x ∈ Rd}.

If d(µn, µ)→ 0, we say that µn converges in distribution or converges weakly to µ and write

µn
d→ µ. [...breathe slowly and meditate on this definition for a few minutes...]

Remark 6

Although we shall not use it, in the same way one can define a metric on P(X) for a metric

space X (it is called Lévy-Prohorov distance). For µ, ν ∈ P(X)

d(µ, ν) := inf{t > 0 : µ(A(t)) + t ≥ ν(A) and ν(A(t)) + t ≥ µ(A) for all closed A ⊆ X}.

Here A(t) is the set of all points in X that are within distance t of A. This makes it clear

that we do not directly compare the measures of a given set, but if d(µ, ν) < t, it means that

whenever µ gives a certain measure to a set, then ν should give nearly that much (nearly

means, allow t amount less) measure to a t-neighbourhood of A.

As an example, if a, b ∈ Rd, then check that d(δa, δb) ≤ (maxi |bi − ai|) ∧ 1. Hence, if an → a,

then d(δan , δa)→ 0. Recall that δan does not converge to δa in D1 or D2.
Exercise 6

Let µn = 1
n

∑n
k=1 δk/n. Show directly by definition that d(µn, λ) → 0. Show also that

D2(µn, λ)→ 0 but D1(µn, λ) does not go to 0.

The definition is rather unwieldy in checking convergence. The following proposition gives

the criterion for convergence in distribution in terms of distribution functions.

Proposition 17

µn
d→ µ if and only if Fµn(x)→ Fµ(x) for all continuity points x of Fµ.

PROOF. Suppose µn
d→ µ. Let x ∈ Rd and fix u > 0. Then for large enough n, we have Fµ(x+

u1) + u ≥ Fµn(x), hence lim supFµn(x) ≤ Fµ(x + u1) + u for all u > 0. By right continuity of Fµ,

we get lim supFµn(x) ≤ Fµ(x). Further, Fµn(x)+u ≥ Fµ(x−u1) for large n, hence lim inf Fµn(x) ≥

40



Fµ(x−u) for all u. If x is a continuity point of Fµ, we can let u→ 0 and get lim inf Fµn(x) ≥ Fµ(x).

Thus Fµn(x)→ Fµ(x).

For the converse, for simplicity let d = 1. Suppose Fn → F at all continuity points of F . Fix

any u > 0. Find x1 < x2 < . . . < xm, continuity points of F , such that xi+1 ≤ xi + u and such that

F (x1) < u and 1 − F (xm) < u. This can be done because continuity points are dense. Now use

the hypothesis to fix N so that |Fn(xi)− F (xi)| < u for each i ≤ m and for n ≥ N . Henceforth, let

n ≥ N .

If x ∈ R, then either x ∈ [xj−1, xj ] for some j or else x < x1 or x > x1. First suppose

x ∈ [xj−1, xj ]. Then

F (x+ u) ≥ F (xj) ≥ Fn(xj)− u ≥ Fn(x)− u, Fn(x+ u) ≥ Fn(xj) ≥ F (xj)− u ≥ F (x)− u.

If x < x1, then F (x+ u) + u ≥ u ≥ F (x1) ≥ Fn(x1)− u. Similarly the other requisite inequalities,

and we finally have

Fn(x+ 2u) + 2u ≥ F (x) and F (x+ 2u) + 2u ≥ Fn(x).

Thus d(µn, µ) ≤ 2u. Hence d(µn, µ)→ 0. �

Example 7

Again, let an → a in R. Then Fδan (t) = 1 if t ≥ an and 0 otherwise while Fδa(t) = 1 if t ≥ a

and 0 otherwise. Thus, Fδan (t) → Fδa(t) for all t 6= a (just consider the two cases t < a and

t > a). This example also shows the need for excluding discontinuity points of the limiting

distribution function. Indeed, Fδan (a) = 0 (if an 6= a) but Fδa(a) = 1.

Observe how much easier it is to check the condition in the theorem rather than the original

definition! Many books use the convergence at all continuity points of the limit CDF as the defini-

tion of convergence in distribution. But we defined it via the Lévy metric because we are familiar

with convergence in metric spaces and this definition shows that convergence in distribution in

not anything more exotic. On the other hand, giving the metric first is also misleading unless one

understands that there are several alternate definitions that we could have given (see exercise at

the end of the section), all of which give the same topology on P(R). The point to keep in mind is

that the topology, however you define it, is metrizable.

Exercise 7

If an → 0 and b2n → 1, show that N(an, b
2
n)

d→ N(0, 1) (recall that N(a, b2) is the Normal

distribution with parameters a ∈ R and b2 > 0).
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Question: In class, Milind Hegde raised the following question. If we define (write in one dimen-

sion for notational simplicity)

d′(µ, ν) = inf{t > 0 : Fµ(x+ t) ≥ Fν(x) and Fν(x+ t) ≥ Fµ(x) for all x},

how different is the resulting metric from the Lévy metric? In other words, is it necessary to allow

an extra additive t to Fµ(x+ t)?

It does make a difference! Suppose µ, ν are two probability measures on R such that µ(K0) = 1

for some compact set K0 and ν(K) < 1 for all compact sets K. Then, if x is large enough so that

x > y for all y ∈ K0, then Fν(x + t) < 1 = Fµ(x) for any t > 0. Hence, d′(µ, ν) > t for any t

implying that d′(µ, ν) =∞.

Now, it is not a serious problem if a metric takes the value∞. We can replace d′ by d′′(µ, ν) =

d′(µ, ν) ∧ 1 or d′′′(µ, ν) = d(µ, ν)/(1 + d(µ, ν)) which gives metrics that are finite everywhere

but are such that convergent sequences are the same as in d′ (i.e., d′(µn, µ) → 0 if and only if

d′′(µn, µ)→ 0).

But the issue is that measures with compact support can never converge to a measure without

compact support. For example, if X has exponential distribution and Xk = X ∧ k, then the

distribution ofXk does not converge to the distribution ofX in the metric d′. However, it is indeed

the case that the convergence happens in the metric d. Thus the two metrics are not equivalent 1.

Here are other ways to have defined the Lévy metric. There is no natural way to choose

between these definitions, underlining the point made earlier that the value of the Lévy distance is

itself of no great significance, what matters is the topology, or which sequences converge to which

measure. In fact, the Kolmogorov-Smirnov and total variation distances are more meaningful (and

actually used!) when one really wants to measure distances.

1In class I wrongly claimed that for probability measures on a compact set in place of the whole real line, eg.,

P([−1, 1]), convergence in d′ and in d are equivalent. Chirag Igoor showed me the following counter-example. Let

µ = δ1 and for each n define

Fn(x) =


0 if x < 0,

x/n if 0 ≤ x < 1,

1 if x ≥ 1.

Then, Fn(x) → Fµ(x) for each x and hence the corresponding measures converge to µ in Lévy metric. But the conver-

gence fails in d′. To see this, take any x > 0 and observe that if Fµ(0.5 + t) ≥ Fµn(0.5), then we must have t ≥ 0.5. As

this is true for every n, it follows that µn does not converge to µ in d′. Another such example is µn = (1−n−1)δ0+n
−1δ1

and µ = δ0.
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Exercise 8

Show that each of the following is a metric that is equivalent to the Lévy metric (in the sense

that µn → µ in one metric if and only if in the others).

(1) inf{u > 0 : Fµ(x + au1) + bu ≥ Fν(x), Fν(x + au1) + bu ≥ Fµ(x) ∀x ∈ Rd} where

a, b > 0 are fixed.

(2) inf{u+ v : u, v > 0 and Fµ(x+ u1) + v ≥ Fν(x), Fν(x+ u1) + v ≥ Fµ(x) ∀x ∈ Rd}.

Equivalent forms of convergence in distribution. We have given two equivalent definitions

of convergence in distribution. There are several others.

Theorem 18

Let µn, µ ∈ P(Rd). The following statements are equivalent.

(1) µn
d→ µ.

(2) Fµn(x)→ Fµ(x) for all x where Fµ is continuous.

(3) lim inf
n→∞

µn(G) ≥ µ(G) for all open G ⊆ Rd.

(4) lim sup
n→∞

µn(C) ≤ µ(C) for all closed C ⊆ Rd.

(5)
∫
fdµn →

∫
fdµ for all bounded continuous f : Rd → R.

We have proved the equivalence of (1) and (2). It is also clear that (3) and (4) are equivalent

(just take complements). Hence it suffices to show that (2) =⇒ (3) =⇒ (5) =⇒ (2). For

simplicity, we present the proof in one-dimension.

PROOF FOR d = 1. Assume (2). Let G ⊆ R be an open set. Then write it as G = tk(ak, bk).

Choose intervals (a′k, b
′
k) ⊆ (ak, bk) such that a′k, b

′
k are continuity points of Fµ and µ(a′k, b

′
k) ≥

µ(ak, bk)− ε2−k (possible as there are at most countably many discontinuity points). Then

µn(ak, bk) ≥ Fµn(b′k)− Fµn(a′k)→ Fµ(b′k)− Fµ(a′k) = µ(a′k, b
′
k).

Hence lim inf µn(ak, bk) ≥ µ(ak, bk)− ε2−k. By Fatou’s lemma applied to sums, we see that

lim inf
∑
k

µn(ak, bk) ≥
∑
k

µ(ak, bk)− ε2−k ≥ µ(G)− ε.

The left side is lim inf µn(G) and ε > 0 is arbitrary, hence lim inf µn(G) ≥ µ(G). This proves (3).

Assume (3) holds. Let f ∈ Cb(R). Then {f > t} is an open set for any t ∈ R and hence

lim inf µn{f > t} ≥ µ{f > t} by assumption. By Fatou’s lemma,

lim inf

∫ ∞
0

µn{f > t}dt ≥
∫ ∞

0
µ{f > t}dt.
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If f ≥ 0, then this is the same as saying lim inf
∫
fdµn ≥

∫
fdµ. For general bounded continuous

f with M = ‖f‖sup, apply this to the positive functions M − f and M + f to conclude that∫
fdµn →

∫
fdµ.

Assume (5) holds. If x < y, let ϕx,y : R→ [0, 1] be a continuous function such that ϕx,y(u) = 1

for u ≤ x and ϕx,y(u) = 0 for u ≥ y. Then

Fµn(x) ≤
∫
ϕx,ydµn ≤ Fµn(y), Fµ(x) ≤

∫
ϕx,ydµ ≤ Fµ(y).

As
∫
ϕx,ydµn →

∫
ϕx,ydµ by assumption, we see that

lim supFµn(x) ≤ Fµ(y), lim inf Fµn(y) ≥ Fµ(x).

This is true for all x < y. Let y ↓ x in the first inequality to get lim supFµn(x) ≤ Fµ(x) for all x. Let

x ↑ y in the second inequality to get lim inf Fµn(y) ≥ Fµ(y−) for all y. Hence if x is a continuity

point of Fµ, we have limFµn(x) = Fµ(x). �

As we have seen, µn
d→ µ does not imply that µn(A) → µ(A) in general. Sometimes it does,

for example if A = (−∞, x] where µ{x} = 0. Here is a generalization.
Exercise 9

Let A ∈ B(R). If µn
d→ µ and µ(∂A) = 0, then show that µn(A)→ µ(A).

Remark 7

The dual of Cc(R) is the space of all signed measures on R with finite total variation. These

are basically of the form θ = µ − ν where µ, ν are mutually singular positive measures

and θ acts on f by f 7→
∫
fdµ −

∫
fdν. The dual norm is ‖θ‖ = µ(R) + ν(R). Conver-

gence in weak-* sense in the dual space is defined by θn → θ if θn(f) → θ(f) for all f (i.e.,

pointwise convergence of linear functionals), though we are being a little loose in talking

in terms of sequences (the dual with weak-* topology is generally not a metric space). That

is essentially the definition of weak convergence of probability measures (point (5) in the

theorem proved above), except that in this sense probability measures can converge to a

sub-probability measure. For example, 0.5δ0 +0.5δn → 0.5δ0. But if we ask for θn(f)→ θ(f)

for all f ∈ Cb(R), a larger space, then this leakage of mass to infinity cannot happen. Mod-

ulo this point, convergence in distribution is just weak-* convergence.

2. Ways to prove convergence in distribution

We end the chapter by outlining different ways in which to prove convergence in distribution.

Suppose we need to show that µn
d→ µ.
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(1) The most elegant of all ways is to find random variables Xn, X on some probability space

such that Xn ∼ µn and X ∼ µ and Xn
a.s.→ X . This will follow from later sections in this

chapter.

In fact, Skorohod’s principle tells us that this can always be done, although it is not

always clear how to find such random variables.

(2) Go by the book and show that
∫
fdµn →

∫
fdµ for all f ∈ Cb(R) or any of the other

equivalent conditions that were mentioned before. In practise, the smaller the class of

functions for which we need to check this convergence, the better it is for us.

For example, if we know that µn, µ ∈ P(R), then it suffices to show that convergence

for f ∈ C∞c (R). To see this, go back to the proof of (5) =⇒ (2) in the proof of Theorem ??.

Observe that we can choose ϕx,y to be smooth, even with bounded derivatives. The rest

of the proof remains the same.

(3) We shall later see that a surprisingly small class of functions suffices! Let et(x) = eitx for

t ∈ R. If
∫
etdµn →

∫
etdµ for all t ∈ R, then µn

d→ µ. We shall prove this when we discuss

characteristic functions.

3. Compact subsets in the space of probability measure on Euclidean spaces

Often we face problems like the following. A functional L : P(Rd) → R is given, and we

would like to find the probability measure µ that minimizes L(µ). By definition, we can find

nearly optimal probability measures µn satisfying L(µn) − 1
n ≤ infν L(ν). Then we might expect

that if the sequence µn (or a subsequence of it) converged to a probability measure µ, then µ might

be the optimal solution we are searching for. This motivates us to characterize compact subsets of

P(Rd), so that existence of convergent subsequences can be asserted.

Looking for a convergent subsequence: Let µn be a sequence in P(Rd). We would like to see if a

convergent subsequence can be extracted. Towards this direction, we prove the following lemma.

We emphasize the idea of proof (a diagonal argument) which recurs in many contexts.

Lemma 19: Helly’s selection principle

Let Fn be a sequence distribution functions on Rd. Then, there exists a subsequence {n`}
and a non-decreasing, right continuous functon F : Rd → [0, 1] such that Fn`(x) → F (x) if

x is a continuity point of F .

As before, we present the proof in one-dimension (just for notational simplicity).
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PROOF. Fix a dense subset S = {x1, x2, . . .} of R. Then, {Fn(x1)} is a sequence in [0, 1]. Hence,

we can find a subsequence {n1,k}k such that Fn1,k
(x1) converges to some number α1 ∈ [0, 1]. Then,

extract a further subsequence {n2,k}k ⊆ {n1,k}k such that Fn2,k
(x2)→ α2, another number in [0, 1].

Of course, we also have Fn2,k
(x1) → α1. Continuing this way, we get numbers αj ∈ [0, 1] and

subsequences {n1,k} ⊃ {n2,k} ⊃ . . . {n`,k} . . . such that for each `, as k →∞, we have Fn`,k(xj)→
αj for each j ≤ `.

The diagonal subsequence {n`,`} is ultimately the subsequence of each of the above obtained

subsequences and therefore, Fn`,`(xj) → αj as ` → ∞, for each j. Henceforth, write n` instead of

n`,`.

To get a function on the whole line, set F (x) := inf{αj : j for which xj > x}. F is well defined,

takes values in [0, 1] and is non-decreasing. It is also right-continuous, because if yn ↓ y, then for

any j for which xj > y, it is also true that xj > yn for sufficiently large n. Thus limn→∞ F (yn) ≤ αj .
Take infimum over all j such that xj > y to get limn→∞ F (yn) ≤ F (y). Of course F (y) ≤ limF (yn)

as F is non-decreasing. This shows that limF (yn) = F (y) and hence F is right continuous.

Lastly, we claim that if y is any continuity point of F , then Fn`(y) → F (y) as ` → ∞. To see

this, fix δ > 0. Find i, j such that y − δ < xi < y < xj < y + δ. Therefore

lim inf Fn`(y) ≥ limFn`(xi) = αi ≥ F (y − δ)

lim supFn`(y) ≤ limFn`(xj) = αj ≤ F (y + δ).

In each line, the first inequalities are by the increasing nature of CDFs, and the second inequalities

are by the definition of F . Thus

F (y−) ≤ lim inf Fn`(y) ≤ lim supFn`(y) ≤ F (y)

for all y ∈ R. If F (y−) = F (y), then it follows that limFn`(y) exists and equals F (y). �

The Lemma does not say that F is a CDF, because in general it is not!

Example 8

Consider δn. Clearly Fδn(x) → 0 for all x if n → +∞ and Fδn(x) → 1 for all x if n → −∞.

Even if we pass to subsequences, the limiting function is identically zero or identically one,

and neither of these is a CDF of a probability measure The problem is that mass escapes to

infinity. To get weak convergence to a probability measure, we need to impose a condition

to avoid this sort of situation.
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Definition 11

A family of probability measure A ⊆ P(Rd) is said to be tight if for any ε > 0, there is a

compact set Kε ⊆ Rd such that µ(Kε) ≥ 1− ε for all µ ∈ A.

Example 9

Suppose the family has only one probability measure µ. Since [−n, n]d increase to Rd, given

ε > 0, for a large enough n, we have µ([−n, n]d) ≥ 1− ε. Hence {µ} is tight. If the family is

finite, tightness is again clear.

Take d = 1 and let µn be probability measures with Fn(x) = F (x − n) (where F is a fixed

CDF), then {µn} is not tight. This is because given any [−M,M ], if n is large enough,

µn([−M,M ]) can be made arbitrarily small. Similarly {δn} is not tight.

We now characterize compact subsets of P(Rd) in the following theorem. As P(Rd) is a metric

space, compactness is equivalent to sequential compactness and we phrase the theorem in terms

of sequential compactness.

Theorem 20

Let A ⊆ P(Rd). Then, the following are equivalent.

(1) Every sequence in A has a convergent subsequence in P(Rd).

(2) A is tight.

PROOF. Let us take d = 1 for simplicity of notation.

(1) Assume thatA is tight. Then any sequence (µn)n inA is also tight. By Lemma 19, there is

a subsequence {n`} and a non-decreasing right continuous function F (taking values in

[0, 1]) such that Fn`(x)→ F (x) for all continuity points x of F .

FixA > 0 such that µn` [−A,A] ≥ 1−ε and such thatA is a continuity point of F . Then,

Fn`(−A) ≤ ε and Fn`(A) ≥ 1− ε for every n and by taking limits we see that F (−A) ≤ ε

and F (A) ≥ 1 − ε. Thus F (+∞) = 1 and F (−∞) = 0. This shows that F is a CDF and

hence F = Fµ for some µ ∈ P(Rd). By Proposition 17 it also follows that µn`
d→ µ.

(2) Assume that A is not tight. Then, there exists ε > 0 such that for any k, there is some

µk ∈ A such that µk([−k, k]) < 1 − 2ε. In particular, either Fµk(k) ≤ 1 − ε or/and

Fµk(−k) ≥ ε. We claim that no subsequence of (µk)k can have a convergent subsequence.

To avoid complicating the notation, let us show that the whole sequence does not

converge and leave you to rewrite the same for any subsequence. There are infinitely
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many k for which Fµk(−k) ≥ ε or there are infinitely many k for which Fµk(k) ≥ 1 − ε.
Suppose the former is true. Then, for any x ∈ R, since −k < x for large enough k, we see

that Fµk(x) ≥ Fµk(−k) ≥ ε for large enough k. This means that if Fµk converge to some

F (at continuity points of F ), then F (x) ≥ ε for all x. Thus, F cannot be a CDF and hence

µk does not have a limit. �

Exercise 10

Adapt this proof to higher dimensions.

