Markov chains with countable state spaces

S-VALUED RANDOM VARIABLES

Let S be a countable set. An S-valued r.v on a probability space (2, P) is a function X : Q@ — S. If S C R, this
is just an ordinary r.v. If § C R?, then X is what we called a random vector. One can talk of the distribution or
p.m.f of an S-valued r.v (as S is countable, these random variables are discrete) defined as p : S — [0, 1] where
pr= P{o: X(®) = x}. If Xj,...,X, are S-valued r.v.s on a common probability space, their joint p.m.f may be
defined as the function p : 8" — [0, 1] with p(x,...,x,) = P{X; = x1,...,X, = x,}. Just as for real-valued random

variables, one can specify the joint distribution of Xp, ..., X, in two ways.
(1) Specify the joint p.m.f px(x1,...,x,) = P{X] = x1,.... X, = x,}.
(2) Specity the successive conditional p.m.f.s px,, PXalx, >+ PXolx o, which are defined as
_PXi =, X = 0, Xk = )
DXplx =2y X2 )= :

P{X;=x1,.... % 1= X1}

It is clear how to obtain the conditional p.m.f.s from the joint and vice versa.

Example 97. Pick a person at random from a given population. Here S is the given population and the random
person picked is an S-valued random variable.

Caution: One cannot take expectations of an S-valued random variable! However, if f : S — R, then f(X) is a
real-valued random variable and we can talk of its expectation. In the above example, it makes no sense to talk of an
expected person, but we can talk of the expected height of a random person (height is a function from S to R).

MARKOV CHAINS

Let S be a countable set. Let Xy,X1,Xs,:-- be a sequence of random variables on a common probability space.
We say that X is a Markov chain if the conditional distribution of X,, given Xp,...,X,—1 depends only on X,_.
Mathematically, this means that

P{X,= j )on 00 Xp = in2, X1 = i} = palis))
for some p,(i, j) (as the notation says, this depends on 7 and i and j but not on iy, ..., i, ».
We say that the MC is time-homogeneous if p,(i, j) does not depend on n. This means that
P{X,=j ‘Xo =00y, Xn—2 = in—2,Xn—1 = i} = p(i,)) = pij

for allm > 1, and for all i, j, g, ...,i;—2.

Henceforth, Markov chain will mean a time-homogeneous Markov chain, unless otherwise stated. § is called
the state space of the chain and p; ; are called the transition probabilities. The matrix P = ( p; ;)i jes is called the
transition matrix. The distribution of X is called the initial distribution.

EXAMPLES OF MARKOV CHAINS

Example 98. (SRW on Z): We defined this as the sequence of r.v X,, with Xo = 0 and X, = & + ...+ &, where ;
are i.i.d. Bery(1/2) random variables. Clearly, X,, is Z-valued. Further, as X; = X;_1 + &,

P{X; = j|Xo=io,...,.Xp2= ix2, X1 = i} P{&= j—il& =ii—io,....E6—1 = i— i1}
P{& = j—i} (as&,; are independent)
{1/2 if j= ikl

0 otherwise.

Thus, X is a MC with state space Z and transitions p; +1 = p;;—1 = 1/2 and p; j = 0 for all other i, ;.
Exercise 99. Write down the state space and transitions for symmetric SRW on Z¢.

Example 100. (Ehrenfest chain): Fix N > 1. Informally, there is a container with two equal parts separated by a wall
in which there is a small aperture. Initially a certain amount of gas is on either side of the partition. By experience
we know that the amount of gas in the two sides will equalize eventually. Here is the statistical model of Ehrenfest:
At each instant of time (we discretize time into instants 0,1,2,...), one molecule of gas is randomly chosen and
transferred to the other side of the partition.
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In mathematical language, we are debning a MC with{0,1,...,N} and transitions
!

BN =it L
pw’:,,ﬁ' iszi—l.
$0 otherwise

Example 101. (SRW on a graph). Let = ( V,E) be a graph with a countable vertex $eand edge sdf. For each
v €V, its degreei, is the number of neighbours it hasih We assumd, <! forallv € V. Then, we may a debne
aMCwithS=V andp,, = div if u ~vandp,, = 0 otherwise. This is calleSRW on G.

There are variants of this. We can bx a parameétef0, 1] and dePne the transition probabilities, = 1—",
Dvu = df if u~vandp,, = 0otherwise. This is calledlazy SRW on G with laziness parameter 1 —".

Many special cases:

(1) SRW onZ is obviously a special case of this. Héfe= Z< with x ~ y if and only if #<L | |x; —y;| = 1.
(2) Coupon collector problem: Here we haVecoupons labelled, 2, ... N from which we pick with replace-
ment. This is lazy SRW on the complete graghwith laziness parameter/¥.
(3) SRW on the hypercube: Lét= {0,1}" with x ~ y if and only if #L , |x; —y;| = 1. This graph is called
the hypercube. One can consider SRW on it, which is equivalent to picking a co-ordinate at random and
Ripping it (if 0 change to 1 and vice versa). If we deBfhe no. of ones inX,, thenY, is a MC which is
just the Ehrenfest chain!

