
Markov chains with countable state spaces
S-VALUED RANDOM VARIABLES

Let S be a countable set. An S-valued r.v on a probability space (Ω,P) is a function X : Ω→ S. If S ⊆ R, this
is just an ordinary r.v. If S ⊆ Rd , then X is what we called a random vector. One can talk of the distribution or
p.m.f of an S-valued r.v (as S is countable, these random variables are discrete) defined as p : S → [0,1] where
px = P{ω : X(ω) = x}. If X1, . . . ,Xn are S-valued r.v.s on a common probability space, their joint p.m.f may be
defined as the function p : Sn → [0,1] with p(x1, . . . ,xn) = P{X1 = x1, . . . ,Xn = xn}. Just as for real-valued random
variables, one can specify the joint distribution of X1, . . . ,Xn in two ways.

(1) Specify the joint p.m.f pX(x1, . . . ,xn) = P{X1 = x1, . . . ,Xn = xn}.
(2) Specify the successive conditional p.m.f.s pX1 , pX2|X1

, . . . ,pXn|X1,...,Xn−1
which are defined as

pXk|X1=x1,...,Xk−1=xk−1
(y) =

P{X1 = x1, . . . ,Xk−1 = xk−1,Xk = y}
P{X1 = x1, . . . ,Xk−1 = xk−1}

.

It is clear how to obtain the conditional p.m.f.s from the joint and vice versa.

Example 97. Pick a person at random from a given population. Here S is the given population and the random
person picked is an S-valued random variable.

Caution: One cannot take expectations of an S-valued random variable! However, if f : S → R, then f (X) is a
real-valued random variable and we can talk of its expectation. In the above example, it makes no sense to talk of an
expected person, but we can talk of the expected height of a random person (height is a function from S to R).

MARKOV CHAINS

Let S be a countable set. Let X0,X1,X2, · · · be a sequence of random variables on a common probability space.
We say that X is a Markov chain if the conditional distribution of Xn given X0, . . . ,Xn−1 depends only on Xn−1.
Mathematically, this means that

P{Xn = j
∣∣∣X0 = i0, . . . ,Xn−2 = in−2,Xn−1 = i} = pn(i, j)

for some pn(i, j) (as the notation says, this depends on n and i and j but not on i0, . . . , in−2.
We say that the MC is time-homogeneous if pn(i, j) does not depend on n. This means that

P{Xn = j
∣∣∣X0 = i0, . . . ,Xn−2 = in−2,Xn−1 = i} = p(i, j) = pi, j

for all n≥ 1, and for all i, j, i0, . . . , in−2.
Henceforth, Markov chain will mean a time-homogeneous Markov chain, unless otherwise stated. S is called

the state space of the chain and pi, j are called the transition probabilities. The matrix P = (pi, j)i, j∈S is called the
transition matrix. The distribution of X0 is called the initial distribution.

EXAMPLES OF MARKOV CHAINS

Example 98. (SRW on Z): We defined this as the sequence of r.v Xn with X0 = 0 and Xn = ξ1 + . . .+ ξn where ξi
are i.i.d. Ber±(1/2) random variables. Clearly, Xn is Z-valued. Further, as Xk = Xk−1 +ξk,

P{Xk = j
∣∣X0 = i0, . . . ,Xk−2 = ik−2,Xk−1 = i} = P{ξk = j− i

∣∣ξ1 = i1− i0, . . . ,ξk−1 = i− ik−1}
= P{ξk = j− i} (as ξi are independent)

=

{
1/2 if j = i±1.

0 otherwise.

Thus, X is a MC with state space Z and transitions pi,i+1 = pi,i−1 = 1/2 and pi, j = 0 for all other i, j.

Exercise 99. Write down the state space and transitions for symmetric SRW on Zd .

Example 100. (Ehrenfest chain): Fix N ≥ 1. Informally, there is a container with two equal parts separated by a wall
in which there is a small aperture. Initially a certain amount of gas is on either side of the partition. By experience
we know that the amount of gas in the two sides will equalize eventually. Here is the statistical model of Ehrenfest:
At each instant of time (we discretize time into instants 0,1,2, . . .), one molecule of gas is randomly chosen and
transferred to the other side of the partition.
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In mathematical language, we are defining a MC with S = {0,1, . . . ,N} and transitions

pi, j =






N−i
N if j = i+1.

i
N if j = i−1.