4. Modes of convergence of random variables

Before going to the strong law of large numbers which gives a different sense in which Sn/n

is close to the mean of X1, we try to understand the different senses in which random variables

can converge to other random variables. Let us recall all the modes of convergence we have

introduced so far.

Definition 12

Let Xn, X be real-valued random variables on a common probability space.

I Xn
a.s.→ X (Xn converges to X almost surely) if P {ω : limXn(ω) = X(ω)} = 1.

I Xn
P→ X (Xn converges to X in probability) if P{|Xn −X| > δ} → 0 as n→∞ for

any δ > 0.

I Xn
Lp→ X (Xn converges to X in Lp) if ‖Xn −X‖p → 0 (i.e., E[|Xn −X|p]→ 0. This

makes sense for any 0 < p ≤ ∞ although ‖ · ‖p is a norm only for p ≥ 1. Usually

it is understood that E[|Xn|p] and E[|X|p] are finite, although the definition makes

sense without that.

I Xn
d→ X (Xn converges toX in distribution) if the distribution of µXn

d→ µX where

µX is the distribution of X . This definition (but not the others) makes sense even if

the random variables Xn, X are all defined on different probability spaces.

Now, we study the inter-relationships between these modes of convergence.

4.1. Almost sure and in probability. Are they really different? Usually looking at Bernoulli

random variables elucidates the matter.
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Example 10

Suppose An are events in a probability space. Then one can see that

(1) 1An
P→ 0⇐⇒ lim

n→∞
P(An) = 0,

(2) 1An
a.s.→ 0⇐⇒ P(lim supAn) = 0.

By Fatou’s lemma, P(lim supAn) ≥ lim supP(An), and hence we see that a.s convergence of

1An to zero implies convergence in probability. The converse is clearly false. For instance,

if An are independent events with P(An) = n−1, then P(An) goes to zero but, by the sec-

ond Borel-Cantelli lemma P(lim supAn) = 1. This example has all the ingredients for the

following two implications.

Lemma 21

Suppose Xn, X are random variables on the same probability space. Then,

(1) If Xn
a.s.→ X , then Xn

P→ X .

(2) If Xn
P→ X “fast enough” so that

∑
nP(|Xn −X| > δ) < ∞ for every δ > 0, then

Xn
a.s.→ X .

PROOF. Note that analogous to the example, in general

(1) Xn
P→ X ⇐⇒ ∀δ > 0, lim

n→∞
P(|Xn −X| > δ) = 0,

(2) Xn
a.s.→ X ⇐⇒ ∀δ > 0, P(lim sup{|Xn −X| > δ}) = 0.

Thus, applying Fatou’s lemma we see that a.s convergence implies convergence in probability. For

the second part, observe that by the first Borel Cantelli lemma, if
∑

nP(|Xn −X| > δ) < ∞, then

P(|Xn −X| > δ i.o) = 0 and hence lim sup |Xn −X| ≤ δ a.s. Apply this to all rational δ and take

countable intersection to get lim sup |Xn −X| = 0. Thus we get a.s. convergence. �

The second statement is useful for the following reason. Almost sure convergence Xn
a.s.→ 0 is

a statement about the joint distribution of the entire sequence (X1, X2, . . .) while convergence in

probability Xn
P→ 0 is a statement about the marginal distributions of Xns. As such, convergence

in probability is often easier to check. If it is fast enough, we also get almost sure convergence for

free, without having to worry about the joint distribution of Xns.

Note that the converse is not true in the second statement. On the probability space ([0, 1],B, λ),

let Xn = 1[0,1/n]. Then Xn
a.s.→ 0 but P(|Xn| ≥ δ) is not summable for any δ > 0. Almost sure con-

vergence implies convergence in probability, but no rate of convergence is assured.
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Exercise 11

(1) If Xn
P→ X , show that Xnk

a.s.→ X for some subsequence.

(2) Show that Xn
P→ X if and only if every subsequence of {Xn} has a further subse-

quence that converges a.s.

(3) If Xn
P→ X and Yn

P→ Y (all r.v.s on the same probability space), show that aXn +

bYn
P→ aX + bY and XnYn

P→ XY .

4.2. In distribution and in probability. We say that Xn
d→ X if the distributions of Xn con-

verges to the distribution ofX . This is a matter of language, but note thatXn andX need not be on

the same probability space for this to make sense. In comparing it to convergence in probability,

however, we must take them to be defined on a common probability space.

Lemma 22

Suppose Xn, X are random variables on the same probability space. Then,

(1) If Xn
P→ X , then Xn

d→ X .

(2) If Xn
d→ X and X is a constant a.s., then Xn

P→ X .

PROOF.

(1) Suppose Xn
P→ X . Since for any δ > 0

P(Xn ≤ t) ≤ P(X ≤ t+ δ) + P(X −Xn > δ)

and P(X ≤ t− δ) ≤ P(Xn ≤ t) + P(Xn −X > δ),

we see that lim supP(Xn ≤ t) ≤ P(X ≤ t + δ) and lim inf P(Xn ≤ t) ≥ P(X ≤ t− δ) for

any δ > 0. Let t be a continuity point of the distribution function ofX and let δ ↓ 0. We

immediately get limn→∞P(Xn ≤ t) = P(X ≤ t). Thus, Xn
d→ X .

(2) IfX = b a.s. (b is a constant), then the cdf ofX is FX(t) = 1t≥b. Hence, P(Xn ≤ b−δ)→ 0

and P(Xn ≤ b + δ) → 1 for any δ > 0 as b ± δ are continuity points of FX . Therefore

P(|Xn − b| > δ) ≤ (1− FXn(b+ δ)) + FXn(b− δ) converges to 0 as n→∞. Thus, Xn
P→ b.

�

If Xn = 1 − U and X = U , then Xn
d→ X but of course Xn does not converge to X in

probability! Thus the condition of X being constant is essential in the second statement. In fact, if

X is any non-degnerate random variable, we can find Xn that converge to X in distribution but

not in probability. For this, fix T : [0, 1]→ R such that T (U)
d
= X . Then define Xn = T (1−U). For
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all n the random variable Xn has the same distribution as X and hence Xn
d→ X . But Xn does not

converge in probability to X (unless X is degenerate).
Exercise 12

(1) Suppose that Xn is independent of Yn for each n (no assumptions about indepen-

dence across n). If Xn
d→ X and Yn

d→ Y , then (Xn, Yn)
d→ (U, V ) where U d

= X ,

V
d
= Y and U, V are independent. Further, aXn + bYn

d→ aU + bV .

(2) IfXn
P→ X and Yn

d→ Y (all on the same probability space), then show thatXnYn
d→

XY .

4.3. In probability and in Lp. How do convergence in Lp and convergence in probability

compare? SupposeXn
Lp→ X (actually we don’t need p ≥ 1 here, but only p > 0 and E[|Xn−X|p]→

0). Then, for any δ > 0, by Markov’s inequality

P(|Xn −X| > δ) ≤ δ−pE[|Xn −X|p]→ 0

and thus Xn
P→ X . The converse is not true. In fact, even almost sure convergence does not imply

convergence in Lp, as the following example shows.

Example 11

On ([0, 1],B, λ), define Xn = 2n1[0,1/n]. Then, Xn
a.s.→ 0 but E[Xp

n] = n−12np for all n, and

hence Xn does not go to zero in Lp (for any p > 0).

As always, the fruitful question is to ask for additional conditions to convergence in proba-

bility that would ensure convergence in Lp. Let us stick to p = 1. Is there a reason to expect a

(weaker) converse? Indeed, suppose Xn
P→ X . Write

E[|Xn −X|] =

∫ ∞
0

P(|Xn −X| > t)dt.

For each t the integrand goes to zero because Xn
P→ X . Will the integral go to zero? The example

of Xn = n1[0,1/n] and X = 0 (on ([0, 1],B, λ)) shows that it need not. What goes wrong in that

example is that with a small probabilityXn can take a very very large value and hence the expected

value stays away from zero. This observation makes the next definition more palatable. We put

the new concept in a separate section to give it the due respect that it deserves. This will
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5. Uniform integrability

Definition 13: Uniform integrability

A family {Xi}i∈I of random variables is said to be uniformly integrable if given any ε > 0,

there exists A large enough so that E[|Xi|1|Xi|>A] < ε for all i ∈ I .

A uniformly integrable family must be bounded inL1. To see this findA > 0 so that E[|Xi|1|Xi|>A] <

1 for all i. Then, for any i ∈ I , we get E[|Xi|] = E[|Xi|1|Xi|<A] + E[|Xi|1|Xi|≥A] ≤ A+ 1.

The converse is not true, as the example of Xn = n1[0, 1
n

] on ([0, 1],B, λ) shows. In this case, for

any A, if n is large enough, then E[|Xn|1|Xn|>A] = 1, hence the family is not uniformly integrable.

However, this just misses uniform integrability.

Example 12

A finite set of integrable random variables is uniformly integrable. More interestingly, an

Lp-bounded family with p > 1 is u.i. For, if E[|Xi|p] ≤M for all i ∈ I for some M > 0, then

E[|Xi| 1|Xi|>t] ≤ E

[(
|Xi|
t

)p−1

|Xi| 1|Xi|>t

]
≤ 1

tp−1
M

which goes to zero as t → ∞. Thus, given ε > 0, one can choose t so that

supi∈I E[|Xi|1|Xi|>t] < ε.

Exercise 13

If {Xi}i∈I and {Yj}j∈J are both u.i, then {Xi + Yj}(i,j)∈I×J is u.i. What about the family of

products, {XiYj}(i,j)∈I×J?

Lemma 23

Suppose Xn, X are integrable random variables on the same probability space. Then, the

following are equivalent.

(1) Xn
L1

→ X .

(2) Xn
P→ X and {Xn} is u.i.

PROOF. If Yn = Xn −X , then Xn
L1

→ X iff Yn
L1

→ 0, while Xn
P→ X iff Yn

P→ 0 and by the first

part of exercise 13, {Xn} is u.i if and only if {Yn} is. Hence we may work with Yn instead (i.e., we

may assume that the limiting r.v. is 0 a.s).
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First suppose Yn
L1

→ 0. We already showed that Yn
P→ 0. If {Yn} were not uniformly inte-

grable, then there exists δ > 0 such that for any positive integer k, there is some nk such that

E[|Ynk |1|Ynk |≥k] > δ. This in turn implies that E[|Ynk |] > δ. But this contradicts Yn
L1

→ 0.

Next suppose Yn
P→ 0 and that {Yn} is u.i. Then, fix ε > 0 and findA > 0 so that E[|Yk|1|Yk|>A] ≤

ε for all k. Then,

E[|Yk|] ≤ E[|Yk|1|Yk|≤A] + E[|Yk|1|Yk|>A]

≤
∫ A

0
P(|Yk| > t)dt + ε.

Since Yn
P→ 0 we see that P(|Yk| > t) → 0 for all t < A. Further, P(|Yk| > t) ≤ 1 for all k and 1 is

integrable on [0, A]. Hence, by DCT the first term goes to 0 as k →∞. Thus lim supE[|Yk|] ≤ ε for

any ε and it follows that Yk
L1

→ 0. �

Corollary 24

Suppose Xn, X are integrable random variables and Xn
a.s.→ X . Then, Xn

L1

→ X if and only

if {Xn} is uniformly integrable.

To deduce convergence in mean from a.s convergence, we have so far always invoked DCT.

As shown by Lemma 23 and corollary 24, uniform integrability is the sharp condition, so it must

be weaker than the assumption in DCT. Indeed, if {Xn} are dominated by an integrable Y , then

whatever “A” works for Y in the u.i condition will work for the whole family {Xn}. Thus a

dominated family is u.i., while the converse is false.

5.1. Relationship to compactness. The definition of uniform integrability is reminiscent of

the definition of tightness. In fact, it can be recast in that fashion.
Exercise 14

Given random variables Xi, i ∈ I on (Ω,F ,P), define the measures µi(A) =
∫
A |Xi|dP and

let νi = µi ◦ X−1
i be the push-forward measure on R. Show that {Xi : i ∈ I} is uniformly

integrable if and only if the measures {νi : i ∈ I} is tight.a

aWe defined tightness for probability measures. Here we obviously mean that given ε > 0 there is some M

such that νi([−M,M ]c) < ε for all i ∈ I .

Tightness is the criterion for precompactness in the space of probability measures. Similarly,

uniform integrability is also related to a compactness question.

To explain this, recall that on a Banach space X , there is the norm topology coming from the

norm, and the weak topology induced by the dual space X∗ (it is the smallest topology on X
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in which every element of X∗ is continuous). In particular when X = Lp(µ) for a probability

measure µ, what are the compact sets in the weak topology?

For 1 < p <∞, we know thatLp andLq are duals of each other, where 1
p+ 1

q = 1. Therefore, the

weak topology on Lp is the same as the weak* topology on Lp when viewed as the dual of Lq. By

the Banach-Alaoglu theorem, norm-bounded sets are pre-compact in the weak topology. Norm-

boundedness is clearly necessary, hence this gives a precise characterization for pre-compact sets

in Lp with weak topology.

This argument fails for L1, since it is not the dual of a Banach space. The Dunford-Pettis theorem

asserts that pre-compact subsets of L1(µ) in this weak topology are precisely uniformly integrable

subsets of L1(µ).
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CHAPTER 5

Sums of independent random variables-I

1. Weak law of large numbers

If a fair coin is tossed 100 times, we expect that the number of times it turns up heads is close

to 50. What do we mean by that, for after all the number of heads could be any number between

0 and 100? What we mean of course, is that the number of heads is unlikely to be far from 50. The

weak law of large numbers expresses precisely this.

Here and in the rest of the course Sn will denote the partial sum X1 + . . . + Xn. If we have

several sequences (Xn), (Yn) etc., we shall distinguish them by writing SXn , SYn and so on.

Theorem 25: Kolmogorov’s weak law of large numbers

Let X1, X2 . . . be i.i.d random variables. If E[|X1|] <∞, then for any δ > 0,

P

{∣∣∣ 1

n
Sn −E[X1]

∣∣∣ > δ

}
→ 0 as n→∞.

Let us introduce some terminology. If Yn, Y are random variables on a probability space and

P{|Yn − Y | ≥ δ} → 0 as n → ∞ for every δ > 0, then we say that Yn converges to Y in probability

and write Yn
P→ Y . In this language, the conclusion of the weak law of large numbers is that

1
nSn

P→ E[X1] (the limit random variable happens to be constant).

PROOF. Step 1: First assume that Xi have finite variance σ2. Without loss of generality, let

E[X1] = 0 (or else replace Xi by Xi − E[X1]). By Chebyshev’s inequality, P(|n−1Sn| > δ) ≤
n−2δ−2Var(Sn). By the independence of Xis, we see that Var(Sn) = nσ2. Thus, P(|Snn | > δ) ≤ σ2

nδ2

which goes to zero as n→∞, for any fixed δ > 0.

Step 2: Now let Xi have finite expectation (which we assume is 0), but not necessarily any higher

moments. Fix n and write Xk = Yk +Zk, where Yk := Xk1|Xk|≤An and Zk := Xk1|Xk|>An for some

An to be chosen later. Then, Yi are i.i.d, with some mean µn := E[Y1] = −E[Z1] that depends on

An and goes to zero as An →∞. Fix δ > 0 and choose n0 large enough so that |µn| < δ for n ≥ n0.

As |Y1| ≤ An, we get Var(Y1) ≤ E[Y 2
1 ] ≤ AnE[|X1|]. By the Chebyshev bound that we used in

the first step,

(1) P

{∣∣∣ SYn
n
− µn

∣∣∣ > δ

}
≤ Var(Y1)

nδ2
≤ AnE[|X1|]

nδ2
.

55



If n ≥ n0 then |µn| < δ and hence if | 1nS
Z
n + µn| ≥ δ, then at least one of Z1, . . . , Zn must be

non-zero.

P

{∣∣∣ SZn
n

+ µn

∣∣∣ > δ

}
≤ nP(Z1 6= 0)

= nP(|X1| > An).

Thus, writing Xk = (Yk − µn) + (Zk + µn), we see that

P

{∣∣∣ Sn
n

∣∣∣ > 2δ

}
≤ P

{∣∣∣ SYn
n
− µn

∣∣∣ > δ

}
+ P

{∣∣∣ SZn
n

+ µn

∣∣∣ > δ

}
≤ AnE[|X1|]

nδ2
+ nP(|X1| > An)

≤ AnE[|X1|]
nδ2

+
n

An
E[|X1| 1|X1|>An ].

Now, we take An = αn with α := δ3E[|X1|]−1. The first term clearly becomes less than δ. The

second term is bounded by α−1E[|X1| 1|X1|>αn], which goes to zero as n → ∞ (for any fixed

choise of α > 0). Thus, we see that

lim sup
n→∞

P

{∣∣∣ Sn
n

∣∣∣ > 2δ

}
≤ δ

which gives the desired conclusion. �

Some remarks about the weak law.

(1) Did we require independence in the proof? If you notice, it was used in only one place, to

say that Var(SYn ) = nVar(Y1) for which it suffices if Yi were uncorrelated. In particular, if

we assume thatXi pairwise independent, identically distributed and have finite mean, then

the weak law of large numbers holds as stated.

(2) A simple example that violates law of large numbers is the Cauchy distribution with

density 1
π(1+t2)

. Observe that E[|X|p] <∞ for all p < 1 but not p = 1. It is a fact (we shall

probably see this later, you may try proving it yourself!) that 1
nSn has exactly the same

distribution as X1. There is no chance of convergence in probability to a constant!

(3) The proof under finite variance assumption is the most useful one, as the minimality

of assumptions is less important than the strength of the conclusion. For example, if we

assume thatXi have exponential moments, one can get the deviation probability to decay

exponentially. We shall see this later under the heading “concentration of measure”.

(4) If Xk are i.i.d. random variables (possibly with E[|X1|] =∞), let us say that weak law of

large numbers is valid if there exist (non-random) numbers an such that 1
nSn − an

P→ 0.

When Xi have finite mean, this holds with an = E[X].
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It turns out that a necessary and sufficient condition for the existence of such an is that

tP{|X| ≥ t} → 0 as t→∞ (in which case, the weak law holds with an = E[X1|X|≤n]).

Note that the Cauchy distribution violates this condition.
Exercise 15

Find a distribution which satisfies the condition tP{|X| ≥ t} → 0 but does not

have finite expectation.

2. Applications of weak law of large numbers

We give three applications, two “practical” and one theoretical.

2.1. Bernstein’s proof of Weierstrass’ approximation theorem.
Theorem 26: Weierstrass’ approximation theorem

The set of polynomials is dense in the space of continuous functions (with the sup-norm

metric) on an interval of the line.

PROOF (BERNSTEIN). Let f ∈ C[0, 1]. For any n ≥ 1, we define the Bernstein polynomials

Qf,n(p) :=
∑n

k=0 f
(
k
n

) (
n
k

)
pk(1 − p)n−k. We show that ‖Qf,n − f‖ → 0 as n → ∞, which is

clearly enough. To achieve this, we observe that Qf,n(p) = E[f(n−1Sn)], where Sn has Bin(n, p)

distribution. Law of large numbers enters, because Binomial may be thought of as a sum of i.i.d

Bernoullis.