Example 102. (Queues). Imagine a queue where one person is served every instant. Also, at each instant a random

number of people may join the queue. Let the number who join the queueréhtfmstant beb,. We assumé; are
i.i.d random variables witlP($; = k) = % fork= 0,1,2....
Let Xo have some distribution. Far> 1, gl/ebne
0
X = X, 1—-1+%, ifX,_1>1
" X, 1+ 9, if X,_1=0.
X, has the interpretation as the number of people in the queue attime
Show thatX is a MC withS = N = {0,1,2,...} and transition probabilities
%
_ 0/9'_i+1 |f i Z 1
Dij= % if i =
o ifi= 0.
Example 103. (Card shuf3ing). There are many algorithms for shuff3ing a deck of cards, and each of it is a Markov
chain with state spacg, (the set of all permutations of 2, ... ,n wheren is the number of cards in the deck). The
transition probabilities are different for different algorithms. We give just two shuf3ing algorithms.

(1) Random transpositionPick two distinct positions at random and interchange the cards in those locations.
In this case,
%
1
p&' = ( .
0 otherwise

if " =(i,j)o&for somei < j.

Here(i, j) is the transposition, which is the permutation that interchahged ;.

(2) Top to random shufl3ePick the top card and place it in a random position. The transitions are
%
I i =(1,i) o &for somei.

0 otherwise

pb& =

Example 104. (Branching process). Lét, ;, n > 0,i > 1, be i.i.d non-negative integer valued random variables. Let
Zo= 1andforn>1let %

L+ ...+ Lz, ifZ,1>1
0 if Z, 1= 0.

Check thatp,Z,...isaMCon{0,1,2...}.

Zy, =

Example 105. (Two state MC). LeS = {0,1} and letpg1 = %= 1—pgoandpio0= ( = 1—p11. here%( €[0,1]
are bxed. This is a useful example because we can make explicit calculations very easily.
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MULTI-STEP TRANSITION PROBABILITIES

By the considerations of the brst section, if we know the transition probabilties of a Markov chain, together with
the distribution ofXp, we can calculate the joint distribution &§, X1, X5, . ... Indeed,

n
P{Xo=io,..., X, = in} P{Xo = io} [[P{Xk = ix | Xo= i0,.... Xax—1= ir-1}
k=1

P{Xo = io}PigisPiviz - Pinvin-
Thus the initial distribution and the transition probabilities determine the distribution of the Markov chain.
Let p¥ = P(X, = j | Xo = ). Thenp! = p; ;. Can we calculatp(®? Observe that

i,] LJ
P{X,2= j|X,= i} Y P{Xp1= € Xpe2= j|X,= i}
les

= Y P{Xu1= 0 Xu2= j| X0 =0}
Les

= Z PiePe,j-

lesS

In particular, taking: = 0 we getp,(.i.) = YresPiepe,j- Similarly, check that

(k) _
pPi; = Z PityPlr,to -+ - Ply 2,0 1Pl 1,5

L1y lp-1E€S
Thus, in terms of matrices, we can simply wrRé) = P (as product of matrices!).
An additional useful observation which follows from the above calculation isXhaf;, Xz, . . . is a MC with the
same state spadeand transition matrix*.

AN ILLUSTRATION OF HOW TO WORK WITHMARKOV CHAINS

Let us illustrate the useful and important technique of working with Markov chains - Ocondition on the prst stepO!
Gambler’s ruin problem: Let a,b be positive integers and 16t= {—a,—a+ 1,...,b—1b}. LetXp,X1,... be a
Markov chain with state spack and transition probabilities

1. .
P-a-a=1, Py =1, Piix1= Pii-1% 5 if —a<i<b.

One can regard this as the fortunes of a gambler who startsawittits of money and his opponent hasinits of
money. In each game she wins 1 or loses 1 and his fortune goes up or down accordingly. Of course, the game stops
whenX,, hits —a or b (either our gambler or his opponent has become bankrupt) and then the fortunes do not change
anymore - hence the transitions are different-atandb.
Question 1: The main question is, what is the chance that our gambler goes bankrupt rather than her opponent?
Lett= min{n: X, = —a or b} be the time at which one of the two gamblers becomes bankrupt. Firstly, we claim
thatt < oo with probability 1 (why?). We wark{X; = —a}.
An equivalent problem is to PK= a+ b and takeS = {0,1,...,L} and the transitions

1.
poo=1, prr= 1, Piix1= Pii-1% 5 ifO<i<lL.
More generally, leff(i) = Py(X; = 0) ;= P(X;=0 ]Xo = i). We wantf(a).
Observe thay(0) = 1 andf(L) = 0. For 0< i < L, by conditioning onXi, we get
F() = P(Xc=0|Xo= i)
= YPX:=0|Xo=iX1= j)P(X1= j|Xo= i)
J
1 . 1 .
= EP(sz 0|X1=i-1)+ EP(sz 0|X1=i+ 1)

fli+ D+ f(i—1)

> :
Using these equations foe 1,2,...,L— 1, we successively ggi(2) = 2f(1), f(3) = 2f(2) — f(1) = 3f(1), etc.,
i.e., f(i)= if(1). Fori= L we must get1and heng&l) = 1/L. Thus,f(i)= i/L. For the original problem, this
meansP{X; = —a} = L.
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Another question of interest here is
Question 2: What is the distribution of | or at least its expected value? This is the time for one of the players to go

bankrupt.
Again, one may consider the chain on the state space S = {0, 1,...,L} and consider the starting point as a variable.
Let g(i) = E;[!] := E[! |X0 = i]. Then, g(0) =0 = g(L), while for 0 < i < L we condition on the fist step to get

1 1
gli) = 5E[! ‘oni,Xlzi—l}jLEE[! )oni,Xlzi—i—l]
1

2(1+E[!—1(X1=i+1])

_ %<1+E[!—1‘X1:i—1])+

1 1
= 1+ Eg(i— 1)+ Eg(H— 1).
Thus, g;+1 — g = & — gi—1 — 2 for i > 1. Summing this we get g; — go = ig; —i(i — 1). Recall that gy = 0 and hence
gi+1 =1ig1 —i(i—1). Now, observe that g; ; = g; by symmetry. Hence, we must have g; =g, 1 =(L—1)g; — (L—
1)(L —2) which implies g; = L — 1. Plugging back we get g; = i(L — i) for all i.