0 otherwise.

Example 101. (SRW on a graph). Let G = (V,E) be a graph with a countable vertex set V and edge set E. For each
v ∈V , its degree dv is the number of neighbours it has in G. We assume dv < ∞ for all v ∈V . Then, we may a define
a MC with S = V and pv,u = 1

dv
if u∼ v and pv,u = 0 otherwise. This is called SRW on G.

There are variants of this. We can fix a parameter τ ∈ [0,1] and define the transition probabilities pv,v = 1− τ,
pv,u = τ

dv
if u∼ v and pv,u = 0 otherwise. This is called a lazy SRW on G with laziness parameter 1− τ.

Many special cases:
(1) SRW on Zd is obviously a special case of this. Here V = Zd with x∼ y if and only if ∑d

i=1 |xi− yi| = 1.
(2) Coupon collector problem: Here we have N coupons labelled 1,2, . . . ,N from which we pick with replace-

ment. This is lazy SRW on the complete graph KN with laziness parameter 1/N.
(3) SRW on the hypercube: Let V = {0,1}N with x ∼ y if and only if ∑d

i=1 |xi− yi| = 1. This graph is called
the hypercube. One can consider SRW on it, which is equivalent to picking a co-ordinate at random and
flipping it (if 0 change to 1 and vice versa). If we define Yn = no. of ones in Xn, then Yn is a MC which is
just the Ehrenfest chain!

Example 102. (Queues). Imagine a queue where one person is served every instant. Also, at each instant a random
number of people may join the queue. Let the number who join the queue at the nth instant be ξn. We assume ξi are
i.i.d random variables with P(ξ1 = k) = αk for k = 0,1,2 . . ..

Let X0 have some distribution. For n≥ 1, define

Xn =

{
Xn−1−1+ξn if Xn−1 ≥ 1.

Xn−1 +ξn if Xn−1 = 0.

Xn has the interpretation as the number of people in the queue at time n.
Show that X is a MC with S = N = {0,1,2, . . .} and transition probabilities

pi, j =

{
α j−i+1 if i≥ 1.

α j if i = 0.

Example 103. (Card shuffling). There are many algorithms for shuffling a deck of cards, and each of it is a Markov
chain with state space Sn (the set of all permutations of 1,2, . . . ,n where n is the number of cards in the deck). The
transition probabilities are different for different algorithms. We give just two shuffling algorithms.

(1) Random transposition: Pick two distinct positions at random and interchange the cards in those locations.
In this case,

pπ,σ =

{ 1
(n

2)
if σ = (i, j)◦π for some i < j.

0 otherwise.

Here (i, j) is the transposition, which is the permutation that interchanges i and j.
(2) Top to random shuffle: Pick the top card and place it in a random position. The transitions are

pπ,σ =

{
1
n if σ = (1, i)◦π for some i.
0 otherwise.

Example 104. (Branching process). Let Ln,i, n≥ 0, i≥ 1, be i.i.d non-negative integer valued random variables. Let
Z0 = 1 and for n≥ 1 let

Zn =

{
Ln,1 + . . .+Ln,Zn−1 if Zn−1 ≥ 1.

0 if Zn−1 = 0.

Check that Z0,Z1, . . . is a MC on {0,1,2 . . .}.

Example 105. (Two state MC). Let S = {0,1} and let p0,1 = α = 1− p0,0 and p1,0 = β = 1− p1,1. here α,β ∈ [0,1]
are fixed. This is a useful example because we can make explicit calculations very easily.
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MULTI-STEP TRANSITION PROBABILITIES

By the considerations of the first section, if we know the transition probabilties of a Markov chain, together with
the distribution of X0, we can calculate the joint distribution of X0,X1,X2, . . .. Indeed,

P{X0 = i0, . . . ,Xn = in} = P{X0 = i0}
n

∏
k=1

P{Xk = ik
∣∣X0 = i0, . . . ,Xk−1 = ik−1}

= P{X0 = i0}pi0,i1 pi1,i2 . . . pin−1,in .