For p ∈ [0, 1], consider X1, X2, . . . i.i.d Ber(p) random variables. For any p ∈ [0, 1], we have∣∣∣Ep [f (Sn
n

)]
− f(p)

∣∣∣ ≤ Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣]
= Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣1|Sn
n
−p|≤δ

]
+ Ep

[∣∣∣ f (Sn
n

)
− f(p)

∣∣∣1|Sn
n
−p|>δ

]
≤ ωf (δ) + 2‖f‖Pp

{∣∣∣ Sn
n
− p

∣∣∣ > δ

}
(2)

where ‖f‖ is the sup-norm of f and ωf (δ) := sup{|f(x) − f(y)| : |x − y| < δ} is the modulus of

continuity of f . Observe that Varp(X1) = p(1− p) to write

Pp

{∣∣∣ Sn
n
− p

∣∣∣ > δ

}
≤ p(1− p)

nδ2
≤ 1

4δ2n
.

Plugging this into (2) and recalling that Qf,n(p) = Ep
[
f
(
Sn
n

)]
, we get

sup
p∈[0,1]

∣∣∣Qf,n(p)− f(p)
∣∣∣ ≤ ωf (δ) +

‖f‖
2δ2n

Since f is uniformly continuous (which is the same as saying that ωf (δ) ↓ 0 as δ ↓ 0), given

any ε > 0, we can take δ > 0 small enough that ωf (δ) < ε. With that choice of δ, we can choose n
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large enough so that the second term becomes smaller than ε. With this choice of δ and n, we get

‖Qf,n − f‖ < 2ε. �

Remark 8

It is possible to write the proof without invoking WLLN. In fact, we did not use WLLN, but

the Chebyshev bound. The main point is that the Bin(n, p) probability measure puts almost

all its mass between np(1− δ) and np(1 + δ) (in fact, in a window of width
√
n around np).

Nevertheless, WLLN makes it transparent why this is so.

2.2. Monte Carlo method for evaluating integrals. Consider a continuous function f : [a, b]→
R whose integral we would like to compute. Quite often, the form of the function may be suffi-

ciently complicated that we cannot analytically compute it, but is explicit enough that we can

numerically evaluate (on a computer) f(x) for any specified x. Here is how one can evaluate the

integral by use of random numbers.

Suppose X1, X2, . . . are i.i.d uniform([a, b]). Then, Yk := f(Xk) are also i.i.d with E[Y1] =∫ b
a f(x)dx. Therefore, by WLLN,

P

(∣∣∣ 1

n

n∑
k=1

f(Xk) −
∫ b

a
f(x)dx

∣∣∣ > δ

)
→ 0.

Hence if we can sample uniform random numbers from [a, b], then we can evaluate 1
n

∑n
k=1 f(Xk),

and present it as an approximate value of the desired integral!

In numerical analysis one uses the same idea, but with deterministic points. The advantage of

random samples is that it works irrespective of the niceness of the function. The accuracy is not

great, as the standard deviation of 1
n

∑n
k=1 f(Xk) is Cn−1/2, so to decrease the error by half, one

needs to sample four times as many points.

Exercise 16

Since π =
∫ 1

0
4

1+x2
dx, by sampling uniform random numbers Xk and evaluating

1
n

∑n
k=1

4
1+X2

k
we can estimate the value of π! Carry this out on the computer to see how

many samples you need to get the right value to three decimal places.

2.3. Accuracy in sample surveys. Quite often we read about sample surveys or polls, such

as “do you support the war in Iraq?”. The poll may be conducted across continents, and one is

sometimes dismayed to see that the pollsters asked a 1000 people in France and about 1800 people

in India (a much much larger population). Should the sample sizes have been proportional to the

size of the population?
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Behind the survey is the simple hypothesis that each person is a Bernoulli random variable

(1=‘yes’, 0=‘no’), and that there is a probability pi (or pf ) for an Indian (or a French person) to have

the opinion yes. Are different peoples’ opinions independent? Definitely not, but let us make

that hypothesis. Then, if we sample n people, we estimate p by X̄n where Xi are i.i.d Ber(p). The

accuracy of the estimate is measured by its mean-squared deviation
√

Var(X̄n) =
√
p(1− p)n−

1
2 .

Note that this does not depend on the population size, which means that the estimate is about as

accurate in India as in France, with the same sample size! This is all correct, provided that the

sample size is much smaller than the total population. Even if not satisfied with the assumption

of independence, you must concede that the vague feeling of unease about relative sample sizes

has no basis in fact...

3. Strong law of large numbers

If Xn are i.i.d with finite mean, then the weak law asserts that n−1Sn
P→ E[X1]. The strong law

strengthens it to almost sure convergence.

Theorem 27: Kolmogorov’s strong law of large numbers

Let Xn be i.i.d with E[|X1|] <∞. Then, as n→∞, we have Sn
n

a.s.→ E[X1].

The proof of this theorem is somewhat complicated. First of all, we should ask if WLLN im-

plies SLLN? From Lemma 21 we see that this can be done if P
(
|n−1Sn −E[X1]| > δ

)
is summable,

for every δ > 0. Even assuming finite variance Var(X1) = σ2, Chebyshev’s inequality only gives a

bound of σ2δ−2n−1 for this probability and this is not summable. Since this is at the borderline of

summability, if we assume that pth moment exists for some p > 2, we may expect to carry out this

proof. Suppose we assume that α4 := E[X4
1 ] < ∞ (of course 4 is not the smallest number bigger

than 2, but how do we compute E[|Sn|p] in terms of moments of X1 unless p is an even integer?).

Then, we may compute that (assume E[X1] = 0 without loss of generality)

E
[
S4
n

]
= n2(n− 1)2σ4 + nα4 = O(n2).

Thus P
(
|n−1Sn| > δ

)
≤ n−4δ−4E[S4

n] = O(n−2) which is summable, and by Lemma 21 we get the

statement of SLLN under fourth moment assumption. This can be further strengthened to prove

SLLN under the second moment assumption, which we first present since there is one idea (of

working with subsequences) that will also be used in the proof of the general SLLN1.

1The idea of proving SLLN this way was told to me by Sourav Sarkar who came up with the idea when he was a

B.Stat student. I have not seen it any book, although it is likely that the observation has been made before.
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Theorem 28: SLLN under second moment assumption

Let Xn be i.i.d with E[X2
1 ] <∞. Then, Snn

a.s.→ E[X1] as n→∞.

PROOF. Assume E[X1] = 0 without loss of generality and let σ2 = Var(X1). By Chebyshev’s

inequality, P{| 1nSn| ≥ t} ≤ σ2

nt2
since Var(Sn) = nσ2. Now consider the sequence nk = k2. The

bounds σ2

tn2
k

are summable, hence by the first Borel-Cantelli lemma, we see that | 1
nk
Snk | ≤ δ for all

but finitely many k, almost surely. If this even be denoted Eδ, then P(Eδ) = 1, hence ∩δ∈Q+Eδ also

has probability one, which is another way of saying that 1
nk
Snk

a.s.→ 0.

This can be applied to the i.i.d. sequence X+
n and the i.i.d. sequence X−n (that two sequences

are not independent of each other is irrelevant) to see that
1

nk
Unk → E[X+

1 ] and
1

nk
Vnk → E[X−1 ], a.s.(3)

where Un, Vn are partial sums of X+
i and X−i , respectively.

Now for any n, let k be such that nk ≤ n < nk+1. Clearly Unk ≤ Un < Unk+1
and Vnk ≤ Vn <

Vnk+1
, since the summands are non-negative (a similar assertion is false for Sn, which is why we

break into positive and negative parts). Thus,
1

nk+1
Unk ≤

1

n
Un ≤

1

nk
Unk+1

and the analogous statement for V . Now, nk+1/nk → 1, hence rewriting the above as
nk
nk+1

1

nk
Unk ≤

1

n
Un ≤

nk+1

nk

1

nk+1
Unk+1

,

we see that on the event in (3), we also have 1
nUn → E[X+

1 ] and 1
nVn → E[X−1 ]. Putting these

together with the almost sure assertion of (3), and recalling that Sn = Un − Vn, we conclude that
1
nSn

a.s.→ E[X+
1 ]−E[X−1 ] = E[X1]. �

Now we return to the more difficult question of proving the strong law under first moment

assumptions. We give two proofs, one in this section and one in the next2.

In the first proof, we shall reuse the idea from the previous proof of (1) proving almost sure

convergence along a subsequence {nk} and then (2) getting a conclusion about the whole sequence

from the subsequence for positive random variables. However, since we do not have second

moment, we cannot use Chebyshev to take the sequence nk = k2 in the first step. In fact, we shall

have to take an exponentially growing sequence nk = αk, where α > 1. But this is a problem for

the second step, since nk+1/nk → α whereas the proof above works only if we have nk+1/nk → 1.

Fortunately, we shall be able to take α arbitrarily close to 1 and thus bridge this gap! As before,

2The proof given in this section is due to Etemadi. Most books in probability give this proof. The presentation is

adapted from a blog article of Terence Tao.
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using positive random variables is necessary to be able to sandwich Sn between Snk and Snk+1
.

This will also feature in the proof below.

PROOF OF THEOREM 27. Step 1: It suffices to prove the theorem for integrable non-negative ran-

dom variable, because we may write X = X+ − X− and it is true that Sn = S+
n − S−n where

S+
n = X+

1 + . . . + X+
n and S−n = X−1 + . . . + X−n . Henceforth, we assume that Xn ≥ 0 and

µ = E[X1] < ∞ (Caution: Don’t also assume zero mean in addition to non-negativity!). One

consequence of non-negativity is that

(4)
SN1

N2
≤ Sn

n
≤ SN2

N1
if N1 ≤ n ≤ N2.

Step 2: The second step is to prove the following claim. To understand the big picture of the proof,

you may jump to the third step where the strong law is deduced using this claim, and then return

to the proof of the claim.

Claim 29

Fix any λ > 1 and define nk := bλkc. Then, Snknk
a.s.→ E[X1] as k →∞.

Proof of the claim Fix j and for 1 ≤ k ≤ nj write Xk = Yk + Zk where Yk = Xk1Xk≤nj and

Zk = Xk1Xk>nj (why we chose the truncation at nj is not clear at this point). Then, let Jδ be large

enough so that for j ≥ Jδ, we have E[Z1] ≤ δ. Let SYnj =
∑nj

k=1 Yk and SZnj =
∑nj

k=1 Zk. Since

Snj = SYnj + SZnj and E[X1] = E[Y1] + E[Z1], we get

P

{∣∣∣ Snj
nj
−E[X1]

∣∣∣ > 2δ

}
≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣+
∣∣∣ SZnj
nj
−E[Z1]

∣∣∣ > 2δ

}

≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
+ P

{∣∣∣ SZnj
nj
−E[Z1]

∣∣∣ > δ

}

≤ P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
+ P

{
SZnj
nj
6= 0

}
.(5)

We shall show that both terms in (5) are summable over j. The first term can be bounded by

Chebyshev’s inequality

(6) P

{∣∣∣ SYnj
nj
−E[Y1]

∣∣∣ > δ

}
≤ 1

δ2nj
E[Y 2

1 ] =
1

δ2nj
E[X2

11X1≤nj ].

while the second term is bounded by the union bound

(7) P

{
SZnj
nj
6= 0

}
≤ njP(X1 > nj).
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The right hand sides of (6) and (7) are both summable. To see this, observe that for any positive x,

there is a unique k such that nk < x ≤ nk+1, and then

(a)

∞∑
j=1

1

nj
x21x≤nj ≤ x2

∞∑
j=k+1

1

λj
≤ Cλx, (b)

∞∑
j=1

nj1x>nj ≤
k∑
j=1

λj ≤ Cλx.

Here, we may take Cλ = λ
λ−1 , but what matters is that it is some constant depending on λ (but not

on x). We have glossed over the difference between bλjc and λj but you may check that it does

not matter (perhaps by replacing Cλ with a larger value). Setting x = X1 in the above inequalities

(a) and (b) and taking expectations, we get
∞∑
j=1

1

nj
E[X2

11X1≤nj ] ≤ CλE[X1].
∞∑
j=1

njP(X1 > nj) ≤ CλE[X1].

As E[X1] <∞, the probabilities on the left hand side of (6) and (7) are summable in j, and hence it

also follows that P
{∣∣∣ Snjnj −E[X1]

∣∣∣ > 2δ
}

is summable. This happens for every δ > 0 and hence

Lemma 21 implies that
Snj
nj

a.s.→ E[X1] a.s. This proves the claim.

Step 3: Fix λ > 1. Then, for any n, find k such that λk < n ≤ λk+1, and then, from (4) we get
1

λ
E[X1] ≤ lim inf

n→∞

Sn
n
≤ lim sup

n→∞

Sn
n
≤ λE[X1], almost surely.

Take intersection of the above event over all λ = 1 + 1
m , m ≥ 1 to get lim

n→∞
Sn
n = E[X1] a.s. �

4. Another proof of the SLLN via a maximal inequality

Here we give another proof of the SLLN, much shorter and involving hardly any technicali-

ties3. But the techniques used in the first proof are useful and worth keeping in mind.

Lemma 30: A maximal inequality

Let Xk be i.i.d. random variables with finite expectation. Then, for any t > 0,

P

{
sup
n

1

n
Sn > t

}
≤ 1

t
E[|X1|].

The proof will assume that we know the SLLN for bounded i.i.d. random variables. Indeed,

we do know a simple proof under the fourth moment assumption by a direct application of the

first Borel-Cantelli lemma.

3Sauditya Jaiswal suggested that we could prove the SLLN on these lines, using the maximal inequality. When he

asked me about it, my first response was that we shall see this proof when we study reverse martingales. That is true,

but then I found that Michael Steele has a beautiful exposition (Explaining a mysterious maximal inequality—and a path to

the law of large numbers. Amer. Math. Monthly 122 (2015), no. 5, 490–494.) that gives an elementary proof of the maximal

inequality and deduces the SLLN from it. It seems nice enough to include here.

62



PROOF OF SLLN ASSUMING LEMMA 30. Fix A > 0 and define Yn = Xn1|Xn|≤A and Zn =

Xn1|Xn|>A, so that Xn = Yn + Zn and SXn = SYn + SZn . The two sums can be controlled separately

as follows.

(1) 1
nS

Y
n
a.s.→ E[X11|X1|≤A] by the SLLN for bounded random variables

(2) For any ε > 0, by Lemma 30,

P

{
lim sup

1

n
SZn > ε

}
≤ P

{
sup
n

1

n
SZn > ε

}
≤ 1

ε
E[|X1|1|X1|>A]

Putting these together, we have

lim sup
n→∞

SXn
n
≤ lim sup

n→∞

SYn
n

+ lim sup
n→∞

SZn
n

≤ E[X11|X1|≤A] + ε w.p. ≥ 1− 1

ε
E[|X1|1|X1|>A].

Now let A → ∞ and then ε ↓ 0 (and note that E[X11|X1|≤A] → E[X1] and E[X11|X1|>A] → 0

by DCT) to get lim sup SXn
n ≤ 0 a.s. Applying the same to −Xi gives lim inf S

X
n
n ≥ 0 a.s. Hence

Sn
n

a.s.→ E[X1]. �

It remains to prove the maximal inequality.

PROOF OF LEMMA 30. Define

Mn = max{0, X1, X1 +X2, . . . , X1 + . . .+Xn},

M ′n = max{0, X2, X2 +X3, . . . , X2 + . . .+Xn+1}.

Observe that these quantities are positive. On the event {Mn > 0}, we can drop the zero from the

maximum and write

Mn = max{X1, X1 +X2, . . . , X1 + . . .+Xn}

= X1 + max{0, X2, . . . , X2 + . . .+Xn}

≤ X1 +M ′n.

Hence, Mn −M ′n ≤ X1 on the event Mn > 0. On the event Mn ≤ 0 we have the trivial bound

Mn −M ′n ≤ 0 (since M ′n ≥ 0 anyway). Putting them together, Mn −M ′n ≤ X11Mn>0.

If Xk are i.i.d. with finite mean, we have Mn
d
= M ′n and hence have the same expectation

(check that E[Mn] exists). Hence E[X11Mn>0] ≥ 0.

Fix t > 0 and apply this to Xi − t to get E[(X1 − t)1Mn>t] ≥ 0 which implies that

P{Mn > t} ≤ 1

t
E[X1].

Let n→∞ and note that Mn ↑ sup
n

Sn
n to get the statement of the Lemma. �
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5. Beyond the law of large numbers

There are multiple ways in which we can go beyond the laws of large numbers. Here are some

important ones that we shall not be going into in great detail (but will touch upon some).

(1) From Chebyshev inequality P{| 1nSn − µ| ≥ δ} = O(1/n) under second moment assump-

tion. If we assume more on the random variables, can we improve the estimate? The best

sort of estimate one can hope for in general are of the form e−cδn. These questions come

under the topic of concentration of measure.

(2) In the cases where we get bounds such as e−cδn, one could ask for explicit form of cδ.

Since the inequality was written to be valid for all n, one may be forced to choose small

cδ to take care of small values of n. Something more fundamental may result from asking

the inequality for large n. In other words, we ask for Iδ so that e−n(Iδ+ε)P{| 1nSn − µ| ≥
δ} ≤ e−n(Iδ−ε) for any ε > 0 and for large enough n (how large depends on ε). These

questions come under the topic of large deviation theory.

(3) In the previous points δ > 0 was fixed, which means that the deviation of Sn from nµ is

of the order of n. What kinds of bounds can one get for P{|Sn − nµ| ≥ np} for p < 1? As

the standard deviation of Sn is of the order of
√
n, it makes sense to take p > 1

2 . These

questions are often called moderate deviations.

(4) While SLLN says that 1
nSn

a.s.→ 0 (when E[Xi] = 0), what happens if we divide by some-

thing less, such as n0.9? For any an ↑ ∞, by Kolmogorov’s zero-one law one can see that

lim supn→∞
Sn
an

is a constant random variable. If this constant is zero, then an is too large,

if the constant is ∞ then an is too small. Could we find an so that the constant is 1? It

turns out that the right answer is an =
√

2n log log n (when Xi have zero mean and unit

variance), hence the relevant results is called the law of iterated logarithm.

More generally, whenever we have a sequence of random variables ξn
a.s.→ 0, one can

ask for numbers bn ↑ ∞ so that lim sup bnξn = 1.

Of course there are many other directions, such as relaxing the assumptions of identical distribu-

tion or independence. But they are not well-suited to cover in class and we ignore such questions

entirely. Instead, in this section we work out detailed estimates for the special case of Bernoulli

random variables, answering the above questions in detail.

5.1. Bernoulli random variables. Let Xi be i.i.d. Ber(1/2) random variables. Then Sn has the

transformed Binomial distribution

pn(k) := P{Sn = k} =

(
n

k

)
1

2n
0 ≤ k ≤ n.
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By Stirling’s formula, we have the following estimate when n as well as k and n− k are large:

pn(k) ∼ nn+ 1
2

2nkk+ 1
2 (n− k)n−k+ 1

2

√
2π

=
nn

2nkk(n− k)n−k

√
n√

2π
√
k(n− k)

=

√
n√

2π
√
k(n− k)

exp

{
−n
[
log 2 +

k

n
log

k

n
+
n− k
n

log
n− k
n

]}
=

√
n√

2π
√
k(n− k)

e−nI(k/n)

where I(x) = log 2+x log x+(1−x) log(1−x) for x ∈ [0, 1] (with the interpretation that 0 log 0 = 0,

by continuity). is called the Shannon entropy function. The precise meaning of the approximation

in the first line is that given ε > 0, there existN andK such that for all n ≥ N andK ≤ k ≤ N−K,

we have
(1− ε)
2
√
n
e−nI(k/n) ≤ pn(k) ≤ (1 + ε)e−nI(k/n).(8)

where we used the fact that k(n−k) is largest when k = n/2 and smallest when k = 1 (we anyway

have k ≥ K) to to simplify the form of the bounds.