HITTING TIMES AND PROBABILITIES

The ideas illustrated in case of the Gambler’s ruin problem can be used in any MC, except that we may not be
able to find the solution explicitly at the end. We illustrate this by studying the two important concepts illustrated
above - hitting probabilities and hitting times.

Let Xo,X1,X>,... be a Markov chain with state space S and transition matrix P = (p; ;)i jes. For A C S, let
ly:=min{n>0:X, €A} and !X :=min{n >1:X, € A}. If Xy € A, then !, = 0 while ! © may not be. If Xy € A,
then! =!*. Note that ! ,! * can take the value +" with positive probability, depending on the chain and the subset
A. 14 is called the hitting time of the set A and ! T is called the return time to the set A.

Hitting probabilities: Let A and B be two disjoint subsets of S. We investigate the probability that A is hit before
B, ie., P;('4 <!p). The idea of conditioning on the first step can be used to get a “difference equation” for this
quantity.

Exercise 106.Let A,B C S be disjoint. Assume that P;(! 4up <" ) =1 for all i (this is trivially true for i € AUB
but in general, may not be so for i ¢ AUB). Let f(i) = P;(! 4 < !p) be the probability that the MC started at i hits A
before B. Show that f(i) =1 fori € T1, f(i) =0 fori € T and

FG) =# piif (), if i ¢ AUB.
J

If S is finite (or even when S\ (AUB) is finite), can you show that f is the unique function that satisfies these equations
and has the value 1 on A and 0 on B? [Hint: If g is another such function, consider the point where f — g attains its
maximum].

Remark: When the MC is a SRW on a graph, the equations for f just say that f(u) is equal to the average value of
f(v) over all neighbours v of u. We say that f has the mean-value property or that f is a discrete harmonic function.

Hitting times: Let A C S. !4 takes values in {0,1,2...} U{" }. Fori € A, clearly P;(!4 = 0) = 1. What is the
distribution of ! 4 ? For i € A, we can write,

i15ein @A JEA

An expression not very helpful in general. We can also condition on the fist step and write recursive formulas such
as
Pi(!A =n-+ 1) :# Pi(!A =n+1 ‘Xl = ])Pl(Xl = ]) :# pi,jpj(!A = I’l)
J J
Note that this is valid only for i & A.
Let ! ; denote the hitting time to the singleton {j}. We then have the following identity.

P (i, j) = # Pi(tj=k)p" 0, ).
k=1
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Intutively this says that iXy = i andX,, = j, then there must be sornke< n when the statg was visited for the prst
time, and then starting from the stgté must return to the same state after k steps. To give a rigorous proof, we
do the following.

p(n)(i’j) = Pi(Xn = ]) = ZPi(Tj =k, X, = ])
k=1
(18 (n—#)

JsJ JsJ
What is clear is thaP;(X, = j }Xk =j) = pﬁ.'f;k). Intuitively, T; = k appears to give no more information than
Xx = Jj, but this needs justibcation (if you do not feel so, observe thatifk, thenP;(X, = j ]1.,- = k) = 0 but

Pi(X,=j ]Xk = j) need not be). Now for the justiPcation whep» k.
Pi(ti=kX,=j) = Pi(Xu=jXe=Jj,XnFkform<k)

= Y, PiXy=j|Xk=j. X =im fOr m <k)Pi(Xy = j, Xy = iy for m < k)
i1,0ik—17]

All we need to show is tha;(t; = k,X, = j) = p;; 'Pi(t; = k) or equivalentlyP;(X, = j |tau; = k) = p

= Z ny;k)Pi(Xk = J, X =iy fOorm <k)

i1y nsik-17]
—k
= 2 Pi(T =k,

This completes the proof.

RECURRENCE AND TRANSIENCE

Recall thatt; =inf{n > 1:X, =i}. Leto, ; = Pi(tj < o). We say thay is arecurrent state if o; ; = 1 and that
Jjis atransient state if o; ; < 1. LetN; =Y~ ; 1x —; be the number of returns to the statddebneG(i, j) = E;[N;],
called theGreen’s function of the Markov chain. These quantities may be inPnite.

We want to get a criterion for recurrence and transience in terms of transition probabilities. Recall the proof
we gave for RlyaOs theorem about simple random walkg&énThe key to it was that observation théf has a
Geometric distribution, since every time the SRW returns to the origin, it is like starting the whole process again.
We did not give a proof at that time. We now state the analogous claim for general Markov chains and prove it.
Lemma: P;(N; > m) = 06,~7j0c;7f]71 form > 1.

Proof: Form = 1 this is just the debnition. Fat = 2,

P;(N; =2) Y P(Xy =X, =j,X,+# jforothern <)
1<k<t
= ) Pi(tj=kPi(X;=j X, # jfork<n<(|t;=k)
1<k<t

= ) Pi(ty=kP(r; =0~k
1<k<t

= ) Pi(tyy=kPj(t;=m)
k,m>1
RN INE

Similarly one can continue and get the result for general

Consequently,
O, j

G0, J) =BilN}] = Y PilN; = ) = =0 —.

k>1
Of course, this is bnite only if; ; < 1, but the equation holds even whep; = 1. Indeed, ifo; ; = 1, then by the
lemma,P;(N; > m) = a, j for all m, which shows thaP;(N; = ) = o; ;. Thus, ifa; j; > 0 ando; ; = 1 (in particular,
if o; ; = 1 andi = j), thenN; is inPnite with positive probability, hence its expected value is also inbnite. Thus, we
have shown that is recurrent (transient) if and only @( j, j) = « (respectivelyG(j, j) < o).