Thus the initial distribution and the transition probabilities determine the distribution of the Markov chain.
Let p(k)

i, j = P(Xk = j
∣∣X0 = i). Then p(1)

i, j = pi, j. Can we calculate p(2)? Observe that

P{Xn+2 = j
∣∣Xn = i} = ∑

!∈S
P{Xn+1 = !,Xn+2 = j

∣∣Xn = i}

= ∑
!∈S

P{Xn+1 = !,Xn+2 = j
∣∣Xn = i}

= ∑
!∈S

pi,!p!, j.

In particular, taking n = 0 we get p(2)
i, j = ∑!∈S pi,!p!, j. Similarly, check that

p(k)
i, j = ∑

!1,...,!k−1∈S
pi,!1 p!1,!2 . . . p!k−2,!k−1 p!k−1, j.

Thus, in terms of matrices, we can simply write P(k) = Pk (as product of matrices!).
An additional useful observation which follows from the above calculation is that X0,Xk,X2k, . . . is a MC with the

same state space S and transition matrix Pk.

AN ILLUSTRATION OF HOW TO WORK WITH MARKOV CHAINS

Let us illustrate the useful and important technique of working with Markov chains - “condition on the first step”!
Gambler’s ruin problem: Let a,b be positive integers and let S = {−a,−a + 1, . . . ,b− 1,b}. Let X0,X1, . . . be a
Markov chain with state space S, and transition probabilities

p−a,−a = 1, pb,b = 1, pi,i+1 = pi,i−1 =
1
2

if −a < i < b.

One can regard this as the fortunes of a gambler who starts with a units of money and his opponent has b units of
money. In each game she wins 1 or loses 1 and his fortune goes up or down accordingly. Of course, the game stops
when Xn hits −a or b (either our gambler or his opponent has become bankrupt) and then the fortunes do not change
anymore - hence the transitions are different at −a and b.
Question 1: The main question is, what is the chance that our gambler goes bankrupt rather than her opponent?

Let τ = min{n : Xn =−a or b} be the time at which one of the two gamblers becomes bankrupt. Firstly, we claim
that τ < ∞ with probability 1 (why?). We want P{Xτ =−a}.

An equivalent problem is to fix L = a+b and take S = {0,1, . . . ,L} and the transitions

p0,0 = 1, pL,L = 1, pi,i+1 = pi,i−1 =
1
2

if 0 < i < L.

More generally, let f (i) = Pi(Xτ = 0) := P(Xτ = 0
∣∣X0 = i). We want f (a).

Observe that f (0) = 1 and f (L) = 0. For 0 < i < L, by conditioning on X1, we get

f (i) = P(Xτ = 0
∣∣X0 = i)

= ∑
j

P(Xτ = 0
∣∣X0 = i,X1 = j)P(X1 = j

∣∣X0 = i)

=
1
2

P(Xτ = 0
∣∣X1 = i−1)+

1
2

P(Xτ = 0
∣∣X1 = i+1)

=
f (i+1)+ f (i−1)

2
.

Using these equations for i = 1,2, . . . ,L−1, we successively get f (2) = 2 f (1), f (3) = 2 f (2)− f (1) = 3 f (1), etc.,
i.e., f (i) = i f (1). For i = L we must get 1 and hence f (1) = 1/L. Thus, f (i) = i/L. For the original problem, this
means P{Xτ =−a} = b

a+b .
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Another question of interest here is
Question 2: What is the distribution of τ or at least its expected value? This is the time for one of the players to go
bankrupt.

Again, one may consider the chain on the state space S = {0,1, . . . ,L} and consider the starting point as a variable.
Let g(i) = Ei[τ] := E[τ

∣∣X0 = i]. Then, g(0) = 0 = g(L), while for 0 < i < L we condition on the fist step to get

g(i) =
1
2

E
[
τ
∣∣∣X0 = i,X1 = i−1

]
+

1
2

E
[
τ
∣∣∣X0 = i,X1 = i+1

]

=
1
2

(
1+E

[
τ−1

∣∣∣X1 = i−1
])

+
1
2

(
1+E

[
τ−1

∣∣∣X1 = i+1
])

= 1+
1
2

g(i−1)+
1
2

g(i+1).