The properties of x 7→ I(x) play a key role in the estimates for the probabilities. It is symmetric

about x = 1/2, attains its minimum value of 0 uniquely at x = 1/2, is convex, and is bounded

between the parabolas 2(x− 1
2)2 ≤ I(x) ≤ 3(x− 1

2)2 for 0 ≤ x ≤ 1.

Large deviations: If x > 1
2 , then take ε = 1/2 (or any fixed number in (0, 1)) and use (8) to get

P{Sn > nx} ≥ pn(dnxe) ≥ 1

4
√
n
e−nI(x),

P{Sn > nx} =
∑
k≥nx

pn(k) ≤ ne−nI(x).

In the second line, we bounded all terms by the largest one (i.e., pn(dnxe) and used the fact that

I(x) is increasing on [1/2, 1]. As I(x) > 0 for x > 1
2 , the polynomial factors outside are negligible

compared to the exponential term and we can simply write P{Sn > nx} ≈ e−nI(x) in the sense

that

lim
n→∞

1

n
logP{Sn > nx} = −I(x).

This is the statement of the large deviation principle for Bernoullis.

Concentration inequalities: From the estimate above and the fact that I(x) ≥ 2(x− 1
2)2, we get

P{Sn > nx} ≤ ne−nI(x) ≤ ne−2n(x− 1
2

)2
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FIGURE 1. Graph of the function x 7→ I(x)

We can get rid of the polynomial factor below and rewrite this as

P{Sn > nx} ≤ Cεe(2−ε)n(x− 1
2

)2

for any ε > 0 and Cε < ∞ (required to take care of the case of small n). With more care, one can

derive the following inequality of Bernstein

P{Sn > nx} ≤ 2e−2(x− 1
2

)2

6. The law of iterated logarithm

If an ↑ ∞ is a deterministic sequence, then Kolmogorov’s zero-one law implies that lim sup Sn
an

is constant a.s. What is this constant?

If Xi have finite mean and an = n, the strong law tells us that the constant is zero. What if

we divide by something smaller, such as nα for some α < 1? To probe this question further, let us

assume that Xi are i.i.d. Ber±(1/2) random variables. Then using higher moments (just as we did

in proving strong law under fourth moment assumption), we can get better results. For example,

from the fact that E[S4
n] = n + 3n(n − 1) (check!), we can see that lim sup Sn

an
= 0 a.s. if an = nα

with α > 3
4 . More generally, we reason as follows. For a positive integer p,

P{Sn ≥ tn} ≤ E[S2p
n ]t−2p

n ≤ Cpn
pt−2p
n
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where we used the fact that E[S2p
n ] ≤ Cpnp for a constant Cp. Assuming this, we see that if tn = nα

with α > 1
2 , then we can choose a p large enough to make the probabilities summable. By Borel-

Cantelli it follows that n−αSn
a.s.→ 0 as n→∞.

To see that E[S2p
n ] ≤ Cpn

p, expand S2p
n as a sum of monomial terms Xk1

1 . . . Xkn
n where ki are

non-negative integers that sum to 2p. When we take expectations, this factors as E[Xk1
1 ] . . .E[Xkn

n ].

If any ki is odd, then the product is zero. If all kis are even, the product is 1. We need to count the

number of monomials of the latter type: Since each ki is even, there are at most p of them that are

not zero. The subset of such indices can be chosen in
(
n
p

)
≤ np ways. Once the indices are chosen,

the number of monomials are at most the number of ways to distribute 2p balls into p bins. Let

this number be Cp. With all the overcounting, we still get E[S2p
n ] ≤ Cpnp, as claimed.

Instead of using moments, one may use Hoeffding’s inequality to see that lim sup Sn
an

= 0

even if an = hn
√
n log n for any sequence hn → ∞. In the converse direction, one can show that

lim sup Sn√
n

= +∞, a.s. (let us accept this without proof for now). This motivates the question of

what is the right order of (limsup) growth of Sn? In other words, we want a deterministic sequence

an such that lim supSn/an is finite and strictly positive. Since the lim sup is a constant a.s., we can

scale by that and reformulate the question as follows.

Question: Let Xi be i.i.d Ber±(1/2) random variables. Find an so that lim sup Sn
an

= 1 a.s.

The sharp answer, due to Khinchine is one of the great results of probability theory.

Theorem 31: Khinchine’s law of iterated logarithm

Let Xi be i.i.d. Ber±(1/2) random variables. Then,

lim sup
n→∞

Sn√
2n log logn

= 1 a.s.

By symmetry, the liminf of Sn/
√

2n log logn is equal to −1 almost surely. From these two, one

can also deduce (since the difference between successive terms is 1/
√

2n log logn that goes to zero)

that the set of all limit points of the sequence {Sn/
√

2n log log n} is equal to [−1, 1], almost surely.

The law of iterated logarithms was extended to general distributions with finite variance by

Hartman and Wintner (with intermediate improvements by Kolmogorov and perhaps others).

Here we only prove the theorem for Bernoullis (the general case is more complicated and a clean

way to do it is via Brownian motion in the next course).
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Result 32: Hartman-Wintner law of iterated logarithm

Let Xi be i.i.d. with mean µ and finite, non-zero variance σ2. Then,

lim sup
n→∞

Sn − nµ
σ
√

2n log log n
= 1 a.s.

7. Proof of LIL for Bernoulli random variables

Let X1, X2, . . . be i.i.d. Ber±(1/2) random variables. Theorem 31 follows from the following

two statements. For any δ > 0, we have

lim sup
n→∞

Sn√
2n log log n

≤ 1 + δ a.s.(9)

lim sup
n→∞

Sn√
2n log log n

≥ 1− δ a.s.(10)

Taking intersection over countably many values of δ, e.g., δ = 1
k , k ≥ 1, we get the statement of

LIL. To motivate the principal idea in the proof, consider the following toy situation.

Example 13: Borel-Cantelli after blocking

Let Bn be events in a probability space and let A1 = B1, A2 = A3 = B2, A4 = A5 = A6 = B3

and so on (nmanyAis are equal toBn). To show that only finitely manyAns occur a.s., if we

apply Borel-Cantelli lemma to Ans naively, we get the sufficient condition
∑
nP(Bn) <∞.

This is clearly foolish, as the event {An i.o.} is the same as {Bn i.o.}, and the latter has zero

probability whenever
∑

P(Bn) <∞, a much weaker condition!

What this suggests is that when we have a sequence ofAns and want to show that P{An i.o.} =

0, it may be good to combine together those Ais that are close to each other. For example, we can

take a subsequence 1 = n1 < n2 < . . . and set Ck to be the union of Ans with nk ≤ n < nk+1. If

only finitely many Cks occur, the only finitely many Ans occur, and thus it suffices to show that∑
kP(Ck) < ∞. The naive union bound P(Ck) ≤

∑nk+1
n=nk

P(An) takes us back to the condition∑
nP(An) <∞, but the point is that there may be better bounds for P(Cn) than the union bound.

PROOF OF THE UPPER BOUND (9). Write an =
√

2n log log n. We want to show that only finitely

many of the events An = {Sn > an(1 + δ)} occur, a.s. We use blocking as follows. Fix λ > 1 and

set nk = bλkc. Define the events

Ck =

nk+1−1⋃
n=nk

An = {Sn > an(1 + δ) for some nk ≤ n < nk+1},

Dk =

nk+1−1⋃
n=nk

An = {Sn > ank(1 + δ) for some nk ≤ n < nk+1}.

68



Then Ck ⊆ Dk as an is increasing in n. Thus if we show that
∑

kP(Dk) < ∞, it follows that only

finitely many Cn occur a.s. and hence only finitely many An occur a.s. We claim that

P(Dk) ≤ Cλk−(1+δ)2/λ where Cλ <∞ for any λ > 1.(11)

Granting this, it is clear that choosing 1 < λ < (1 + δ)2 ensures summability of P(Dk). We give

two proofs of the inequality (11) below, which completes the proof. �

Proof of (11) via the reflection principle: The following lemma is of interest in itself and useful.

Lemma 33: Reflection principle/Ballot problem

Let Xk be i.i.d. Ber±(1/2) random variables. Then for any integer a > 0, we have

2P{Sn > a} ≤ P{max{S0, . . . , Sn} ≥ a} ≤ 2P{Sn ≥ a}.

Equality holds if n and a have opposite parity.

Chapter-3 of Feller’s vol-1 is highly recommended for more such beautiful combinatorial facts

about simple symmetric random walks.

PROOF. Break the event max{S0, . . . , Sn} ≥ a as a union of pairwise disjoint events

Ak = {S0 < a, . . . , Sk−1 < a, Sk = a}, k = 1, . . . , n.

By the symmetry of Sn − Sk and its independence from Ak,

P({Sn ≥ a} ∩Ak) = P({Sn − Sk ≥ 0} ∩Ak)

= P{Sn − Sk ≥ 0}P{Ak} ≥
1

2
P(Ak).(12)

Sum over k. On the right we get 1
2P{max{S0, . . . , Sn} ≥ a} while on the left we get P{Sn ≥ a}

(since {Sn ≥ a} ⊆ A1 ∪ . . . ∪ An). Hence the second inequality is proved. To prove the first

inequality, using the same idea, write

P({Sn > a} ∩Ak) = P({Sn − Sk > 0} ∩Ak)

= P{Sn − Sk > 0}P{Ak} ≤
1

2
P(Ak).(13)

Add up over k to get 2P{Sn > a} ≤ P{max{S0, . . . , Sn} ≥ a}.
If n has the opposite parity, then P{Sn = a} = 0, hence all three probabilities in the statement

are equal. �
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Returning to the proof of (11), if Dk occurs, then there is some n ≤ nk+1 (in fact some n ≥ nk)

such that Sn ≥ ank(1 + δ). The reflection principle in Lemma 33 applies to give the bound

P(Dk) ≤ 2P{Snk+1
≥ ank(1 + δ)}

≤ 2e
−

(1+δ)2a2nk
2nk+1 (by Hoeffding’s inequality).

The exponent is (omitting integer part for simplicity of notation)

(1 + δ)22λk log log λk

2λk+1
=

(1 + δ)2

λ
log(k log λ)(14)

from which (11) immediately follows. �

Proof of (11) via the modified Markov inequality (2): Let Xk =
∑nk+1−1

n=nk
1Sn>ank (1+δ), so that Dk

is the event that Xk ≥ 1. Apply the strengthened form of Markov’s inequality (2) to write

P(Dk) = P{Xk ≥ 1} ≤ E[Xk]

E[Xk | Xk ≥ 1]
.

What we need is an upper bound for the numerator and a lower bound for the denominator.

To get an upper bound for E[Xk], use Hoeffding’s inequality to write

E[Xk] =

nk+1−1∑
n=nk

P{Sn > ank(1 + δ)} ≤
nk+1−1∑
n=nk

exp

{
−
a2
nk

(1 + δ)2

2n

}

≤ (nk+1 − nk) exp

{
−
a2
nk

(1 + δ)2

2nk+1

}
where we bounded all terms by the largest one (which is the last one).

Next we claim that c(nk+1 − nk) (for some c > 0) is a lower bound for E[Xk

∣∣ Xk ≥ 1]. The

heuristic idea is that if Xk ≥ 1, there is some (random) N ∈ [nk, nk+1) for which SN ≥ ank(1 + δ).

If we fix that N and regard it as given, then Sn − SN has a symmetric distribution about 0 for any

n, hence P{Sn − SN ≥ 0} ≥ 1
2 , which would imply that E[Xk | Xk ≥ 1] ≥ 1

2(nk+1 − nk). This

reasoning is faulty, as the way we chooseN (which is a random variable) may invalidate the claim

that Sn − SN has a symmetric distribution.

To make the reasoning precise, write Xk = Yk +Zk where Yk is the number of n in the first half

of the interval [nk, nk+1) for which Sn > ank(1 + δ) and Zk is the analogous number for the second

half of [nk, nk+1). Then Xk1Xk≥1 ≥ 1
2(Yk1Zk≥1 + Zk1Yk≥1) and {Xk ≥ 1} ⊆ {Yk ≥ 1} ∪ {Zk ≥ 1}.
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Consequently,

E[Xk | Xk ≥ 1] =
E[Xk1Xk≥1]

P{Xk ≥ 1}
≥ 1

2

E[Yk1Zk≥1] + E[Zk1Yk≥1]

P{Zk ≥ 1}+ P{Yk ≥ 1}

≥ 1

2
min

{
E[Yk1Zk≥1]

P{Zk ≥ 1}
,
E[Zk1Yk≥1]

P{Yk ≥ 1}

}
=

1

2
min{E[Yk | Zk ≥ 1],E[Zk | Yk ≥ 1]}.

In the second line we used the elementary inequality a+b
c+d ≥ min{ac ,

b
d} valid for any non-negative

numbers a, b, c, d. Now consider the second term inside the minimum. Since Yk ≥ 1, condition on

the location N in the first half of [nk, nk+1) where Sn > ank(1 + δ) and use the fact that Sn − SN ,

n ≥ N , is still a simple symmetric random walk, and hence for any n in the second half, has

probability 1/2 or more to be non-negative. Therefore, E[Zk | Yk ≥ 1] ≥ 1
4(nk+1 − nk). Similarly

(considering the random walk in backwards direction starting from nk+1), reason that E[Yk | Zk ≥
1] ≥ 1

4(nk+1 − nk). Putting all this together, E[Xk | Xk ≥ 1] ≥ 1
8(nk+1 − nk).

Thus,

P(Dk) ≤
(nk+1 − nk) exp

{
−
a2nk

(1+δ)2

2nk+1

}
1
8(nk+1 − nk)

≤ 8e
−
a2nk

(1+δ)2

2nk+1 .

By the computation shown in (14), this is of the form given in (11). �

7.1. Proof of the lower bound (10). Again we choose a subsequence nk = bλkc, the difference

being that we shall choose λ to be a large constant in the end. It suffices to show for any δ > 0 that

P{Snk ≥ (1− 2δ)ank i.o.} = 1(15)

where an =
√

2n log logn as before. By the upper bound and the symmetry of Sn, we know that

almost surely, Snk ≥ −2ank for all but finitely many k. Also, ank ≤ ank+1
/
√
λ, hence

Snk+1
≥ Snk+1

− Snk −
2√
λ
ank+1

for all but finitely many k, a.s. Therefore, (15) follows if we choose λ > 4/δ2 and show that

P{Snk+1
− Snk ≥ (1− δ)ank+1

i.o.} = 1.

These events are independent across k, and hence a good lower bound on the individual proba-

bilities is sufficient. The one given below in Claim 34 gives

P{Snk+1
− Snk ≥ (1− δ)ank+1

} ≥
√

2√
π(nk+1 − nk)

exp

{
−

(1− δ)2a2
nk+1

2(nk+1 − nk)

}

=

√
2√

πnk+1(1− 1
λ)

exp

{
−(1− δ)2 log lognk+1

1− 1
λ

}
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Claim 34: An estimate for binomial coefficients

If n, k →∞ in such a way that |k − 1
2n| ≤ n

2/3, then(
n
n+k

2

)
1

2n
∼
√

2√
πn

e−
k2

2n .

In particular, for such k, we have

P{Sn ≥ k} ≥ e−
1
2
k2

2n

In a basic probability class you may have seen the de Moivre-Laplace theorem that compares

binomial coefficients to the Gaussian density. This one is almost the same, except that in the de

Moivre-Laplace theorem one only needs k = 1
2n + x

√
n with fixed x, while here we allow x to

grow like O(n1/6).

PROOF. The first one is just by Stirling’s approximation. �

8. Random series with independent terms

In law of large numbers, we considered a sum of n terms scaled by n. A natural question is

to ask about convergence of infinite series with terms that are independent random variables. Of

course
∑
Xn will not converge if Xi are i.i.d (unless Xi = 0 a.s!). Consider an example.

Example 14

Let an be i.i.d with finite mean. Important examples are an ∼ N(0, 1) or an = ±1 with equal

probability. Then, define f(z) =
∑

n anz
n. What is the radius of convergence of this series?

From the formula for radius of convergence R =
(

lim supn→∞ |an|
1
n

)−1
, it is easy to find

that the radius of convergence is exactly 1 (a.s.) [Exercise]. Thus we get a random analytic

function on the unit disk.

Now we want to consider a general series with independent terms. For this to happen, the in-

dividual terms must become smaller and smaller. The following result shows that if that happens

in an appropriate sense, then the series converges a.s.

Theorem 35: Khinchine

LetXn be independent random variables with finite second moment. Assume that E[Xn] =

0 for all n and that
∑

n Var(Xn) <∞. Then
∑
Xn converges, a.s.
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PROOF. A series converges if and only if it satisfies Cauchy criterion. To check the latter,

consider N and consider

(16) P (|Sn − SN | > δ for some n ≥ N) = lim
m→∞

P (|Sn − SN | > δ for some N ≤ n ≤ N +m) .

Thus, for fixed N,m we must estimate the probability of the event δ < max1≤k≤m |SN+k − SN |.
For a fixed k we can use Chebyshev’s to get P(δ < |SN+k − SN |) ≤ δ−2Var(XN + XN+1 + . . . +

XN+m). However, we don’t have a technique for controlling the maximum of |SN+k − SN | over

k = 1, 2, . . . ,m. This needs a new idea, provided by Kolmogorov’s maximal inequality below.

Invoking 10, we get

P (|Sn − SN | > δ for some N ≤ n ≤ N +m) ≤ δ−2
N+m∑
k=N

Var(Xk) ≤ δ−2
∞∑
k=N

Var(Xk).

The right hand side goes to zero as N →∞. Thus, from (16), we conclude that for any δ > 0,

lim
N→∞

P (|Sn − SN | > δ for some n ≥ N) = 0.

This implies that lim supSn − lim inf Sn ≤ δ a.s. Take intersection over δ = 1/k, k = 1, 2 . . . to get

that Sn converges a.s. �

What to do if the assumptions are not exactly satisfied? First, suppose that
∑

n Var(Xn) is finite

but E[Xn] may not be zero. Then, we can write
∑
Xn =

∑
(Xn − E[Xn]) +

∑
E[Xn]. The first

series on the right satisfies the assumptions of Theorem 35 and hence converges a.s. Therefore,∑
Xn will then converge a.s if and only if the deterministic series

∑
nE[Xn] converges.

Next, suppose we drop the finite variance condition too. Now Xn are arbitrary independent

random variables. We reduce to the previous case by truncation. Suppose we could find someA >

0 such that P(|Xn| > A) is summable. Then set Yn = Xn1|Xn|≤A. By Borel-Cantelli, almost surely,

Xn = Yn for all but finitely many n and hence
∑
Xn converges if and only if

∑
Yn converges.

Note that Yn has finite variance. If
∑

nE[Yn] converges and
∑

n Var(Yn) <∞, then it follows from

the argument in the previous paragraph and Theorem 35 that
∑
Yn converges a.s. Thus we have

proved

Theorem 36: Kolmogorov’s three series theorem - part 1

Suppose Xn are independent random variables. Suppose for some A > 0, the following

hold with Yn := Xn1|Xn|≤A.

(a)
∑
n

P(|Xn| > A) <∞. (b)
∑
n

E[Yn] converges. (c)
∑
n

Var(Yn) <∞.