To write a criterion for recurrence in terms of the transition probabilities, we observe that

G(i,j) =E; [Z 1Xn—j] = Z pz(r;)
n=1 n=1

Thus we have proved the following theorem.
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Theorem: Let Xy, X,... be a Markov chain with state space Sand transition matrix P = (pj )i ji s. Then, for any
i,j! Swith o j > 0 (in particular, if i = ]), we have

jisrecurrent¥ G(i,j) =% Y p=o
jistransient¥ G(i,j) <o Y pi(

If 0 j = 0, then Pi(N; = 0) = 1 and G(i, j) = 0 and ¥z, pi") = 0.

From this theorem, to check for recurrence/transience, we only need to estimate the transition probabilities. This
may or may not be easy depending on the example at hand.

Example 107. For SRW on Zd, we have

. 1)\ (2n)!
00 = (5) L e

----- Ky
ki +...+kg=n
(2n)! n! 1\" n! 1\"
oo | M G ke \d kl;kd k! kg! \d
Kit...+ka=n ki +...4+kq=n
(2n)! n!

227(n1)? [(n/d) 1)

where by n/d we mean really integers closest to n/d (but they have to sum up to N, so they may not be all exactly
equal). Using Stirling’s formula, this tells us that

(2M(0,0) %2 d d/zi
PRI 2 nd/2

Sn) = p(()n()) by symmetry,

which is summable for d & 3 but not summable for d = 1 or 2. In this chain, observe that p
and hence all states are recurrent for d = 1,2 and all states are transient for d & 3.

Example 108. Consider SRW on the triangular lattice in R%. First convince yourself that this is the Markov chain
whose state space is S={a+bw+co’ : a,b,c! Z} and w is a cube-root of 1. The transition probabilities are given
by

. Lot il L,+to,x0%).
pli,j)=46 ") .{ J
0 otherwise.

Now show that p(()% % £ for some constant € and hence conclude that all states are recurrent.

In this example, every state has six neighbours, just as in Z>. But the latter MC is transient while the former is
recurrent, not surprising because the graph structures are completely different (in the triangular lattice one can return
in three steps, but in Z? it is not possible). This is to emphasize that recurrence and transience do not depend on the
degrees of vertices or such local properties. The triangular lattice is more like Z? than like Z°.

Example 109. On the state space Z, consider the transition probabilities pjj;1 = pand pij 1 =1' pwhere pE& %
Show that all states are transient. This is called biased random walkn Z.
Show that same (transience of all states) if the state space is {0,1,2,...} with pjj; = %, Pii1= % fori & 1 and

Po,1 = 1.

Example 110. Consider SRW on the binary tree. The state space here is S= { (X, ..., X)) :N& 0, X, =0or 1 fori &
1, Xo = 0} (all finite strings of Os and 1s). The vertex (Xo,...,Xy) is joined by an edge to (Xo,...,Xy 1) (its parent)
and (Xo,...,X%n,1),(X0,...,%," 1) (its children). Let 0 denote the vertex (0).

Let Y, = h(X;,) denote the distance from 0 of the Markov chain. Show that Y;, is a MC with state space {0, 1,2,...}
with pjj+1 = %, Piir 1= % fori & 1and py,; = 1. Use the previous example to conclude that the state 0 in the original
chain X on the binary tree is transient.
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STATES IN A MC

All the interesting examples of MCs that we have given have some nice properties which are not implied by
the definition. For example, in all these chains, it is possible to go from any state to any other state (if allowed
sufficiently many steps). However, this is by no means a requirement in the definition and not having such properties
brings some annoying issues.

Let Xo,Xj,... be a MC with state space S and transition probabilities p; ;. Let p(")

l*,j
probabilities. We define p\? = 1 and p.") = 0if j # .

i ij
We say that i leads to j and write i ~~ j if there exists some n > 0 such that p,( "0, We say that i and j

communicate with each other and write i «~+ j if i ~ j and j ~~ i. Observe that i ~ j if and only if o; ; > 0 and
i v~ jif and only if o; ; > 0 and oj; > 0.

Observation: The relationship “communicates with” is an equivalence relationship on S.

proof: Clearly, i «~ i because p(O) =

i =

denote the n-step transition

1. It is equally obvious that i «~ j if and only if j «~ i. Lastly, if i ~ j and

J ~> k, then there exist n,m such that pl(_nj) >0 and p%? > 0 and hence pgj}fm) > pfflj) pﬁ.";() > 0 and hence i ~~ k. Thus,
if i «~s j if and only if j «~s i then i «~ k. ’

Consequence: The above equivalence relationship partitions the state space into pairwise disjoint equivalence
classes § = §1 LS, LUS3... such that i «~ j if and only if i and j belong to the same S,. Note that it may hap-
pen that i € Sy and j € S, but i ~ j. However, then there can be no other i’ € Sy, j/ € S, such that j/ ~ i’ (because
since j «~ j' and i «~ i’, we would get j ~ i leading to the conclusion that j «~ i which cannot be). We say that a

state i is absorbing if p;; = 1. In this case {i} is an equivalence class by itself.