Thus, gi+1−gi = gi−gi−1−2 for i≥ 1. Summing this we get gi−g0 = ig1− i(i−1). Recall that g0 = 0 and hence
gi+1 = ig1− i(i−1). Now, observe that gL−i = gi by symmetry. Hence, we must have g1 = gL−1 = (L−1)g1− (L−
1)(L−2) which implies g1 = L−1. Plugging back we get gi = i(L− i) for all i.

HITTING TIMES AND PROBABILITIES

The ideas illustrated in case of the Gambler’s ruin problem can be used in any MC, except that we may not be
able to find the solution explicitly at the end. We illustrate this by studying the two important concepts illustrated
above - hitting probabilities and hitting times.

Let X0,X1,X2, . . . be a Markov chain with state space S and transition matrix P = (pi, j)i, j∈S. For A ⊆ S, let
τA := min{n ≥ 0 : Xn ∈ A} and τ+

A := min{n ≥ 1 : Xn ∈ A}. If X0 ∈ A, then τA = 0 while τ+ may not be. If X0 %∈ A,
then τ = τ+. Note that τ,τ+ can take the value +∞ with positive probability, depending on the chain and the subset
A. τA is called the hitting time of the set A and τ+ is called the return time to the set A.

Hitting probabilities: Let A and B be two disjoint subsets of S. We investigate the probability that A is hit before
B, i.e., Pi(τA < τB). The idea of conditioning on the first step can be used to get a “difference equation” for this
quantity.

Exercise 106. Let A,B ⊆ S be disjoint. Assume that Pi(τA∪B < ∞) = 1 for all i (this is trivially true for i ∈ A∪B
but in general, may not be so for i %∈ A∪B). Let f (i) = Pi(τA < τB) be the probability that the MC started at i hits A
before B. Show that f (i) = 1 for i ∈ T1, f (i) = 0 for i ∈ T2 and

f (i) = ∑
j

pi, j f ( j), if i %∈ A∪B.

If S is finite (or even when S\(A∪B) is finite), can you show that f is the unique function that satisfies these equations
and has the value 1 on A and 0 on B? [Hint: If g is another such function, consider the point where f −g attains its
maximum].

Remark: When the MC is a SRW on a graph, the equations for f just say that f (u) is equal to the average value of
f (v) over all neighbours v of u. We say that f has the mean-value property or that f is a discrete harmonic function.

Hitting times: Let A ⊆ S. τA takes values in {0,1,2 . . .}∪{∞}. For i ∈ A, clearly Pi(τA = 0) = 1. What is the
distribution of τA? For i %∈ A, we can write,

Pi(τA = n+1) = ∑
i1,...,in %∈A

∑
j∈A

pi,i1 pi1,i2 . . . pin−1,in pin, j.

An expression not very helpful in general. We can also condition on the fist step and write recursive formulas such
as

Pi(τA = n+1) = ∑
j

Pi(τA = n+1
∣∣X1 = j)Pi(X1 = j) = ∑

j
pi, jP j(τA = n).

Note that this is valid only for i %∈ A.
Let τ j denote the hitting time to the singleton { j}. We then have the following identity.

p(n)(i, j) =
n

∑
k=1

Pi(τ j = k)p(n−k)( j, j).
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Intutively this says that if X0 = i and Xn = j, then there must be some k ≤ n when the state j was visited for the first
time, and then starting from the state j it must return to the same state after n−k steps. To give a rigorous proof, we
do the following.

p(n)(i, j) = Pi(Xn = j) =
n

∑
k=1

Pi(τ j = k,Xn = j)

All we need to show is that Pi(τ j = k,Xn = j) = p(n−k)
j, j Pi(τ j = k) or equivalently Pi(Xn = j

∣∣ tau j = k) = p(n−k)
j, j .

What is clear is that Pi(Xn = j
∣∣Xk = j) = p(n−k)

j, j . Intuitively, τ j = k appears to give no more information than
Xk = j, but this needs justification (if you do not feel so, observe that if n < k, then Pi(Xn = j

∣∣τ j = k) = 0 but
Pi(Xn = j

∣∣Xk = j) need not be). Now for the justification when n≥ k.