Then,
∑

nXn converges, almost surely.
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Kolmogorov showed that if
∑

nXn converges a.s., then for any A > 0, the three series (a),

(b) and (c) must converge. Together with the above stated result, this gives a complete and sat-

isfactory answer, as the question of convergence of a random series (with independent entries) is

reduced to that of checking the convergence of three non-random series! We skip the proof of this

converse implication.
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CHAPTER 6

Sums of independent random variables - II

1. Central limit theorem - statement, heuristics and discussion

IfXi are i.i.d with zero mean and finite variance σ2, then we know that E[S2
n] = nσ2, which can

roughly be interpreted as saying that Sn ≈
√
n (That the sum of n random zero-mean quantities

grows like
√
n rather than n is sometimes called the fundamental law of statistics). The central limit

theorem makes this precise, and shows that on the order of
√
n, the fluctuations (or randomness)

of Sn are independent of the original distribution of X1! We give the precise statement and some

heuristics as to why such a result may be expected.

Theorem 37: Central limit theorem for i.i.d. variables

Let Xn be i.i.d with mean µ and finite variance σ2. Then, Sn−nµ
σ
√
n

d→ N(0, 1).

Informally, letting Z denote a standard Normal variable, we may write Sn ≈ nµ + σ
√
nZ.

More precisely, P{Sn ≤ nµ+σ
√
nt} → P{Z ≤ t} for any t ∈ R. This means, the distribution of Sn

is hardly dependent on the distribution of X1 that we started with, except for the two parameters

- mean and variance. This is a statement about a remarkable symmetry, where replacing one

distribution by another makes no difference to the distribution of the sum. This feature that the

behaviour of a large yet random system does not depend on the details of the microscopic parts

that go into building it, is called universality and is a major theme of modern probability.

In the rest of the section, we discuss various aspects of the theorem, and in later sections we

give proofs of this and even more general central limit theorems.

Why scale by
√
n? Without loss of generality, let us take µ = 0 and σ2 = 1. First point to note is

that the standard deviation of Sn/
√
n is 1, which gives hope that in the limit we may get a non-

degenerate distribution. Indeed, if the variance were going to zero, then we could only expect the

limiting distribution to have zero variance and thus be degenerate. Further, since the mean is zero

and the variance is bounded above, it follows that the distributions of Sn/
√
n form a tight family.

Therefore, there are at least subsequences that have distributional limits.

Why Normal distribution? Let us make a leap of faith and assume that the entire sequence

Sn/
√
n converges in distribution to some Y . If so, what can be the distribution of Y ? Observe

75



that (2n)−
1
2S2n

d→ Y and further,
X1 +X3 + . . .+X2n−1√

n

d→ Y,
X2 +X4 + . . .+X2n√

n

d→ Y.

But (X1, X3, . . .) is independent of (X2, X4, . . .). Therefore (this was an exercise earlier), we also

get (
X1 +X3 + . . .+X2n−1√

n
,
X2 +X4 + . . .+X2n√

n

)
d→ (Y1, Y2)

where Y1, Y2 are i.i.d copies of Y . But then, (yet another exercise), we get

S2n√
2n

=
1√
2

(
X1 +X3 + . . .+X2n−1√

n
+
X2 +X4 + . . .+X2n√

n

)
d→ Y1 + Y2√

2

Thus we must have Y1 + Y2
d
=
√

2Y . If Y1 ∼ N(0, σ2), then certainly it is true that Y1 + Y2
d
=
√

2Y .

We claim that N(0, σ2) are the only distributions that have this property. If so, then it gives a

strong heuristic that the central limit theorem is true. The claim itself is not trivial, we discuss it in

the section on the Gaussian distribution.

Justification by examples: Assuming that Sn/
√
n has a distributional limit, we have justified that

the limit must be Gaussian. There are specific examples where one may easily verify the statement

of the central limit theorem directly (indeed, that was how the theorem was arrived at).

One is of course the Demoivre-Laplace limit theorem (CLT for Bernoulli random variables),

which is well known and we omit it here. We just recall that sums of independent Bernoullis

have binomial distribution, with explicit formula for the probability mass function and whose

asymptotics can be calculated using Stirling’s formula.

Instead, let us consider the slightly less familiar case of exponential distribution. If Xi are i.i.d

Exp(1) so that E[X1] = 1 and Var(X1) = 1. Then Sn ∼ Gamma(n, 1) and hence Sn−n√
n

has density

fn(x) =
1

Γ(n)
e−n−x

√
n(n+ x

√
n)n−1√n

=
e−nnn−

1
2

Γ(n)
e−x
√
n

(
1 +

x√
n

)n−1

→ 1√
2π
e−

1
2
x2

by elementary calculations (use Stirling’s approximation for Γ(n) and for terms involving x write

the exponent as −x
√
n+ log(1 + x/

√
n) and use the Taylor expansion of logarithm). By an earlier

exercise (Scheffe’s lemma) convergence of densities implies convergence in distribution and thus

we get CLT for sums of exponential random variables.
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Exercise 17

Prove the CLT for for the following distributions of Xis. (1) Ber(p). (2) Bin(k, p).

(3) Poisson(λ). (4) Geometric(p).

The special feature of these cases is that we can explicitly work out the distribution of Sn. This

is not the case in general, and in fact one of the uses of central limit theorem (for example, in statis-

tics) goes the other way. We use the Normal distribution as an approximation to the distribution

of Sn.

Justification under stronger hypotheses Lastly, we show how the CLT can be derived under

strong assumptions by the method of moments. As justifying all the steps here would take time,

let us simply present it as a heuristic for CLT for Bernoulli random variables. Let Xi be i.i.d.

Ber±(1/2). Then Sn has a symmetric distribution and hence all odd moments are zero (but first,

|Sn| ≤ n, hence all moments exist). For even moments,

E[S2p
n ] =

∑
1≤ki≤n

E[Xk1 . . . Xkn ].

Fix k = (k1, . . . , k2p) and consider the corresponding summand. The expectation factors as a

product of E[X`i ], 1 ≤ i ≤ n, where `i is the number of j for which kj = i. Unless each `i is even,

the summand vanishes and if each `i = 1. The terms for which each `i contribute 1 each, and these

terms may be divided into two parts.

First, those in which each `i is 0 or 2. The number of ways to ways to choose the p indices i for

which `i = 2 is n(n− 1) . . . (n− p+ 1), and the number of ways that these indices may be chosen

is (2p− 1)(2p− 3) . . . (3)(1).

Next those terms in which at least one `i is equal to 4. Then there are at most p − 1 distinct

indices, and they can be chosen in at most np−1 ways. The number of ways of choosing `is is itself

a number that depends only on p, say Cp.

2. Gaussian distribution

We collect some basic facts about the Gaussian distribution here. The standard Gaussian mea-

sure is denoted γ, its density is denoted ϕ and its distribution function is denote Φ. The density

of N(µ, σ2) is then σ−1ϕ((x − µ)/σ). We also use the notation pt(·) for the density of N(0, t). We

usually write Z,Z1, Z2, . . . for standard Gaussian random variables.

2.1. Heat equation. Consider pt(x) = 1√
2πt
e−

x2

2t for t > 0 and x ∈ R. Differentiation gives(
∂

∂t
− 1

2

∂2

∂x2

)
pt(x) = 0.
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In other words, pt(x) is a solution to the heat equation. This is the single most important fact about

the Gaussian distribution.

2.2. Integration by parts formula. Let f : R→ R be a smooth function such that |x|jf (k)(x) ∈
L1(γ) for any j, k (we need much less below). Then, as

∫
f(x/

√
t)pt(x)dx = E[f(Z)] for any t,

differentiating w.r.t. t under the integral, we get

0 =
d

dt

∫
R
f(x/

√
t)pt(x)dx

= − 1

2t3/2

∫
R
f ′(x/

√
t)xpt(x)dx+

1

2

∫
R
f(x/

√
t)p′′t (x)dx (by heat equation)

= − 1

2t3/2

∫
R
f ′(x/

√
t)xpt(x)dx+

1

2t

∫
R
f ′′(x/

√
t)pt(x)dx (integration by parts)

from which, setting t = 1, we arrive at the Gaussian integration by parts formula

E[Zf ′(Z)] = E[f ′′(Z)].(17)

We leave it as an exercise to justify the differentiation under integral and the integration by parts.

If we set h = f ′, then (17) transforms to

E[Zh(Z)] = E[h′(Z)],(18)

which is often called Stein’s identity1. With a bit more care, one can prove that (18) holds for any

h : R → R that is absolutely continuous with h′ ∈ L1(γ) (this means that h(x) =
∫ x
−∞ g(t)dt for

some g ∈ L1(γ), which is then called the derivative of h and denoted as h′).

2.3. Moments. The odd moments are zero by symmetry, while the even moments can be got

by a direct integration. Alternately, use integration by parts formula (17) with f(x) = x2p we get

E[Z2p] = (2p− 1)E[Z2p−2], from which it follows that

E[Z2p] = (2p− 1)× (2p− 3)× . . .× 3× 1.

2.4. Characteristic function. Formally one can see that E[eitZ ] = e−
1
2
t2 by substituting it in

the moment generating function. For an honest proof, apply the integration by parts formula to

f(x) = eitx to get E[itZeitZ ] = −t2E[eitZ ]. Setting ϕ(t) = E[eitZ ] we see (again, differentiating

under the expectation) that ϕ′(t) = −tϕ(t), for which the unique solution satisfying ϕ(0) = 1 is

ϕ(t) = e−
1
2
t2 .

1As Arka Das pointed out in class, (18) can be got directly by writing E[f ′(Z)] =
∫
f ′(x)ϕ(x)dx and integrating

by parts. We gave a more roundabout derivation to emphasize its connection with the heat equation. In addition,

the dynamical viewpoint of considering pt, t > 0, is of great importance. The identity (17) is related to the Ornstein-

Uhlenbeck process, a Markov process with stationary distribution N(0, 1).
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2.5. Characterizations of Gaussian distribution. A feature of a probability distribution that

is not shared by any other probability distribution is called a characterization of the said distri-

bution. For example, the characteristic function determines the distribution, hence is always a

characterization. Any distribution µ with finite moment generating function (i.e.,
∫
etxdµ(x) <∞

for |t| < δ for some δ > 0) is characterized by its moment sequence.

In particular, the Gaussian distribution is characterized by its moments, i.e., no other distri-

bution has the same moments as the standard Gaussian distribution. The identities (17) and (18)

are also characterizations of the standard Gaussian distribution. This means that if E[h′(W )] =

E[Wh(W )] for a large enough class of functions h, then W ∼ N(0, 1). For instance, we saw that

applying it to h = et one can derive that the characteristic function of N(0, 1) is e−t
2/2, but one can

also consider other classes of functions (e.g., C1
c (R)) that do not contain ets. Yet another character-

ization is the stability property that we used earlier: If W,W ′ are i.i.d. and W + W ′
d
=
√

2W , then

W ∼ N(0, σ2) for some σ2 ≥ 0. To see this, suppose ψ(·) denotes the characteristic function of W ,

then

ψ(t) = E
[
eitW

]
= E

[
e
it(W+W ′)√

2

]2

= ψ

(
t√
2

)2

.

From this, by standard methods (note that characteristic functions are necessarily continuous),

one can deduce that ψ(t) = e−at
2

for some a > 0. Therefore, W ∼ N(0, 2a).

3. Strategies of proof of central limit theorem

To show that a random variable W ∼ N(0, 1), it suffices to show that it has any one of the

characterizing properties of the standard Gaussian distribution. In the context of CLT, we have a

sequence Wn = Sn/
√
n that we must show converges to N(0, 1) in distribution. Hence we wish

to know if Wn approximately has a characterizing property (and the approximation gets better as

n → ∞), does it mean that Wn
d→ N(0, 1)? Here are the essential statements that give a positive

answer, hence each of them provides a possible route to showing that Wn
d→ N(0, 1).

Theorem 38

Let µn, µ ∈ P(R) and let Wn ∼ µn and W ∼ µ. Each of the following is equivalent to

Wn
d→W .

(1) E[f(Wn)]→ E[f(W )] for all f ∈ C(∞)
b (R) (i.e., f (j) ∈ Cb(R) for all j).

(2) E[et(Wn)]→ E[et(W )] for all t ∈ R.

If µ = γ, then the following statement also implies that Wn
d→ N(0, 1): E[|Wn|] <∞ and

E[h′(Wn)]−E[Wnh(Wn)]→ 0 if h ∈ C1
b (R).
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The second statement is known as Levy’s continuity theorem and is proved in the section on

characteristic functions. Further, what we need is the conclusion that Wn
d→ W , so we prove the

relevant one-way implications in the first and third statements.

PROOF. (1) Fix t and for k ≥ 1 find fk ∈ C∞ such that 1(−∞,t] ≤ fk ≤ 1(−∞,t+ 1
k

]. Taking

expectations, we see that

P{Wn ≤ t} ≤ E[fk(Wn)]→ E[fk(W )] ≤ P{W ≤ t+
1

k
}.

Let k →∞ to get lim supFµn(t) ≤ Fµ(t). Similarly,

P{Wn ≤ t+
1

k
} ≥ E[fk(Wn)]→ E[fk(W )] ≥ P{W ≤ t}.

Replace t by t− 1
k and let k →∞ to get lim inf Fµn(t) ≥ Fµ(t−).

(2)

�

3.1. Outline of three proofs of CLT. We present three proofs of the central limit theorem.

(1) Using characteristic functions: In this proof we show that E[et(Sn/
√
n)] → e−t

2/2 for all

t ∈ R. The reason that the characteristic function is so effective is that for sums of inde-

pendent random variables, the characteristic function will be a product of the individual

characteristic functions. Additional ingredients are basic facts about characteristic func-

tions, which imply that if E[et(X1/
√
n)] ≈ 1 − t2

2n if E[X1] = 0 and E[X2
1 ] = 1. Hence

E[et(Sn/
√
n)] ≈ (1 − t2

2n)n ≈ e−t
2/2. A little work is needed to make the approximations

precise.

(2) Using Lindeberg’s replacement principle: In this proof, along with Xi, we construct inde-

pendent standard GaussiansZis on the same probability space, and show that E[f(SXn /
√
n)] ≈

E[f(SZn /
√
n)]. As the latter is the same as E[f(Z)], CLT follows. To show the closeness of

expectations, the idea is to go from SXn to SZn in n steps, by replacing each Xi by Zi, one

after another. The heart of the proof is in showing that the difference in expectations in

each step is o(1/n).

(3) Using Stein’s method: This proof works by showing that Wn = Sn/
√
n satisfies the Stein

identity approximately.

To not obfuscate the main ideas with less important technicalities, we present the first two proofs

assuming that the third moment of Xis is finite. Then we shall in fact state the more general

Lindeberg-Feller central limit theorem and prove it under minimal conditions, thereby also proving

the standard CLT under second moment assumption. The proof by Stein’s method is given there-

after.
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4. Central limit theorem - two proofs assuming third moments

We give two proofs of the following slightly weaker version of CLT.

Theorem 39

Let Xn be i.i.d with finite third moment, and having zero mean and unit variance. Then,
Sn√
n

converges in distribution to N(0, 1).

Once the ideas are clear, we prove a much more general version later, which will also subsume

Theorem 37.

4.1. Proof via characteristic functions. We shall need the following facts.
Exercise 18

Let zn be complex numbers such that nzn → z. Then, (1 + zn)n → ez .

PROOF OF THEOREM 39. By Lévy’s continuity theorem (Lemma ??), it suffices to show that

the characteristic functions of n−
1
2Sn converge to the characteristic function of N(0, 1). The char-

acteristic function of Sn/
√
n is ψn(t) := E

[
eitSn/

√
n
]
. Writing Sn = X1 + . . . + Xn and using

independence,

ψn(t) = E

[
n∏
k=1

eitXk/
√
n

]

=
n∏
k=1

E
[
eitXk/

√
n
]

= ψ

(
t√
n

)n
where ψ denotes the characteristic function of X1.

Use Taylor expansion to third order for the function x→ eitx to write,

eitx = 1 + itx− 1

2
t2x2 − i

6
t3eitx

∗
x3 for some x∗ ∈ [0, x] or [x, 0].

Apply this with X1 in place of x and tn−1/2 in place of t. Then take expectations and recall that

E[X1] = 0 and E[X2
1 ] = 1 to get

ψ

(
t√
n

)
= 1− t2

2n
+Rn(t), where Rn(t) = − i

6n
3
2

t3E
[
eitX

∗
1X3

1

]
.

Clearly, |Rn(t)| ≤ Ctn
−3/2 for a constant Ct (that depends on t but not n). Hence nRn(t) → 0 and

by Exercise 18 we conclude that for each fixed t ∈ R,

ψn(t) =

(
1− t2

2n
+Rn(t)

)n
→ e−

t2

2

which is the characteristic function of N(0, 1). �
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4.2. Proof using Lindeberg’s replacement idea. Here the idea is more probabilistic. First we

observe that the central limit theorem is trivial for (Y1 + . . .+Yn)/
√
n, if Yi are independentN(0, 1)

random variables. The key idea of Lindeberg is to go from X1 + . . .+Xn to Y1 + . . .+ Yn in steps,

replacing each Xi by Yi, one at a time, and arguing that the distribution does not change much!

PROOF. We assume, without loss of generality, that Xi and Yi are defined on the same proba-

bility space, are all independent,Xi have the given distribution (with zero mean and unit variance)

and Yi have N(0, 1) distribution.

Fix f ∈ C(3)
b (R) and let

√
nUk =

∑k−1
j=1 Xj +

∑n
j=k+1 Yj and

√
nVk =

∑k
j=1Xj +

∑n
j=k+1 Yj for

0 ≤ k ≤ n and empty sums are regarded as zero. Then, V0 = SYn /
√
n and Vn = SXn /

√
n. Also,

SYn /
√
n has the same distribution as Y1. Thus,

E

[
f

(
1√
n
SXn

)]
−E[f(Y1)] =

n∑
k=1

E [f (Vk)− f (Vk−1)]

=
n∑
k=1

E [f (Vk)− f (Uk)]−
n∑
k=1

E [f (Vk−1)− f (Uk)] .

By Taylor expansion, we see that

f(Vk)− f(Uk) = f ′(Uk)
Xk√
n

+ f ′′(Uk)
X2
k

2n
+ f ′′′(U∗k )

X3
k

6n
3
2

,

f(Vk−1)− f(Uk) = f ′(Uk)
Yk√
n

+ f ′′(Uk)
Y 2
k

2n
+ f ′′′(U∗∗k )

Y 3
k

6n
3
2

.

Take expectations and subtract. A key observation is that Uk is independent of Xk, Yk. Therefore,

E[f ′(Uk)X
p
k ] = E[f ′(Uk)]E[Xp

k ] etc. Consequently, using equality of the first two moments of

Xk, Yk, we get

E[f(Vk)− f(Vk−1)] =
1

6n
3
2

{
E[f ′′′(U∗k )X3

k ] + E[f ′′′(U∗∗k )Y 3
k ]
}
.

Now, U∗k and U∗∗k are not independent of Xk, Yk, hence we cannot factor the expectations. We put

absolute values and use the bound on derivatives of f to get∣∣∣E[f(Vk)]−E[f(Vk−1)]
∣∣∣ ≤ 1

n
3
2

Cf
{
E[|X1|3] + E[|Y1|3]

}
.