Example 111. (Gambler’s ruin). Let S = {0,1,...,L} where L > 1 is an integer. Let p;; .1 = p;;—1 = 1/2 for
0<i<Land poo=1and p;; = 1. This is SRW on Z absorbed at 0 and L.

In this case, if 0 < i < L and j is any state, then i ~ j. But O ~» j only for j =0 and L ~~ j only for j = L. Thus,
we get the equivalence classes S} = {1,...,L—1}, S, = {0} and S3 = {L}. Here 0 and L are (the only) absorbing
states.

Example 112. Let S = 72 = {(m,n) : m,n € Z}. Let Pl (o) = % if uy —up = £1, vi = v,. Then, it is easy to
see that each horizontal line Sy := {(u,k) : u € Z} is an irreducible class. In this chain, a MC will always stay inside
the irreducible class. In otherwords, if i € Sy and j € Sy, then i ~~ j if and only if k = /.

Let us keep the same state space and change the transition probabilities to
I

n

—_

ifu1 —Uup ::l:l, V1 = V).

i
_ 1 . _ _
p(u1,v1),(u2,vz) T 2 lf V) — V2= 1’ Uy =up.
0 otherwise.

In this case, again the irreducible classes are S := {(u,k) : u € Z}. Further, if i € S and j € Sy, then i ~ j if and
only if ¢ > k. Transitions can happen from one equivalence class to another (but never both ways!).

The MC is said to be irreducible if there is only one class. Then all states communicate with each other. Irre-
ducible chains are nice, and most of the examples we see are irreducible. However, occasionally we will consider
chains with absorbing states and that invariably leads to more classes.

Many properties of states are class properties in the sense that if two states are in the same irreducible class, then
either both have that property or both do not.

Lemma: Recurrence and transience are class properties.
Proof: Suppose i is recurrent and i «~» j. Then, there exist r,s > 1 such that p(r)

ij
that pﬁ"fﬂr ) > p§ l) Pz(z) pl( ]) Therefore, ¥, p ]”;FH‘V) > pS’l) pl(r]) Y, p(”.) = oo as i is recurrent. Thus, ¥, p§”J) = oo and we

; Li T
see that j is recurrent. Thus states in one irreducible class are all recurrent or all transient.

>0 and pj; > 0. Now, it is clear

We can now prove the following fact.
Theorem: All states in an irreducible, finite state space Markov chain are recurrent.

Proof: By irreducibility, all states must be transient or all states recurrent. Observe that ) ;g pg}) =1 for each n and

o n . oo n
hence Y .~ Yics pi j) = oo, Rerrange the sum to write ) ;c¢Y pl( j)
states, there must be at leasy one j such that )", pl(_ j) = oo, Find r such that p:
conclude that i is recurrent. Thus all states are recurrent.
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(r) (n+r) (n) (r)

i >0anduse p)i " > p;pi] to



Observe that this is false in infinite state space. For example, for biased random walk on Z with p; ;1 = 0.8 and
pii—1 = 0.2, all states are transient, but the chain is irreducible.

STATIONARY MEASURE AND DISTRIBUTION

Let Xo,Xi, ... be a Markov chain with stat space S and transition matrix P = (p; j); jes-

Let © = (m;);cs be a vector of non-negative numbers indexed by S. We say that & is a stationary measure for
the MC above if };c¢T;p; j = &t; for every j € S. If T is a probability vector, i.e., if };cgT; = 1, we say that wis a
stationary distribution. If T is a stationary measure, then ¢ is also a stationary measure for any ¢ > 0.

If we write T = (T;);cs as a row vector, the condition for 7 to be a stationary measure may be written in matrix
form as - P = 7. Thus, 7 is a left eigenvector of P with eigenvalue 1. However, 4 priori, not every such eigenvector
may qualify as a stationary measure as we need the non-negativity condition 7t; > 0. It is important to note that we
are talking about left eigenvector here. The vector u; = 1 for al i is a right eigenvector with eigenvalue 1 but not
necessarily a stationary measure.

What is the interpretation of stationary measure? If 7 is a stationary distribution and the initial state Xy ~ 7, then

P(X;=j)=Y P(Xi =jXo=i)=) mpi; ="
i i

Thus, X; also has the same distribution. Similarly, it is easy to see that the marginal distribution of X,, is 7 for each
n. Thus, X, are identically distributed, of course, they are not independent. If 7 is just a stationary measure (i.e., not
a probability vector), this probabilistic interpretation makes no sense.

Exercise 113. If 7 is a stationary measure, show that } ;¢ T; pﬁf} =m;forall j € Sandalln>0.

Example 114. Consider the Ehrenfest chain. Let m; = (). Then, for any j € S,

Y Tapij = Tj1pj1 + Tjap; ._< N >N—j+1+< N >j+1_<N>
= iPi,j =Tj-1DPj—1,j JH1IPj+1,j = j—l N ]+1 7]\, = ] .

This calculation also holds for j =0 and j = N. Thus, 7 is a stationary measure. In this case, we can get a stationary
distribution by normalizing 7 to get 5; = ()27V.

Example 115. Consider SRW on a graph G = (V,E). Recall that this means S =V and p,,, = 12—” where d,, is the
degree of the vertex u. Let &, = d, foru € V. Then,

Y r(w)p(ur) = Y d ™ = Y 1, = dy = ().
d,

Thus, 7 is a stationary measure. If the graph is finite, then we can normalize it by },cy T, to get a stationary
distribution.