Pi(τ j = k,Xn = j) = Pi(Xn = j,Xk = j,Xm $= k for m < k)
= ∑

i1,...,ik−1 $= j
Pi(Xn = j

∣∣Xk = j,Xm = im for m < k)Pi(Xk = j,Xm = im for m < k)

= ∑
i1,...,ik−1 $= j

p(n−k)
j, j Pi(Xk = j,Xm = im for m < k)

= p(n−k)
j, j Pi(τ j = k).

This completes the proof.

RECURRENCE AND TRANSIENCE

Recall that τ+
i = inf{n≥ 1 : Xn = i}. Let αi, j = Pi(τ+

j < ∞). We say that j is a recurrent state if α j, j = 1 and that
j is a transient state if α j, j < 1. Let Nj = ∑∞

n=1 1Xn= j be the number of returns to the state j. Define G(i, j) = Ei[Nj],
called the Green’s function of the Markov chain. These quantities may be infinite.

We want to get a criterion for recurrence and transience in terms of transition probabilities. Recall the proof
we gave for Pólya’s theorem about simple random walks on Zd . The key to it was that observation that Nj has a
Geometric distribution, since every time the SRW returns to the origin, it is like starting the whole process again.
We did not give a proof at that time. We now state the analogous claim for general Markov chains and prove it.
Lemma: Pi(Nj ≥ m) = αi, jαm−1

j, j for m≥ 1.
Proof: For m = 1 this is just the definition. For m = 2,

Pi(Nj = 2) = ∑
1≤k<!

P(Xk = X! = j,Xn $= j for other n≤ !)

= ∑
1≤k<!

Pi(τ j = k)Pi(X! = j,Xn $= j for k < n < !
∣∣τ j = k)

= ∑
1≤k<!

Pi(τ j = k)P j(τ j = !− k)

= ∑
k,m≥1

Pi(τ j = k)P j(τ j = m)

= αi, jα j, j.

Similarly one can continue and get the result for general m.

Consequently,

G(i, j) = Ei[Nj] = ∑
k≥1

Pi(Nj ≥ k) =
αi, j

1−α j, j
.

Of course, this is finite only if α j, j < 1, but the equation holds even when α j, j = 1. Indeed, if α j, j = 1, then by the
lemma, Pi(Nj ≥m) = αi, j for all m, which shows that Pi(Nj = ∞) = αi, j. Thus, if αi, j > 0 and α j, j = 1 (in particular,
if α j, j = 1 and i = j), then Nj is infinite with positive probability, hence its expected value is also infinite. Thus, we
have shown that j is recurrent (transient) if and only if G( j, j) = ∞ (respectively, G( j, j) < ∞).

To write a criterion for recurrence in terms of the transition probabilities, we observe that

G(i, j) = Ei

[
∞

∑
n=1

1Xn= j

]
=

∞

∑
n=1

p(n)
i, j .

Thus we have proved the following theorem.
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Theorem: Let X0,X1, . . . be a Markov chain with state space S and transition matrix P = (pi, j)i, j∈S. Then, for any
i, j ∈ Swith αi, j > 0 (in particular, if i = j), we have

j is recurrent ⇐⇒ G(i, j) = ∞⇐⇒
∞

∑
n=1

p(n)
i, j = ∞

j is transient ⇐⇒ G(i, j) < ∞⇐⇒
∞

∑
n=1

p(n)
i, j < ∞

If αi, j = 0, then Pi(Nj = 0) = 1 and G(i, j) = 0 and ∑∞
n=1 p(n)

i, j = 0.

From this theorem, to check for recurrence/transience, we only need to estimate the transition probabilities. This
may or may not be easy depending on the example at hand.

Example 107. For SRW on Zd , we have

p(2n)(0,0) =
(

1
2d

)2n

∑
k1,...,kd

k1+...+kd=n

(2n)!
(k1!)2 . . .(kd!)2

≤ (2n)!
22n(n!)2



 max
k1,...,kd

k1+...+kd=n

n!
k1! . . .kd!

(
1
d

)n


 ∑
k1,...,kd

k1+...+kd=n

n!
k1! . . .kd!