Add up over k from 1 to n to get∣∣∣E [f ( 1√
n
SXn

)]
−E[f(Y1)]

∣∣∣ ≤ 1

n
1
2

Cf
{
E[|X1|3] + E[|Y1|3]

}
which goes to zero as n → ∞. Thus, E[f(Sn/

√
n)] → E[f(Y1)] for any f ∈ C

(3)
b (R) and conse-

quently, by Lemma ?? we see that 1√
n
Sn

d→ N(0, 1). �
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5. Central limit theorem for triangular arrays

The CLT does not really require the third moment assumption, and we can modify the above

proof to eliminate that requirement. Instead, we shall prove an even more general theorem, where

we don’t have one infinite sequence, but the random variables that we add to get Sn depend on n

themselves. Further, observe that we assume independence but not identical distributions in each

row of the triangular array.

Theorem 40: Lindeberg-Feller CLT

Suppose Xn,k, k ≤ n, n ≥ 1, are random variables. We assume that

(1) For each n, the random variablesXn,1, . . . , Xn,n are defined on the same probability

space, are independent, and have finite variances.

(2) E[Xn,k] = 0 and
∑n

k=1 E[X2
n,k]→ σ2, as n→∞.

(3) For any δ > 0, we have
∑n

k=1 E[X2
n,k1|Xn,k|>δ]→ 0 as n→∞.

Then, Xn,1 + . . .+Xn,n
d→ N(0, σ2) as n→∞.

First we show how this theorem implies the standard central limit theorem under second

moment assumptions.

PROOF OF THEOREM 37 FROM THEOREM 40. Let Xn,k = n−
1
2Xk for k = 1, 2, . . . , n. Then,

E[Xn,k] = 0 while
∑n

k=1 E[X2
n,k] = 1

n

∑n
k=1 E[X2

1 ] = σ2, for each n. Further,
∑n

k=1 E[X2
n,k1|Xn,k|>δ] =

E[X2
11|X1|>δ

√
n] which goes to zero as n → ∞ by DCT, since E[X2

1 ] < ∞. Hence the conditions

of Lindeberg Feller theorem are satisfied and we conclude that Sn√
n

converges in distribution to

N(0, 1). �

But apart from the standard CLT, many other situations of interest are covered by the Lindeberg-

Feller CLT. We consider some examples.

Example 15

Let Xk ∼ Ber(pk) be independent random variables with 0 < pk < 1. Is Sn asymptotically

normal? By this we mean, does (Sn−E[Sn])/
√

Var(Sn) converge in distribution to N(0, 1)?

Obviously the standard CLT does not apply.

To fit it in the framework of Theorem 40, define Xn,k = Xk−pk
τn

where τ2
n =

∑n
k=1 pk(1− pk)

is the variance of Sn. The first assumption in Theorem 40 is obviously satisfied. Further,

Xn,k has mean zero and variance pk(1 − pk)/τ
2
n which sum up to 1 (when summed over

1 ≤ k ≤ n). As for the crucial third assumption, observe that 1|Xn,k|>δ = 1|Xk−pk|>δτn . If
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τn ↑ ∞ as n → ∞, then the indicator becomes zero (since |Xk − pk| ≤ 1). This shows that

whenever τn →∞, asymptotic normality holds for Sn.

If τn does not go to infinity, there is no way CLT can hold. We leave it for the reader to think

about, just pointing out that in this case,X1 has a huge influence on (Sn−E[Sn])/τn. Chang-

ing X1 from 0 to 1 or vice versa will induce a big change in the value of (Sn − E[Sn])/τn

from which one can argue that the latter cannot be asymptotically normal.

The above analysis works for any uniformly bounded sequence of random variables. Here is

a generalization to more general, independent but not identically distributed random variables.

Exercise 19

Suppose Xk are independent random variables and E[|Xk|2+δ] ≤ M for some δ > 0 and

M <∞. If Var(Sn)→∞, show that Sn is asymptotically normal.

Here is another situation covered by the Lindeberg-Feller CLT but not by the standard CLT.

Example 16

If Xn are i.i.d (mean zero and unit variance) random variable, what can we say about the

asymptotics of Tn := X1 + 2X2 + . . .+ nXn? Clearly E[Tn] = 0 and E[T 2
n ] =

∑n
k=1 k

2 ∼ n3

3 .

Thus, if we expect any convergence to Gaussian, then it must be that n−
3
2Tn

d→ N(0, 1/3).

To prove that this is indeed so, write n−
3
2Tn =

∑n
k=1Xn,k, where Xn,k = n−

3
2kXk. Let us

check the crucial third condition of Theorem 40.

E[X2
n,k1|Xn,k|>δ] = n−3k2E[X2

k1|Xk|>δk−1n3/2 ]

≤ n−1E[X21|X|>δ
√
n] (since k ≤ n)

which when added over k gives E[X21|X|>δ
√
n]. Since E[X2] < ∞, this goes to zero as

n→∞, for any δ > 0.

Exercise 20

Let 0 < a1 < a2 < . . . be fixed numbers and letXk be i.i.d. random variables with zero mean

and unit variance. Find simple sufficient conditions on ak to ensure asymptotic normality

of Tn :=
∑n

k=1 akXk.

6. Two proofs of the Lindeberg-Feller CLT

Now we prove the Lindeberg-Feller CLT by both approaches. It makes sense to compare with

the earlier proofs and see where some modifications are required.
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6.1. Proof via characteristic functions. As in the earlier proof, we need a fact comparing a

product to an exponential.
Exercise 21

If zk, wk ∈ C and |zk|, |wk| ≤ θ for all k, then
∣∣∣ n∏
k=1

zk −
n∏
k=1

wk

∣∣∣ ≤ θn−1
n∑
k=1

|zk − wk|.

PROOF OF THEOREM 40. The characteristic function of Sn = Xn,1 + . . . + Xn,n is given by

ψn(t) =
n∏
k=1

E
[
eitXn,k

]
. Again, we shall use the Taylor expansion of eitx, but we shall need both

the second and first order expansions.

eitx =

1 + itx− 1
2 t

2x2 − i
6 t

3eitx
∗
x3 for some x∗ ∈ [0, x] or [x, 0].

1 + itx− 1
2 t

2eitx
+
x2 for some x+ ∈ [0, x] or [x, 0].

Fix δ > 0 and use the first equation for |x| ≤ δ and the second one for |x| > δ to write

eitx = 1 + itx− 1

2
t2x2 +

1|x|>δ

2
t2x2(1− eitx+)−

i1|x|≤δ

6
t3x3eitx

∗
.

Apply this with x = Xn,k, take expectations and write σ2
n,k := E[X2

n,k] to get

E[eitXn,k ] = 1− 1

2
σ2
n,kt

2 +Rn,k(t)

where, Rn,k(t) := t2

2 E
[
1|Xn,k|>δX

2
n,k

(
1− eitX

+
n,k

)]
− it3

6 E
[
1|Xn,k|≤δX

3
n,ke

itX∗n,k
]
. We can bound

Rn,k(t) from above by using |Xn,k|31|Xn,k|≤δ ≤ δX
2
n,k and |1− eitx| ≤ 2, to get

(19) |Rn,k(t)| ≤ t2E
[
1|Xn,k|>δX

2
n,k

]
+
|t|3δ

6
E
[
X2
n,k

]
.

We want to apply Exercise 21 to zk = E
[
eitXn,k

]
and wk = 1 − 1

2σ
2
n,kt

2. Clearly |zk| ≤ 1 by

properties of c.f. If we prove that max
k≤n

σ2
n,k → 0, then it will follow that |wk| ≤ 1 and hence with

θ = 1 in Exercise 21, we get

lim sup
n→∞

∣∣∣ n∏
k=1

E
[
eitXn,k

]
−

n∏
k=1

(
1− 1

2
σ2
n,kt

2

) ∣∣∣ ≤ lim sup
n→∞

n∑
k=1

|Rn,k(t)|

≤ 1

6
|t|3σ2δ (by 19)

To see that max
k≤n

σ2
n,k → 0, fix any δ > 0 note that σ2

n,k ≤ δ2 + E
[
X2
n,k1|Xn,k|>δ

]
from which we get

max
k≤n

σ2
n,k ≤ δ2 +

n∑
k=1

E
[
X2
n,k1|Xn,k|>δ

]
→ δ2.

As δ is arbitrary, it follows that max
k≤n

σ2
n,k → 0 as n→∞. As δ > 0 is arbitrary, we get

(20) lim
n→∞

n∏
k=1

E
[
eitXn,k

]
= lim

n→∞

n∏
k=1

(
1− 1

2
σ2
n,kt

2

)
.
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For n large enough (and fixed t), max
k≤n

t2σ2
n,k ≤

1
2 and then

e−
1
2
σ2
n,kt

2− 1
4
σ4
n,kt

4

≤ 1− 1

2
σ2
n,kt

2 ≤ e−
1
2
σ2
n,kt

2

.

Take product over k ≤ n, and observe that
∑n

k=1 σ
4
n,k → 0 (why?). Hence,

n∏
k=1

(
1− 1

2
σ2
n,kt

2

)
→ e−

σ2t2

2 .

From 20 and Lévy’s continuity theorem, we get
∑n

k=1Xn,k
d→ N(0, σ2). �

6.2. Proof of Lindeberg-Feller CLT by replacement method.

PROOF. As before, without loss of generality, we assume that on the same probability space as

the random variables Xn,k we also have the Gaussian random variables Yn,k that are independent

among themselves and independent of all the Xn,ks and further satisfy E[Yn,k] = E[Xn,k] and

E[Y 2
n,k] = E[X2

n,k].

Similarly to the earlier proof of CLT, fix n and define Uk =
∑k−1

j=1 Xn,j +
∑n

j=k+1 Yn,j and

Vk =
∑k

j=1Xn,j+
∑n

j=k+1 Yn,j for 0 ≤ k ≤ n. Then, V0 = Yn,1+. . .+Yn,n and Vn = Xn,1+. . .+Xn,n.

Also, Vn ∼ N(0, σ2). Thus,

E [f (Vn)]−E[f(V0)] =

n∑
k=1

E [f (Vk)− f (Vk−1)](21)

=

n∑
k=1

E [f (Vk)− f (Uk)]−
n∑
k=1

E [f (Vk−1)− f (Uk)] .

We expand f(Vk)− f(Uk) by Taylor series, both of third order and second order and write

f(Vk)− f(Uk) = f ′(Uk)Xn,k +
1

2
f ′′(Uk)X

2
n,k +

1

6
f ′′′(U∗k )X3

n,k,

f(Vk)− f(Uk) = f ′(Uk)Xn,k +
1

2
f ′′(U#

k )X2
n,k

where U∗k and U#
k are between Vk and Uk. Write analogous expressions for f(Vk−1) − f(Uk) (ob-

serve that Vk−1 = Uk + Yn,k) and subtract from the above to get

f(Vk)− f(Vk−1) = f ′(Uk)(Xn,k − Yn,k) +
1

2
f ′′(Uk)(X

2
n,k − Y 2

n,k) +
1

6
(f ′′′(U∗k )X3

n,k − f ′′′(U∗∗k )Y 3
n,k),

f(Vk)− f(Vk−1) = f ′(Uk)(Xn,k − Yn,k) +
1

2
(f ′′(U#

k )X2
n,k − f ′′(U

##
k )Y 2

n,k).

Use the first one when |Xn,k| ≤ δ and the second one when |Xn,k| > δ and take expectations to get

|E[f(Vk)]−E[f(Vk−1)]| ≤ 1

2
E[|f ′′(Uk)|]

∣∣∣E[X2
n,k1|Xn,k|≤δ]−E[Y 2

n,k1|Yn,k|≤δ]
∣∣∣(22)

+
1

2

∣∣∣E[|f ′′(U#
k )|X2

n,k1|Xn,k|>δ]
∣∣∣+

1

2

∣∣∣E[|f ′′(U##
k )|Y 2

n,k1|Yn,k|>δ]
∣∣∣(23)

+
1

6

∣∣∣E[|f ′′′(U∗k )||Xn,k|31|Xn,k|≤δ]
∣∣∣+

1

6

∣∣∣E[|f ′′′(U∗∗k )||Yn,k|31|Yn,k|≤δ]
∣∣∣(24)
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Since E[X2
n,k] = E[Y 2

n,k], the term in the first line (22) is the same as 1
2E[|f ′′(Uk)|]

∣∣E[X2
n,k1|Xn,k|>δ]−

E[Y 2
n,k1|Yn,k|>δ]

∣∣which in turn is bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}.

The terms in (23) are also bounded by

Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}.

To bound the two terms in (24), we show how to deal with the first.∣∣∣E[|f ′′′(U∗k )||Xn,k|31|Xn,k|≤δ]
∣∣∣ ≤ CfδE[X2

n,k].

The same bound holds for the second term in (24). Putting all this together, we arrive at

|E[f(Vk)]−E[f(Vk−1)]| ≤ Cf{E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ]}+ δ{E[|X2
n,k] + E[Y 2

n,k]}.

Add up over k and use (21) to get∣∣∣E [f (Vn)]−E[f(V0)]
∣∣∣ ≤ δ n∑

k=1

E[|X2
n,k] + E[Y 2

n,k]

+ Cf

n∑
k=1

E[|X2
n,k1|Xn,k|>δ] + E[Y 2

n,k1|Yn,k|>δ].

As n → ∞, the first term on the right goes to 2δσ2. The second term goes to zero. This follows

directly from the assumptions for the terms involvingX whereas for the terms involving Y (which

are Gaussian), it is a matter of checking that the same conditions do hold for Y .

Consequently, we get lim sup
∣∣E[f(V0)] − E[f(Vn)]

∣∣ ≤ 2σ2δ. As δ is arbitrary, we have shown

that for any f ∈ C(3)
b (R), we have

E[f(Xn,1 + . . .+Xn,n)]→ E[f(Z)]

where Z ∼ N(0, σ2). This completes the proof that Xn,1 + . . .+Xn,n
d→ N(0, σ2). �

7. Sums of more heavy-tailed random variables

Let Xi be an i.i.d sequence of real-valued r.v.s. If the second moment is finite, we have see

that the sums Sn converge to Gaussian distribution after shifting (by nE[X1]) and scaling (by
√
n).

What if we drop the assumption of second moments? Let us first consider the case of Cauchy

random variables to see that such results may be expected in general.

Example 17

Let Xi be i.i.d Cauchy(1), with density 1
π(1+x2)

. Then, one can check that Snn has exactly the

same Cauchy distribution! Thus, to get distributional convergence, we just write Sn
n

d→ C1.
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If Xi were i.i.d with density a
π(a2+(x−b)2)

(which can be denoted Ca,b with a > 0, b ∈ R), then
Xi−b
a are i.i.d C1, and hence, we get

Sn − nb
an

d→ C1.

This is the analogue of CLT, except that the location change is nb instead of nE[X1], scaling

is by n instead of
√
n and the limit is Cauchy instead of Normal.

This raises the following questions.

(1) For general i.i.d sequences, how are the location and scaling parameter determined, so

that b−1
n (Sn − an) converges in distribution to a non-trivial measure on the line?

(2) What are the possible limiting distributions?

(3) What are the domains of attraction for each possible limiting distribution, e.g., for what

distributions on X1 do we get b−1
n (Sn − an)

d→ C1?

For simplicity, let us restrict ourselves to symmetric distributions, i.e., X d
= −X . Then, clearly no

shifting is required, an = 0. Let us investigate the issue of scaling and what might be the limit.

Symmetric α-stable distributions Fix α > 0. Do there exist i.i.d. random variables X,Y such that

X + Y
d
= 2

1
αX? When α = 2, centered Gaussian distributions satisfy the distributional equation,

and when α = 1, the symmetric Cauchy distributions do. What about other α?

From the distributional identity, ifX,Y ∼ µ are i.i.d., then the characteristic function µ̂ satisfies

µ̂(21/αt) = µ̂(t)2. As µ̂ is continuous, real-valued and symmetric, it is not hard to see that µ̂(t) =

e−c|t|
α

. Of course, we don’t know if this is a valid characteristic function, i.e., if such a distribution

µ exists. This is answered in the following theorem.

Theorem 41: Symmetric stable distributions

The symmetric α-stable distribution exists if and only if 0 < α ≤ 2.

PROOF. First suppose α ≥ 2. Then e−|t|
α

is a C2 function, with a maximum at 0. and hence if

µα with characteristic function e−|t|
α

were to exist, it would have finite variance and zero mean.

But taking variance of both sides in the identity X + Y
d
= 21/αX where X,Y are i.i.d. µα, we see

that 2Var(X) = 22/αVar(X). Either Var(X) = 0, in which case X = 0 a.s., or α = 2, in which case

X ∼ N(0, σ2) for some σ ≥ 0.

Next suppose 0 < α < 2. Recall that X ∼ Pois(λ) has characteristic function exp{λ(eit − 1)},
hence uX has characteristic function exp{λ(eiut − 1)}. Adding independent copies of such vari-

ables that exp{
∑N

j=1 λj(e
iujt − 1)} is also a characteristic function for uj ∈ R and λj > 0. As a spe-

cial case, take±uj with equal weight λj to get the characteristic function exp{
∑N

j=1 λj(2 cos(ujt)−
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2)}. Taking Riemann sum approximations to the integral and Lévy’s continuity theorem, we see

that for any continuous function λ(·)

exp

{∫ ∞
0

(cos(ut)− 1)λ(u)du

}
is a characteristic function. Of course, we need the integral inside the exponent to make sense and

be the limit of its Riemann sums. One example is λ(u) = u−α−1. Integrability near∞ forces α > 0

and integrability near 0 forces α < 2. On the other hand, if I(t) =
∫∞

0 (cos(ut) − 1)u−α−1du, then

by a change of variables I(t) = tαI(1). This proves that exp{−|t|α} is a characteristic function for

0 < α < 2. �

Henceforth, we write µα for the symmetric α-stable distribution with characteristic function

exp
{∫∞

0 (cos(ut)− 1)αu−α−1du
}

(which is e−cα|t|
α

for some cα that we don’t care to evaluate).

These distributions are heavy tailed. The proof above in fact shows that none of them (except

α = 2) can have finite variance.

Theorem 42: Moments of symmetric stable distributions

Let 0 < α < 2. Then
∫
|x|pdµα(x) <∞ if p < α and

∫
|x|pdµα(x) =∞ if p > α.

PROOF. In the chapter on characteristic functions in the appendix, the following estimate is

proved:

µ([−2M, 2M ]c) ≤M
∫ 1/M

−1/M
(1− µ̂(t))dt.

Applying this to µα and using the fact that 1 − e−|t|α ∼ |t|α as t → 0, we get µα([−2M, 2M ]c) ≤
CM × 1

M1+α = CM−α. Now, ∫
|x|pdµα(x) =

∫ ∞
0

µα{|x|p > t}dt

≤ C(1 +

∫ ∞
1

t−α/pdt)

which is finite if p < α.

To write: Proof that moments above α do not exist �

Domains of attraction of symmetric stable distributions Let µα be the symmetric α-stable distri-

bution with characteristic function e−|t|
α

, where 0 < α < 2. If Xi ∼ µα, then it is easy to see that

Sn/n
1/α has the same distribution as X1, in particular n−

1
αSn

d→ µα. The question is, what are

the other distributions for which Sn (with the same scaling or different) have the same limit. For

α = 2, all we needed for the CLT was that Xi have zero mean and unit variance.
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We stick to symmetric distributions here. Nevertheless, it is not sufficient to ask for Xi to have

finite moments of order up to α and infinite moments beyond. A certain regularity in the tail

behaviour of the distribution is needed. The regularity is stated in terms of the important concept

of slowly varying functions. We say that L : (0,∞)→ (0,∞) is slowly varying if L(at)
L(t) → 1 as t→∞,

for any a > 0. Examples are log t, powers and iterates of logarithm. Observe that tε is not slowly

varying if ε 6= 0.