For example, for Random walk on the hypercube, the stationary distribution is 7, = 2~ for each x € {0,1}".
For SRW on Z, a stationary measure is T; = 1 for all i. For random transposition shuffling of cards, the uniform
distribution on all permutations is again stationary.

Example 116. Reflected, biased RW on Z . Let p; ;11 =p=1—p;;—1 fori > 1 and pp; = 1. If 7 is a stationary
measure, it must satisfy w; =

REVERSIBILITY

Let Xo,X1,X>, ... be a MC with state space S and transitions P = (p; j); jes- Let T = (7;);cs where m; > 0. We say
that the MC is reversible with respect to Tif ;p; ; = 7;p;; for all i, j € S. We may also say that P is reversible w.r.t.
.

In this case, observe that ) ;- ¢T;p; j = Y;T;jp;; = T since }; p;; = 1 for each j. Thus, 7 is a stationary measure
for P.

The point is that the equations for stationary measure are difficult to solve in general. But it is easier to check if
our chain is reversible w.r.t. some T and actually find that 7 if it is reversible. There are further special properties of
reversible measures, but we shall not get there.

Example 117. SRW on G = (V,E). Then, p,, = 1(‘;—” and p,, = IZI—N‘ It is easy to see that dyp,,, = d,p,, for all
u,v € V. Thus the chain is reversible and &, = d,, is a stationary measure.
32



Check that the Ehrenfest chain, random transposition shuffle are reversible. Consequently get stationary measures
for them. The top to random shuffle is clearly not reversible (w.r.t any 7) because there exist 7,6 such that py s > 0
but psr = 0. The following exercise is useful in finding stationary measures in some cases where we do not have
reversibility.

Exercise 118. Let P and Q be two transition matrices on the same state space S Suppose T = (T;);1 s is a vector of
non-negative numbers such that 7 pj j = 7;qj; for all i, j. Then show that 7 is a stationary measure for P as well as

for Q.

Exercise 119. Let P be the transition matrix for the top to random shuffle. Define an appropriate “random to top”
shuffle and let Q denote its transition matrix and use the previous exercise to show that the uniform distribution on
S is stationary for both P and Q.

EXISTENCE OF STATIONARY MEASURE

The following theorem shows that a stationary measure exists.
Theorem: Let Xy, X;,X,,... bg a MC with state space Sand transitions P = (p; j)i j1 s. Fix a recurrent state X S

Forany j! § define mj := Ex ;ilol

1x,—j as the expected number of visits to j before returning to X. Then wis a
stationary measure for the MC. "
Proof: We can rewrite 7tj := Ex Y7 o1y —jnciy = LncoPx(Xn =], < 15).

Now fix j ! Sand consider ), smipj j. Before proceeding, observe that Py(Xny1 = j X, = i,n<ty)=p,; for
any n# 0. Hence,

Ympi = Y)Y Pa=i,n<t)pi

irs it Sn=0
- #
- ZZPX(X”:ivn<T>J<r)Px(Xn+1=j#Xn=i,n<’c;)
it Sn=0
™ = Y Y PO =], X =i, n< ).
il SN=0

We split into two cases.
Case 1: | $ X Then, Px(Xni1 = |, Xn=1i, n< 1)) =Px(Xny1 = |, Xn=1i, n+1 < 1}). Thus,

Znipi,j = ZZPX(XnH =], Xn=i,n+1 <T>T)

i's il Sn=0
= ZZPX(Xn+l:j>Xn:ivn+1<T2_)
n=0i! S
= Y Pi(Xop1 =, n+1<1y)
n=0
= TCJ'

since the N = 0 term is irrelevant when j $ X.
Case 2: j = x. In this case, iy = 1 by the definition. On the other hand, from (7)), we see that

Yripix = Y)Y P =% Xa=i, n< 1))

i's i! Sn=0

= Y Y P =], Xa=i, <)

n=0i! S

= Y P =], n<1g)
n=0

= Y Pty =n+1)
n=0
=1

because we assumed that X is a recurrent state. This finishes the proof.
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Remark: If x is a transient state, then the definition of 7 can still be made and we see that in fact w; = G(x, i) for all
il S. Further, observe that we used the recurrence of x only in the last step. In other words, when x is transient, we
still have the equation

ZG(x, i)pij=G(x,j), for j:=x.

il's

We say that the function i # G(x,i) is discrete harmonic except at i = x.

Proposition: If a MC has a stationary distribution 7, then any state i ! S with 7; > 0 is necessarily recurrent.
(n)

Proof: Fix j! §such thatm; > 0. Then, ®; =}, s7;p; ; and hence

oo

= - o j 1
w:n;lnj L Znip’(’nj) —Lm prfj) - Z7t"1$ léj,j " 1$ a;;

n=1i'§ i's n=1 its

since o; ; %1 and };m; = 1.