Theorem 43: Convergence to symmetric stable distributions

Let Xi be i.i.d. with symmetric distribution µ. Assume that tαµ([−t, t]c) is a slowly varying

function. Define b(u) = inf{t : µ([−t, t]c) = u}. Then
Sn

b(1/n)

d→ µα.

What is the scaling b(1/n) here? If µ([−t, t]c) ∼ Ct−α, then b(1/n) � n1/α. But if µ([−t, t]c) ∼
Ct−α log t, then b(1/n) � n

1
α (log n)

1
α and if µ([−t, t]c) ∼ Ct−α/ log t, then b(1/n) � n

1
α (log n)−

1
α .

Thus the exact scaling depends on the correction to t−α in the tail of µ. The limit distribution does

not.

The proof of the above theorem requires another limit theorem that is of fundamental impor-

tance in itself.

7.1. Poisson limit theorems. We know that Bin(n, λ/n)
d→ Pois(λ) as n → ∞. Like the de

Moivre Laplace theorem, this is just a baby version of a rather widespread phenomenon. Here is

one particular version of it.

Theorem 44: Poisson convergence of sums of independent Bernoullis

Let ξn,j ∼ Ber(pn,j), 1 ≤ j ≤ n, be a triangular array of Bernoulli random variables such

that (1) For each n, the variables ξn,1, . . . , ξn,n are independent, (2) pn,1 + . . . + pn,n → λ

as n → ∞, (3) p∗n := max
j≤n

pn,j → 0 as n → ∞. Then Sn := ξn,1 + . . . + ξn,n converges in

distribution to Pois(λ).

PROOF. By a direct calculation,

P{Sn = `} =
∑

j1<...<j`≤n

∏̀
i=1

pn,ji
∏

i 6∈{j1,...,j`}

(1− pn,j)

=
n∏
i=1

(1− pn,j)
∑

j1<...<j`

∏̀
r=1

pn,jr
1− pn,jr

.
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From the inequality e−x ≥ 1− x ≥ e−x−x2 (valid when |x| ≤ 1
2 ), for large enough n,

e−
∑n
j=1(pn,j+p

2
n,j) ≤

n∏
i=1

(1− pn,j) ≤ e−
∑n
j=1 pn,j ,

ep
∗
n ≤ 1

1− pn,jr
≤ ep∗n(1+p∗n).

Thus,

e−
∑n
j=1(pn,j+p

2
n,j)ep

∗
n

∑
j1<...<j`

∏̀
r=1

pn,jr ≤ P{Sn = `} ≤ e−
∑n
j=1 pn,jep

∗
n(1+p∗n)

∑
j1<...<j`

∏̀
r=1

pn,jr

Now,
∑n

j=1 pn,j → λ and
∑n

j=1 p
2
n,j ≤ p∗n

∑n
j=1 pn,j → 0. Thus the exponential factors outside the

sum on both left and right converge to e−λ. Further,

∑
j1<...<j`

∏̀
r=1

pn,jr =
1

`!


 n∑
j=1

pn,j

`

−
∗∑

j1,...,j`

∏̀
r=1

pn,jr


where the second sum is over tuples (j1, . . . , j`) of which at least two are equal. The first term

inside the brackets converges to λ`. As

∑
j1=j2

∏̀
r=1

pn,jr ≤

∑
j

p2
n,j

∑
j

pn,j

`−2

→ 0,

and the same is true of the other
(
`
2

)
possible pairs of equal (jr, js), we conclude that∑
j1<...<j`

∏̀
r=1

pn,jr →
1

`!
λ`.

In summary, P{Sn = `} → e−λ λ
`

`! for ` ∈ N, and thus Sn
d→ Pois(λ). �

ALTERNATE PROOF. For t ∈ R,

E[eitSn ] =

n∏
k=1

(1− pn,j + pn,je
it).

By Exercise 21,∣∣E[eitSn ]−
n∏
j=1

e−pn,j+pn,je
it∣∣ ≤ n∑

j=1

∣∣e−pn,j+pn,jeit − (1− pn,j + pn,je
it)
∣∣

≤ C
n∑
j=1

p2
n,j

which converges to 0. As
∏n
j=1 e

−pn,j+pn,jeit → e−λ+λeit , which is the characteristic function of

Pois(λ), we see that Sn
d→ Pois(λ). �
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7.2. Proof of Theorem 43. The proof is very different from all the proofs of central limit the-

orem, because the underlying phenomena are themselves different. In CLT, all the variables con-

tribute about the same, but for the heavy tailed variables under consideration, the sum Sn essen-

tially comes from the largest few Xis.

For example, if P{X1 ≥ x} ∼ Cx−α, then the expected number of X1, . . . , Xn that are above x

is Cnx−α, which shows that the maximum Mn = max{X1, . . . , Xn} is not likely to be significantly

more than n1/α. By the second moment method, one can show that Mn is of the order of n1/α,

which is also the order of magnitude of Sn (as the statement of Theorem 43 asserts). Contrast this

with the Gaussian case, where the maximum is of order
√

log n while the sum is of order
√
n.

First we prove a Theorem that is in the same spirit as Theorem 43, but technically much sim-

pler.

Theorem 45: Poissonized version of convergence to symmetric stable distributions

Let Xi be i.i.d. with symmetric distribution µ and let Kn ∼ Pois(n) be independent of Xis.

Assume that tαµ([−t, t]c) is a slowly varying function. Define b(u) = inf{t : µ([−t, t]c) = u}.
Then

SKn
b(1/n)

d→ µα.

PROOF. The advantage of considering SKn instead of Sn is that its characteristic function can

be written in a form similar to that of µα. Define the measure µn by µn(J) = 2nµ(anJ) for J ∈ BR
and let an = b(1/n). We claim that

E
[
eitSKn/an

]
= exp

{∫ ∞
0

(cos(tu)− 1)dµn(u)

}
.(25)

To see this2, let Mn = δX1/an + . . . + δXKn/an , a random measure, in terms of which a−1
n SKn =∫

tdMn(t). For δ > 0, let Ij,δ = (jδ, (j + 1)δ] and ϕδ =
∑

j≥1 jδ(1Ij,δ − 1−Ij,δ). Then ϕδ(t) → t as

δ ↓ 0, and |ϕδ(t)| ≤ t. Hence, by DCT,

SKn
an

= lim
δ↓0

∞∑
j=1

jδMn(Ij,δ)−
∞∑
j=1

jδMn(−Ij,δ) a.s.

If J1, . . . , Jk are pairwise disjoint intervals, thenMn(J1), . . . ,Mn(Jk) are independent random vari-

ables with Mn(J) ∼ Pois(nµ(anJ)). This is a well-known fact about thinning of Poissons. Thus,

for fixed δ > 0, the quantity on the right is a weighted sum of independent Poisson random

2If you are familiar with Poisson processes, it is possible to see this formula and nod “yes, it is obvious”. The

explanation given is for those who did not nod.
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variables, hence it has characteristic function (using the symmetry µ(Ij,δ) = µ(−Ij,δ))

exp


∞∑
j=1

nµ(Ij,δ)(e
itjδ + e−itjδ − 1)

 = exp


∞∑
j=1

2nµ(Ij,δ)(cos(jδ)− 1)

 .

The exponent is 2
∫∞

0 (cos(ϕδ(t))− 1)dµn(t), hence it converges to 2
∫∞

0 (cos t− 1)dµn(t) by another

application of DCT. This proves (25).

Now we need to let n→∞. For any s > 0,

µn[s,∞) = nµ[an,∞)× µ[san,∞)

µ[an,∞)
→ 1

2sα

as nµ[an,∞) = 1/2 by choice of an, and using the fact that sαµ[san,∞) is slowly varying. This is al-

most like saying that µn (restricted to (0,∞)) converges in distribution to the measure 1
2αs

−α−1ds.

However the limiting measure here is infinite, and hence we need to justify that

2

∫ ∞
0

(cos t− 1)dµn(t)→
∫ ∞

0
(cos t− 1)

α

tα+1
dt.(26)

Once we justify (26), the proof is complete, as it shows that the characteristic function of SKn/n1/α

converges pointwise to the characteristic function of µα (refer back to the definition of µα). �

To justify (26), we fix ε > 0 and divide the integral over (0, ε), [ε, 1/ε] and (1/ε,∞). Since the

limiting integral is convergent, we can choose ε small enough to make the first and third integrals

smaller than ε. On [ε, 1/ε], the measures are finite, and we can scale and pretend that we are

working with probability measures to conclude that (we leave the details as exercise)

2

∫ 1/ε

ε
(cos t− 1)dµn(t)→

∫ 1/ε

ε
(cos t− 1)

α

tα+1
dt.

It only remains to show that the first and third integrals can be made arbitrarily small uniformly

over n, by choosing ε small. As the integrand is bounded by 2, the third integral is bounded by

4µn[1/ε,∞) = 4nµ[an,∞)
µ[an/ε,∞)

µ[an,∞)
∼ 2εα

by the same argument that we used above. This shows that the third integral can be made uni-

formly small by choosing ε small enough. The first integral is to complete
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CHAPTER 7

Appendix: Characteristic functions and their properties

Definition 14

Let µ be a probability measure on R. The function ψµ : Rd → R define by ψµ(t) :=∫
R e

itxdµ(x) is called the characteristic function or the Fourier transform of µ. If X is a ran-

dom variable on a probability space, we sometimes say “characteristic function of X” to

mean the c.f. of its distribution (thus ψX(t) = E[eitX ]). We also write µ̂ instead of ψµ.

There are various other “integral transforms” of a measure that are closely related to the c.f.

For example, if we take ψµ(it) is the moment generating function of µ (if it exists). For µ supported

on N, its so called generating function Fµ(t) =
∑

k≥0 µ{k}tk (which exists for |t| < 1 since µ is a

probability measure) can be written as ψµ(−i log t) (at least for t > 0!) etc. The characteristic

function has the advantage that it exists for all t ∈ R and for all finite measures µ.

The importance of c.f comes from the following facts, which we shall discuss and prove one

by one1.

(A) It transforms well under certain operations, such as shifting, scaling and under convolu-

tions. The last of these makes it a tool of amazing power in studying sums of independent

random variables.

(B) The characteristic function determines the measure. Further, the smoothness of the char-

acteristic function encodes the tail decay of the measure, and vice versa. In general, c.f.

encodes properties of the distribution in a not-so-direct but still tractable manner.

(C) µ̂n(t)→ µ̂(t) pointwise, if and only if µn
d→ µ. The forward implication is the key property

that is used in proving central limit theorems.

(D) There exist necessary and sufficient conditions for a function ψ : R→ C to be the c.f. of a

measure. Because of this and part (B), sometimes one defines a measure by its character-

istic function.

0.1. Basic observations.

1In addition to the usual references, Feller’s Introduction to probability theory and its applications: vol II, chapter XV, is

an excellent resource for the basics of characteristic functions. Our presentation is based on it too.
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Theorem 46

Let X,Y be random variables with distributions µ, ν respectively.

(1) For any a, b ∈ R, we have ψaX+b(t) = eibtψX(at).

(2) If X,Y are independent, then ψX+Y (t) = ψX(t)ψY (t).

PROOF. (1) ψaX+b(t) = E[eit(aX+b)] = E[eitaX ]eibt = eibtψX(at).

(2) ψX+Y (t) = E[eit(X+Y )] = E[eitXeitY ] = E[eitX ]E[eitY ] = ψX(t)ψY (t). �

Lemma 47

Let µ ∈ P(R). Then, µ̂ is a uniformly continuous function on R with |µ̂(t)| ≤ 1 for all t with

µ̂(0) = 1. (equality may be attained elsewhere too).

PROOF. Clearly µ̂(0) = 1 and |µ̂(t)| ≤
∫
|eitx|dµ(x) = 1. Further,

|µ̂(t+ h)− µ̂(t)| ≤
∫
|ei(t+h)x − eitx|dµ(x) =

∫
|eihx − 1|dµ(x).

As h → 0, the integrand |eihx − 1| → 0 and is also bounded by 2. Hence by the dominated

convergence theorem, the integral goes to zero as h → 0. The uniformity is clear as there is no

dependence on t. �

Lemma 48: Parseval’s identity

If µ, ν ∈ P(R), then
∫
µ̂ dν =

∫
ν̂ dµ.

PROOF. Integrate eixy against µ ⊗ ν in two ways, using Fubini’s theorem. The two iterated

integrals are
∫
µ̂dν and

∫
ν̂dµ. �

0.2. Decay and smoothness. Smoothness of the characteristic function is related to the tail

decay of the measure and smoothness of the measure is related to the tail decay of the characteristic

function. We give some statements illustrating all four directions of implication.

Theorem 49: Decay of the measure to smoothness of Fourier transform

Let µ ∈ P(R). If
∫
|x|kdµ(x) <∞ for some k ∈ N, then µ̂ ∈ C(k)(R) and

µ̂(k)(t) =

∫
R

(ix)keitxdµ(x).

PROOF. It is a matter of justifying the differentiation w.r.t. t under the integral µ̂(t) =
∫
eitxdµ(x).

We show it for k = 1 and leave the rest as an exercise. As h−1(ei(t+h)x − eitx) → ixeitx as h → 0
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and h−1|ei(t+h)x − eitx| ≤ |x| by mean value theorem, if
∫
|x|dµ(x) <∞ then DCT justifies

lim
h→0

1

h

∫
(ei(t+h)x − eitx)dµ(x) =

∫
ixeitxdµ(x)

which is the same as µ̂′(t) =
∫
ixeitxdµ(x). �

In fact, by expanding eitx in finite order Taylor expansion and applying expectations, one can

write the Taylor expansion for µ̂ with coefficient given by moments of µ.

Theorem 50: Smoothness of measure to decay of Fourier transform

Let µ ∈ P(R). Assume that µ has density f with respect to Lebesgue measure.

(1) (Riemann-Lebesgue lemma). µ̂(t)→ 0 as t→ ±∞.

(2) If f ∈ C(k), then µ̂(t) = o(|t|−k) as t→ ±∞.

PROOF. First assume that f is smooth and that its derivatives are also integrable (and hence

vanish at infinity). Then, integrating by parts, we get

µ̂(t) = −
∫

1

it
eitxf ′(x)dx

which is bounded by 1
|t|‖f‖L1(R). This goes to 0 as |t| → ∞. In general, we can approximate f by

a smooth g whose derivatives are integrable so that ‖f − g‖L1(R) ≤ ε. Then ‖f̂ − ĝ‖sup ≤ ε (we use

f̂(t) for
∫
f(x)eitxdx). Therefore,

lim sup
t→±∞

|f̂(t)| ≤ lim sup
t→±∞

|ĝ(t)|+ ε = ε

as ĝ(t)→ 0. This completes the proof of the first part.

Observe that the positivity of f was not used, only its integrability. Hence if f is k times

differentiable and f (k) ∈ L1(R), then f̂ (k)(t) = o(1) as t → ±∞. Now, integrating by parts we see

that f̂(t) = (−i/t)kf̂ (k)(t), which is o(t−k). �

Theorem 51: Smoothness of the characteristic function to the decay of the measure

Let µ ∈ P(R). Then, for any M > 0,

µ([−2M, 2M ]c) ≤M
∫ M

−M
(1− µ̂(t))dt.

PROOF. Let δ = 1/M and write∫ δ

−δ
(1− µ̂(t)) dt =

∫ δ

−δ

∫
R

(1− eitx) dµ(x) dt =

∫
R

∫ δ

−δ
(1− eitx) dt dµ(x)

=

∫
R

(
2δ − 2 sin(xδ)

x

)
dµ(x) = 2δ

∫
R

(
1− sin(xδ)

xδ

)
dµ(x).
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When δ|x| > 2, we have sin(xδ)
xδ ≤ 1

2 (since sin(xδ) ≤ 1). Therefore, the integrand is at least 1
2 when

|x| > 2
δ and the integrand is always non-negative since | sin(x)| ≤ |x|. Therefore we get∫ δ

−δ
(1− µ̂(t))dt ≥ δµ ([−2/δ, 2/δ]c) .

This is the claim. �

Theorem 52: Decay of the Fourier transform to the smoothness of the measure

If µ̂ ∈ L1(R), then µ has a bounded continuous density f given by

f(x) =
1

2π

∫
e−itxµ̂(t)dt.

If further tkµ̂(t) is integrable over R, then f is k times differentiable.

The first part is proved below under the heading of Fourier inversion formula. Once that is

proved, we have essentially express f as the Fourier transform of µ̂ (except for the negative sign

in the exponent and the factor of 1/2π). Hence, the earlier proof, where we showed that if the kth

moment is finite, then the characteristic function is k times differentiable, applies here with µ̂(t)dt

taking the place of the measure.

0.3. Examples. We give some examples.

(1) If µ = δ0, then µ̂(t) = 1. More generally, if µ = p1δa1 + . . . + pkδak , then µ̂(t) = p1e
ita1 +

. . .+ pke
itak .

(2) If X ∼ Ber(p), then ψX(t) = peit + q where q = 1 − p. If Y ∼ Binomial(n, p), then,

Y
d
= X1 + . . .+Xn where Xk are i.i.d Ber(p). Hence, ψY (t) = (peit + q)n.

(3) Let X,X ′ ∼ unif[−1, 1] be independent and let Y = X + X ′. The density of X is 1
2 on

[−1, 1] while that of Y is 1
2(1 − 1

2 |x|) for |x| ≤ 2. The characteristic function of X is easily

computed to be sin t/t and hence the characteristic function of Y is (sin t/t)2.

(4) The characteristic function of Pois(λ) distribution is∑
k≥0

eikte−λ
λk

k!
= e−λ+λeit .

(5) If X ∼ Exp(λ), then ψX(t) =
∫∞

0 λe−λxeitxdx = λ
λ−it . If Y ∼ Gamma(ν, λ), then if ν is an

integer, then Y d
= X1 + . . .+Xν whereXk are i.i.d Exp(λ). Therefore, ψY (t) = λν

(λ−it)ν . This

is true even if ν is not an integer, but the proof would have to be a direct computation.

(6) Laplace distribution having density 1
2e
−|x| on all of R has characteristic function 1

1+t2
.

This is similar to the previous example and left as an exercise.
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(7) Y ∼ Normal(µ, σ2). Then, Y = µ + σX , where X ∼ N(0, 1) and by the transofrmatin

rules, ψY (t) = eiµtψX(σt). Thus it suffices to find the c.f of N(0, 1). Denote it by ψ.

ψ(t) =
1√
2π

∫
R
eitxe−

x2

2 dx = e−
t2

2

(
1√
2π

∫
R
e−

(x−it)2
2 dx

)
.

It appears that the stuff inside the brackets is equal to 1, since it looks like the integral of

a normal density with mean it and variance σ2. But if the mean is complex, what does

it mean?! Using contour integration, one can indeed give a rigorous proof that the stuff

inside brackets is indeed equal to 12.

The final conclusion is that N(µ, σ2) has characteristic function eitµ−
σ2t2

2 . We gave an

alternate rigorous proof using Stein’s identity in the notes.

(8) Let µ be the standard Cauchy measure 1
π(1+x2)

dx. Let t > 0 and considerψ(t) = 1
π

∫
eitx

1+x2
dx.

We use contour integration. Let γ(u) = u for −R ≤ u ≤ R and η(u) = Reis for 0 ≤ s ≤ π.