UNIQUENESS OF STATIONARY MEASURES

In general stationary measures are not unique. For example, suppose S = S| & S, where S1,S, are the irreducible
classes of the Markov chain and suppose both
Theorem: Let Xo,X;,X>,... be an irreducible MC with state space S and transitions P = (p; ;)i i s. Then, the
stationary measure is unique up to multiplication by constants. That is, if T and ¢ are two stationary measures, then
there is some ¢ > 0 such that w; = co; forall i! S.
Proof: Fix x! S and write for any j

T = Tyt Y Tpij
i
Using the first equation for each 7; in the second summand we get
Wj = TP+ pr,ipi,j + Znépﬂ,ipi.,j
i il

Iterating the same gives us for any m (1,

m .
T = Ty ZPX(X/( =5,Xis1=x,...,. X1 =x) + ZniPi(Xm =/, Xms1 =X,..., X1 =x,X0 =x)
k=1 i

As the MC is irreducible and recurrent, for each i! S we have
Pi(Xm =7, Xus$1 EX,...,Xl =x,Xo0 Ex) %Pi(Tx ( m) # 0

asm# oo,
As x 18 a recurrent state,

Pr(Xn=j Xms1 =%, . X1 =x,X0=x) =) TPi(Xy=jXos1=x,... . Xi =x,Xo=x)# 0
its

as m# oo. From this we would like to claim that
lim Y TP:(Xy = j, Xms1 =x,..., X1 =x, X0 =x) =0.
m# o ;

This is obvious if § is finite, because each summand is going to zero and the number of summands is fixed. If S is
infinite, one can still argue this using what is called Monotone convergence theorem. We omit those details. Thus,
we get

o 81
ﬂj = Ty Z Px(Xk = j,Xk$1 ":x, cen ,Xl = x) = TExEx Z 1X1<:j = TIX/JJ'.
k=1 k=0
where u is the stationary measure that we constructed, starting from x and using the excursion back to x. Thus,
uniqueness follows.
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39. VARIOUS CONSEQUENCES

The existence and uniqueness of stationary measures and the proof we gave for it has various consequences. Let
us say that an staten the state space jsitive recurrent if E;[t] < . Of course, a positive recurrent state has to
be recurrent.

Let Xo,X1,X>,... be an irreducible, recurrent MC with state spa@nd transition® = (p; ;) jes-

Suppose € S. Then, we can debne the stationary measure

-1
TC;‘C = Ex Z 1Xn:i :
n=0
Clearly,
-1 T -1
Ym=YE|)Y Ix—i| =E.| ) Y lx—i| =EJtf].
i€S i€s n=0 n=0 ieS

Thus,x is positive recurrent if and only i; ; < .. Thus, the stationary measurécan be normalized to a stationary
distribution if and only ifx is positive recurrent.

By the uniqueness of stationary measure (up to constant multiples), either all stationary measures are normalizable
or none is. And the stationary distribution, if it exists, is unique.

From two states andy we get two stationary measurgsandmn’. Either both or normalizable or neither. Hence,
either bothx andy are positive recurrent or neither. More generally you can prove the following (directly).

Exercise 120. In any MC, positive recurrence is a class property.

Note thaty; ' = E,[t] andm,(x) = 1. If an irreducible chain is positive recurrent, the unique stationary distri-

X
T

bution is given byp; = o] (for anyx). In particular,
6=~ g=om
E,[t{]

Now, whether or not the chain is positive recurrent, by the uniqueness of stationary measures up to constant multiples,
for anyx, y, there is a constaat> 0 such thatt} = cx; for all i. In particular, také =y to getc = xt}. Thus,n} =)},
In particular,n§n§ =1, a non-trivial identity.

1

The usefulness of the identity = Er for irreducible positive recurrent chains goes in reverse. Often we can

guess the stationary distributién(for example, if the chain is reversible) and consequently comte | < .

Example 121. Consider the Ehrenfest chain ¢0,1,2,...,N}. We have seen th& = ()27 is the stationary
distribution. Consequently,

1 1
Eo[tg] = 0 2V, EN/Z[T;/Z] = W/z ~ VIVN.
With n = 1073, these two numbers are abod#2and 162, vastly differing in magnitude. For example, if we assume
that 139 steps of the chain take place in one second (I donOt know if this is a reasonable approximation to reality),

then to return fronv/2 to N/2 takes 100 seconds (on average) while return from O to O takes morelfﬁzayezrs!

PERIODICITY OF MARKOV CHAINS

Consider an irreducible recurrent Markov chain. Assume that it has a unique stationary distribldieally, we
would like to say that for large, the p.m.f ofX,, is approximatelyr, regardless of the initial distribution. There is
one hitch in this as the following example shows.

Example 122. Let G be the cyclic graph with vertex sél, 2, 3,4} with edges{i,i+ 1}, 1 <i < 3 and{4,1}. The
unique stationary distribution is given lmy=1/4 fori € {1,2,3,4}.
LetXo = 1. ThenX, € {1,3} if nis even an,, € {2,4} if nis odd. Thus, we cannot say thza(if‘i) =P1(X, =1)

has a limit. Still, it seems that only the paritymomatters. In other words, while(ff) =0fori=2,4 andp(lzf“) 0
fori=1,3, it seems reasonable to expect tha D, % fori=24 andp(fl.") — % fori=13.

The issue here is called periodicity and is the only obstacle to what we initially wanted to claim.
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Definition 123. Let X, X|, ... be a Markov chain with state space Sand transition matrix P = (pj j)i,jes. Fixi € S

and consider the set Ti={n>1: pi(’?) > 0}. Then we say that di = g.c.d.(T;) is the period of i. If dj = 1 foralli € §
then we say that the Markov chain is aperiodic

Example 124. For SRW on Z9, clearly d; = 2 for all i. It is periodic (we shall say with period 2).

Consider SRW on the cycle graph with N vertices. If N is even, then again d; = 2 for all i. However, if N is odd,
di = 1 for all i (because pf%) > 0 and pi(,’i\l) > 0).

Consider the problem of gambler’s ruin with S= {0, 1,...,L}. Check that dy =d_ = 1, while di =2 for 1 <i <
L—-1.