Then by the residue theorem

1

π

∫
γ

eitz

1 + z2
dz +

1

π

∫
η

eitz

1 + z2
dz =

1

π
× 2πiRes

(
eitz

1 + z2
, i

)
= e−t.

However, on η, the integrand is bounded by e−t Im z

|1+z2| ≤
1

R2−1
, since t > 0. The length of

the contour is πR, hence the total integral over η is O(1/R) as R→∞. Thus, 1
π

∫
γ

eitx

1+x2
dx

converges to e−t for t > 0. By the symmetry of the underlying measure, ψ(−t) = ψ(t),

whence we arrive at ψ(t) = e−|t|.

0.4. Inversion formulas.
Theorem 53

If µ̂ = ν̂, then µ = ν.

PROOF. Let θσ denote the N(0, σ2) distribution and let ϕσ(x) = 1
σ
√

2π
e−x

2/2σ2
and Φσ(x) =∫ x

−∞ ϕσ(u)du and θ̂σ(t) = e−σ
2t2/2 denote the density and cdf and characteristic functions, respec-

tively. Then, by Parseval’s identity, we have for any α,∫
e−iαtµ̂(t)dθσ(t) =

∫
θ̂σ(x− α)dµ(x)

=

√
2π

σ

∫
ϕ 1
σ

(α− x)dµ(x)

2Here is the argument: Fix R > 0 and let γ(u) = u and η(t) = u + it for −R ≤ u ≤ R and let η′x(s) = x + is for

0 ≤ s ≤ t. The integral that we want is the limit of the contour integrals
∫
η
e−

1
2
z2dz as R→∞. Since the integrand has

no poles, this is the same as the integral
∫
γ
+
∫
η′
R
−
∫
η′−R

of e−z
2/2. The integral over γ converges to

∫
R e
−x2/2dx which

is
√
2π. The integrals over η′R and η′−R converge to zero as R→∞. This is because the absolute value of the integrand

is e−
1
2
(R2+s2) ≤ e−R

2/2 for any 0 ≤ s ≤ t. Thus the two integrals are bounded in absolute value by e−R
2/2|t| which

goes to 0 as R→∞.
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where the last line comes by the explicit Gaussian form of θ̂σ. Let fσ(α) := σ√
2π

∫
e−iαtµ̂(t)dθσ(t)

and integrate the above equation to get that for any finite a < b,∫ b

a
fσ(α)dα =

∫ b

a

∫
R
ϕ 1
σ

(α− x) dµ(x) dα

=

∫
R

∫ b

a
ϕ 1
σ

(α− x) dα dµ(x) (by Fubini)

=

∫
R

(
Φ 1
σ

(b− x)− Φ 1
σ

(a− x)
)
dµ(x).

Now, we let σ →∞, and note that

Φ 1
σ

(u)→


0 if u < 0.

1 if u > 0.

1
2 if u = 0.

Further, Φ 1
σ

is bounded by 1. Hence, by DCT, we get

lim
σ→∞

∫ b

a
fσ(α)dα =

∫ [
1(a,b)(x) +

1

2
1{a,b}(x)

]
dµ(x) = µ(a, b) +

1

2
µ{a, b}.

Now we make two observations: (a) that fσ is determined by µ̂, and (b) that the measure µ is

determined by the values of µ(a, b) + 1
2µ{a, b} for all finite a < b. Thus, µ̂ determines µ. �

We can continue the reasoning in the above proof to get a formula for recovering a measure

from its characteristic function.

Corollary 54: Fourier inversion formula

Let µ ∈ P(R).

(1) For all finite a < b, we have

(1) µ(a, b) +
1

2
µ{a}+

1

2
µ{b} = lim

σ→∞

1

2π

∫
R

e−iat − e−ibt

it
µ̂(t)e−

t2

2σ2 dt

(2) If
∫
R |µ̂(t)|dt <∞, then µ has a continuous density given by

f(x) :=
1

2π

∫
R
µ̂(t)e−ixtdt.

PROOF. (1) Recall that the left hand side of (1) is equal to lim
σ→∞

∫ b
a fσ where

fσ(α) :=
σ√
2π

∫
e−iαtµ̂(t)dθσ(t).

100



Writing out the density of θσ we see that∫ b

a
fσ(α)dα =

1

2π

∫ b

a

∫
R
e−iαtµ̂(t)e−

t2

2σ2 dtdα

=
1

2π

∫
R

∫ b

a
e−iαtµ̂(t)e−

t2

2σ2 dα dt (by Fubini)

=
1

2π

∫
R

e−iat − e−ibt

it
µ̂(t)e−

t2

2σ2 dt.

Thus, we get the first statement of the corollary.

(2) With fσ as before, we have fσ(α) := 1
2π

∫
e−iαtµ̂(t)e−

t2

2σ2 dt. Note that the integrand con-

verges to e−iαtµ̂(t) as σ → ∞. Further, this integrand is bounded by |µ̂(t)| which is as-

sumed to be integrable. Therefore, by DCT, for any α ∈ R, we conclude that fσ(α)→ f(α)

where f(α) := 1
2π

∫
e−iαtµ̂(t)dt.

Next, note that for any σ > 0, we have |fσ(α)| ≤ C for all α where C =
∫
|µ̂(t)|dt.

Thus, for finite a < b, using DCT again, we get
∫ b
a fσ →

∫ b
a f as σ →∞.

But the proof of Theorem 53 tells us that

lim
σ→∞

∫ b

a
fσ(α)dα = µ(a, b) +

1

2
µ{a}+

1

2
µ{b}.

Therefore, µ(a, b)+ 1
2µ{a}+ 1

2µ{b} =
∫ b
a f(α)dα. Fixing a and letting b ↓ a, this shows that

µ{a} = 0 and hence µ(a, b) =
∫ b
a f(α)dα. Thus f is the density of µ.

The proof that a c.f. is continuous carries over verbatim to show that f is continuous

(since f is the Fourier transform of µ̂, except for a change of sign in the exponent). �

An application of Fourier inversion formula Recall the Cauchy distribution µ with with density
1

π(1+x2)
whose c.f is not easy to find by direct integration (Residue theorem in complex analysis is

a way to compute this integral).

Consider the seemingly unrelated p.m ν with density 1
2e
−|x| (a symmetrized exponential, this

is also known as Laplace’s distribution). Its c.f is easy to compute and we get

ν̂(t) =
1

2

∫ ∞
0

eitx−xdx+
1

2

∫ 0

−∞
eitx+xdx =

1

2

(
1

1− it
+

1

1 + it

)
=

1

1 + t2
.

By the Fourier inversion formula (part (b) of the corollary), we therefore get
1

2
e−|x| =

1

2π

∫
ν̂(t)eitxdt =

1

2π

∫
1

1 + t2
eitxdt.

This immediately shows that the Cauchy distribution has c.f. e−|t| without having to compute the

integral!!
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0.5. Continuity theorem. Now we come to the key result that was used in the proof of cen-

tral limit theorems. This is the equivalence between convergence in distribution and pointwise

convergence of characteristic functions.

Theorem 55: Lévy’s continuity theorem

Let µn, µ ∈ P(R).

(1) If µn
d→ µ then µ̂n(t)→ µ̂(t) pointwise for all t.

(2) If µ̂n(t) → ψ(t) pointwise for all t and ψ is continuous at 0, then ψ = µ̂ for some

µ ∈ P(R) and µn
d→ µ.

Observe that in the second statement, we did not a priori assume that ψ is a characteristic

function. It of course implies that if µ̂n → µ̂ pointwise for some µ ∈ P(R), then µn
d→ µ.

PROOF. (1) If µn
d→ µ, then

∫
fdµn →

∫
fdµ for any f ∈ Cb(R) (bounded continuous

function). Since x → eitx is a bounded continuous function for any t ∈ R, it follows that

µ̂n(t)→ µ̂(t) pointwise for all t.

(2) Now suppose µ̂n(t)→ ψ(t) pointwise for all t and ψ is continuous at zero. We first claim

that the sequence {µn} is tight. Assuming this, the proof can be completed as follows.

Let µnk be any subsequence that converges in distribution, say to ν. By tightness,

ν ∈ P(R). Therefore, by the first part, µ̂nk → ν̂ pointwise. But obviously, µ̂nk → µ̂ since

µ̂n → µ̂. Thus, ν̂ = µ̂ which implies that ν = µ. That is, any convergent subsequence of

{µn} converges in distribution to µ. This shows that µn
d→ µ.

It remains to show tightness3. From Lemma 56 below, as n→∞,

µn ([−2/δ, 2/δ]c) ≤ 1

δ

δ∫
−δ

(1− µ̂n(t))dt −→ 1

δ

δ∫
−δ

(1− ψ(t))dt

where the last implication follows by DCT (since 1 − µ̂n(t) → 1 − ψ(t) for each t and

also |1 − µ̂n(t)| ≤ 2 for all t). Further, as δ ↓ 0, we get 1
δ

∫ δ
−δ(1 − ψ(t))dt → 0 (be-

cause, 1 − µ̂(0) = 0 and ψ is continuous at 0). Thus, given ε > 0, we can find δ > 0

such that lim supn→∞ µn ([−2/δ, 2/δ]c) < ε. This means that for some finite N , we have

µn ([−2/δ, 2/δ]c) < ε for all n ≥ N . Now, find A > 2/δ such that for any n ≤ N , we

get µn ([−2/δ, 2/δ]c) < ε. Thus, for any ε > 0, we have produced an A > 0 so that

µn ([−A,A]c) < ε for all n. This is the definition of tightness. �

3I would like to thank Pablo De Nápoli for pointing out a flaw in the statement and proof of the second part.
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Lemma 56

Let µ ∈ P(R). Then, for any δ > 0, we have

µ

([
−2

δ
,
2

δ

]c)
≤ 1

δ

δ∫
−δ

(1− µ̂(t))dt.

PROOF. We write ∫ δ

−δ
(1− µ̂(t))dt =

∫ δ

−δ

∫
R

(1− eitx)dµ(x)dt

=

∫
R

∫ δ

−δ
(1− eitx)dtdµ(x)

=

∫
R

(
2δ − 2 sin(xδ)

x

)
dµ(x)

= 2δ

∫
R

(
1− sin(xδ)

xδ

)
dµ(x).

When δ|x| > 2, we have sin(xδ)
xδ ≤ 1

2 (since sin(xδ) ≤ 1). Therefore, the integrand is at least 1
2 when

|x| > 2
δ and the integrand is always non-negative since | sin(x)| ≤ |x|. Therefore we get∫ δ

−δ
(1− µ̂(t))dt ≥ δµ ([−2/δ, 2/δ]c) . �

From the continuity theorem, it follows that if µ̂n converge to a continuous function, then the

limit is a characteristic function too. Here is an application of this.

0.6. Positive semi-definiteness. What functions arise as characteristic functions of probability

measures on R? If ϕ(t) =
∫
eitxdµ(x) for a probability measure µ, then ϕ(−t) = ϕ(t) for all t ∈ R.

Further, for any m ≥ 1 and any complex numbers c1, . . . , cm and any real numbers t1, . . . tm, we

must have

0 ≤
∫ ∣∣∣ m∑

k=1

cke
itkx
∣∣∣2dµ(x) =

n∑
k,`=1

ckc`

∫
ei(tk−t`)xdµ(x)

=
n∑

k,`=1

ckc`ϕ(tk − t`).

This motivates the following definition.

Definition 15: Positive definite functions

A function ϕ : R 7→ R is said to be positive definite if the matrix Mϕ[t1, . . . , tn] := (ϕ(tj −
tk))1≤j,k≤n is Hermitian and positive semi-definite for any n ≥ 1 and any t1, . . . , tn ∈ R.
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Thus characteristic functions are necessarily positive definite functions. We have also seen that

they are continuous and take the value 1 at 0. These are all the properties that it takes to make a

characteristic function.

Theorem 57: Bochner’s theorem

A function ϕ : R 7→ R is a characteristic function of a Borel probability measure on R if and

only if ϕ is continuous, positive definite and ϕ(0) = 1.

Before starting the proof, we make some basic observations about positive definite functions.

• If ϕ is positive definite, then |ϕ| ≤ 1. Indeed, for any t, the positive semi-definiteness

of Mϕ[0, t] shows that 1 − |ϕ(t)|2 ≥ 0 (note that ϕ(−t) = ϕ(t) is part of the condition of

positive definiteness).

• If ϕ and ψ are positive definite functions and θ(t) = ϕ(t)ψ(t), then θ is also positive

definite. The matrix C = Mθ[t1, . . . , tn] is the Hadamard product (entry-wise product)

of A = Mϕ[t1, . . . , tn] and B = Mψ[t1, . . . , tn]. It is a theorem of Schur that a Hadamard

product of positive semi-definite matrices is also positive demi-definite. It is not hard to

see: As A is positive semi-definite, we can find random variables X1, . . . , Xn such that

ai,j = E[XiXj ]. Similarly B = E[YiYj ] for some random variables Y1, . . . , Yn. We can

construct Xis and Yjs on the same probability space, so that (X1, . . . , Xn) is independent

of (Y1, . . . , Yn). Then, the covariance matrix of Zi = XiYi, 1 ≤ i ≤ n, is precisely C. Hence

C is positive semi-definite.

• For any nice function c : R 7→ C, we have∫ ∫
c(t)c(s)ϕ(t− s)dtds ≥ 0.(2)

This is just a continuum analogue of
∑

j,k cjckϕ(tj − tk) and can be got by approximating

the integral by sums. We omit details.

Now we come to the proof of Bochner’s theorem. What we need to prove is that given a continu-

ous positive definite function ϕ satisfying ϕ(0), there is a probability measure whose characteristic

function it is. The idea is the natural one. We have already seen inversion formulas that recover a

measure from its characteristic function. We just apply these inversion formulas to ϕ and then try

to show that the object we get is a probability measure.

PROOF OF BOCHNER’S THEOREM. Let ϕ be continuous, positive-definite and ϕ(0) = 1.
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Case: ϕ is absolutely integrable: Taking a cue from the Fourier inversion formula, define

f(x) =
1

2π

∫
R
ϕ(t)e−itxdt.

The integral is well-defined as ϕ is bounded. We want to show that f is a probability density. First

we show that f is non-negative4. Fix an interval IM = [−M,M ] and observe that

f(x) =
1

2π(2M)

∫
IM

∫
R
eix(t−s)ϕ(t− s)dtds (the inner integral does not depend on s)

=
1

2π(2M)

∫
IM

∫
IM

eix(t−s)ϕ(t− s)dtds+
1

2π(2M)

∫
IM

∫
IcM

eix(t−s)ϕ(t− s)dtds.

The first integral is positive by (2) (take c(t) = eixt1|t|≤M ). As for the second integral, we claim

that it goes to zero as M → ∞. Indeed, fix δ > 0 and observe that for |s| ≤ (1 − δ)M , the inner

integral is less than cM :=
∫
IδMc
|ϕ(u)|du (as |t− s| ≥ δM for any |s| < (1− δ)M and any |t| > M ).

If |s| > (1 − δ)M , we just use the trivial bound C :=
∫
R |ϕ| for the inner integral. Overall, the

bound for the second term becomes
1

2π(2M)
(2(1− δ)McM + CδM) ≤ cM + δC.

Let M → ∞ and then δ ↓ 0 (or just take δ = 1√
M

) to see that this goes to zero as M → ∞. This

proves that f(x) ≥ 0 for all x. We now claim that
∫
f(x)dx = 1. To start with, since |f | ≤ ‖ϕ‖1, for

any σ > 0 we have ∫
R
f(x)e−σ

2x2/2dx =
1

2π

∫
R

∫
R
ϕ(t)eixte−σ

2x2/2dx dt

=
1

2π

∫
R
ϕ(t)

∫
R
eixte−σ

2x2/2dt dx

where the application of Fubini’s theorem is justified because |ϕ(t)|e−σ2x2/2 ∈ L1(R×R). The inner

integral is essentially the Fourier transform of the Gaussian and equal to
√

2πe−
t2

2σ2 . Plugging this

in, we see that ∫
R
f(x)e−σ

2x2/2dx =
1

σ
√

2π

∫
R
ϕ(t)e−

t2

2σ2 dt

The right side is E[ϕ(σZ)] where Z ∼ N(0, 1). By continuity and boundedness of ϕ, DCT implies

that it converges to ϕ(0) = 1 as σ ↓ 0. The integrand on the left side increases (as f ≥ 0) to f(x).

4It may be easier to first see the following formal argument. Fix x ∈ R and use c(t) = eixt in (2) to get

0 ≤
∫ ∫

eix(t−s)ϕ(t− s)dtds =

∫ [∫
eixuϕ(u)du

]
ds

= f(x)

(∫
1ds

)
.

Of course, the integral here is infinite, hence the proof is only formal, but it gives a hint why f(x) ≥ 0. The actual proof

makes this precise by integrating s over a finite interval.
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hence by MCT, the limit as σ ↓ 0 of the integral is
∫
R f(x)dx. This shows that f is a probability

density.

As f is integrable, the Fourier inversion formula applies to show that
∫
R f(x)e−itxdx = ϕ(t) for

all t. Thus, ϕ is the characteristic function of the probability measure f(x)dx.

General case: For any σ > 0, define ϕσ(t) = ϕ(t)e−σ
2t2/2 (the idea behind: If ϕ is the characteristic

function of a random variable X , then ϕσ would be that of X + σZ, where Z ∼ N(0, 1)). Since

ϕ is bounded, ϕσ is absolutely integrable for any σ > 0. Further, ϕσ is continuous and positive

definite by the Schur product theorem. Thus, by the first case, ϕσ is the characteristic function of

a measure µσ (in fact, dµσ(x) = fσ(x)dx, where fσ(x) = 1
2π

∫
R e
−itxϕσ(t)dt).

ϕσ → ϕ point-wise as σ ↓ 0. By the second part of Lévy’s continuity theorem, we see that

µσ
d→ µ as σ ↓ 0 for some µ ∈ P(R) and that µ̂ = ϕ. �

0.7. Multivariate situation. Let X ∼ µ ∈ P(Rd). Its Fourier transform or characteristic func-

tion is a function µ̂ : Rd → C defined as µ̂(t) =
∫
ei〈t,x〉dµ(x) = E[ei〈t,X〉]. All the theorems proved

in the univariate case go through with the most obvious modifications. In particular, we have

(1) Parseval relation:
∫
Rd µ̂dν =

∫
Rd ν̂dµ.

(2) Fourier inversion formula: If µ̂ = ν̂, then µ = ν. In particular, if µ̂ is integrable, then µ has

bounded continuous density given by f(x) = (2π)−d
∫
Rd µ̂(t)ei〈t,x〉dt.

(3) Lévy’s continuity theorem: Identical to the one-dimensional case.

(4) Joint moments of Xis are related to partial derivatives of the characteristic function at the

origin.

And these tools can be used to prove CLT just as before.

Remark 9

Fourier analysis on general locally compact abelian groups goes almost in parallel to that

on the real line. If G is a locally compact abelian group (eg., Rd, (S1)d, Zd, finite abelian

groups, their products), then the set of characters (continuous homomorphisms from G to

S1) form a collection Ĝ called the dual of G. It can be endowed with a topology (basically

of point-wise convergence on G) and these characters form a dense set in L2(G) (w.r.t. Haar

measure). For a measure µ on G, one defines its Fourier transform µ̂ : Ĝ 7→ C by µ̂(χ) =∫
G χ(x)dµ(x). Plancherel’s theorem, Lévy’s theorem, Bochner’s theorem all go through with

minimal modification of languagea.

aA good resource is the book Fourier analysis on groups by Walter Rudin.
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