Lemma: In any MC, if i !, then dj = d;. Thus, all states in the same irreducible class have the same period. In
particular, all states in an irreducible Markov chain have the same period.
Proof: Find r, s such that pi(,rj) > 0 and pgﬁ) > 0. Then, pi(,?+r+s) > pﬁnj) pi(’rj) pgﬁ) . With n = 0, this shows that d; divides

r +s. Secondly, for any n € Tj, we see that n+r +s¢& Tj and hence d; divided n+r +s. In particular, d; divided n for
all n € Tj. Thus, d; divided d;. Reversing the roles of i and ] we see that dj must also divide d;, and hence d; = d;.

Remark 125. If a MC is irreducible, and p;i > O for some i € S then the chain is aperiodic. This is obvious, since
di = 1 and hence dj = 1 for all j. In particular, any lazy random walk on a graph (with laziness parameter T > 0) is
aperiodic. More generally, starting with any MC (S P) and a number 0 < T < 1, we can make a lazy version of the
MC as follows.

Define g; j = (1 —t)p;,j for j #iand ¢ij = pii +7t(1 — pi,i). Then, the MC with transitions ¢ is aperiodic because
i > O for all i. This is called a lazy version of the original MC.

The point is that periodicity is a pain. The statements of the theorems are cleaner for aperiodic chains. There are
two ways to deal with periodicity. One is to make a lazy version of the chain - this does not really change the nature
of the chain, but makes it go slower. As lazy chains are aperiodic, the statements are cleaner for it.

An alternate is to consider the chain at times 0,d, 2d, ... only. It is easy to check that Xy, Xq, Xog, . . . is an aperiodic
MC (possibly on a smaller state space).

We shall use the following fact about aperiodic chains.

Lemma: Let (S P) be an irreducible, aperiodic MC. Fix any i, ] € S Then, there exists N > 1 such that pfyr}) > 0 for
alln> N.
Proof: First consider the case i = j. The set T :={n>1: p(n) > 0} has g.c.d. 1. Observe that n,m & T, implies

i
i(?mrbm) > (p(n))a(pi(‘rin))b‘ We claim that there is some N such that N,N+1 € T;.

an+bme T, for all a,b > 0 since p i
Indeed, take any n,n+Kk € T;. If k=1 we are done, else, because the g.c.d. of T; is 1, we must have m € T; that is
not divisible by k. Write m= nk+r with 0 <r < k. Then, nk,nk+r € T; and their difference is r < k. Continue to
decrease the difference till you get 1.

Now we have N such that N,N + 1 € T;. Pick any number m > N? and write it as m= N(N +Kk) +r where k > 0
and 0 <r < N-— 1. Rewrite thisas m= (N+1)r+ (N +k—r)N. Since NN+ 1 € T;, takinga=N+k—rand b=r,
we see that m € T; for all m > N2. This completes the proof for j = i.

If j #1i, find r such that pi(fj) > 0 and N such that pi(y?) > 0 for all n > N. Then, pi<7nj) > pﬁ?_r)pi(yrj) > 0 for all
N > N +r. This completes the proof.

CONVERGENCE THEOREM FOR IRREDUCIBLE, APERIODIC CHAINS

Theorem: Let Xy, X, X,... be an irreducible, aperiodic Markov chain on a state space S with transition matrix
P = (pi,j)i,jes and having stationary distribution 7. Then, for any i, j € S we have pi(’r}) — Tj as N — oo,
Proof: Let Xg, Xi,... be a MC with Xy =i and transitions given by P. Let Yy, Y], ... be an independent MC with the
same state space and transitions but with Yy ~ 7. Define T := min{n > 0: X, = Yy} as the first time when the two
chains meet.
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The key point is that P(X,, = !, n > 1) = P(Y,, =, n > 1) which can be seen as follows.

n
PX,=Ln>1) = Y YPX,=!,1=mX, =i

m=1ieS
n

= Y YPX,=!|Xy=)P(t=mX, =i
m=1ieS
n

= Y YPW,=!|Yu=iP(t=mY,=i)
m=1ieS

= PY,=,n>n).

Now write
PX,=")=PX,=',n>7)+P(X, =, n< 1).

=

<
I
I

PY,=4n>1)+PY,=!,n<n).
Subtract to get

[PX,=1)—PY,=1)| <PX,=!,n< 1) +PY¥, =1, n< 1) <2P(t> n).
If we show that P(T < o) = 1, then P(t> n) — 0 as n — o and hence we get

sup | p) —m | =sup [P(X, =1) —P(Y, =) | <2P(1> n) — 0.
! !

In particular, it follows that p)(:l!)
It only remains to prove that 7 is finite with probability one. To see this, observe that Z, := (X,,,Y,) is a Markov

chain on § x § with transition probabilities ¢((i, j), (7', j')) = pivpj, . We claim that Z, is an irreducible chain. To

— m for any x,!.

see this, fix i, j,i, j/ € S and invoke aperiodicity of the MC on S to get an N such that p(") > 0 and pgnj), > ( for all

ii
n>N. Then ¢"((i, ), (7,])) = pl(':,) p(l."l)., > 0 for n > N. Hence the Q-chain is irreducible. Further, if we define

9(1,]) =TT, then Z(i,j) 6(1,]) =1 and

Y 66, )a((i)), (0, )) = (ZMM/) (Zﬂjpj,j/) =mymy =06(/, ).

(i,/)es
Thus, 0 is a stationary distribution for the Q-MC and hence the chain must be recurrent. Therefore, for any fixed
i € S, the chain Z, hits (i,7) with probability one. Therefore, T < e with probability one.
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