(
1
d

)n

=
(2n)!

22n(n!)2
n!

[(n/d)!]d

where by n/d we mean really integers closest to n/d (but they have to sum up to n, so they may not be all exactly
equal). Using Stirling’s formula, this tells us that

p(2n)(0,0)∼ 2
(

d
2π

)d/2 1
nd/2

which is summable for d ≥ 3 but not summable for d = 1 or 2. In this chain, observe that p(n)
j, j = p(n)

0,0 by symmetry,
and hence all states are recurrent for d = 1,2 and all states are transient for d ≥ 3.

Example 108. Consider SRW on the triangular lattice in R2. First convince yourself that this is the Markov chain
whose state space is S = {a+bω+cω2 : a,b,c ∈ Z} and ω is a cube-root of 1. The transition probabilities are given
by

p(i, j) =

{
1
6 if j− i ∈ {±1,±ω,±ω2}.
0 otherwise.

Now show that p(n)
0,0 ∼

c
n for some constant c and hence conclude that all states are recurrent.

In this example, every state has six neighbours, just as in Z3. But the latter MC is transient while the former is
recurrent, not surprising because the graph structures are completely different (in the triangular lattice one can return
in three steps, but in Z3 it is not possible). This is to emphasize that recurrence and transience do not depend on the
degrees of vertices or such local properties. The triangular lattice is more like Z2 than like Z3.

Example 109. On the state space Z, consider the transition probabilities pi,i+1 = p and pi,i−1 = 1− p where p (= 1
2 .

Show that all states are transient. This is called biased random walk on Z.
Show that same (transience of all states) if the state space is {0,1,2, . . .} with pi,i+1 = 2

3 , pi,i−1 = 1
3 for i≥ 1 and

p0,1 = 1.

Example 110. Consider SRW on the binary tree. The state space here is S = {(x0, . . . ,xn) : n≥ 0, xi = 0 or 1 for i≥
1, x0 = 0} (all finite strings of 0s and 1s). The vertex (x0, . . . ,xn) is joined by an edge to (x0, . . . ,xn−1) (its parent)
and (x0, . . . ,xn,1),(x0, . . . ,xn,−1) (its children). Let o denote the vertex (0).

Let Yn = h(Xn) denote the distance from o of the Markov chain. Show that Yn is a MC with state space {0,1,2, . . .}
with pi,i+1 = 2

3 , pi,i−1 = 1
3 for i≥ 1 and p0,1 = 1. Use the previous example to conclude that the state o in the original

chain X on the binary tree is transient.
30



STATES IN A MC

All the interesting examples of MCs that we have given have some nice properties which are not implied by
the definition. For example, in all these chains, it is possible to go from any state to any other state (if allowed
sufficiently many steps). However, this is by no means a requirement in the definition and not having such properties
brings some annoying issues.

Let X0,X1, . . . be a MC with state space S and transition probabilities pi, j. Let p(n)
i, j denote the n-step transition

probabilities. We define p(0)
i,i = 1 and p(0)

i, j = 0 if j != i.

We say that i leads to j and write i ! j if there exists some n ≥ 0 such that p(n)
i, j > 0. We say that i and j

communicate with each other and write i " j if i ! j and j ! i. Observe that i ! j if and only if αi, j > 0 and
i " j if and only if αi, j > 0 and α j,i > 0.
Observation: The relationship “communicates with” is an equivalence relationship on S.
proof: Clearly, i " i because p(0)

i,i = 1. It is equally obvious that i " j if and only if j " i. Lastly, if i ! j and

j ! k, then there exist n,m such that p(n)
i, j > 0 and p(m)

j,k > 0 and hence p(n+m)
i,k ≥ p(n)

i, j p(m)
j,k > 0 and hence i ! k. Thus,

if i " j if and only if j " i then i " k.
Consequence: The above equivalence relationship partitions the state space into pairwise disjoint equivalence
classes S = S1 # S2 # S3 . . . such that i " j if and only if i and j belong to the same Sp. Note that it may hap-
pen that i ∈ S1 and j ∈ S2 but i ! j. However, then there can be no other i′ ∈ S1, j′ ∈ S2 such that j′ ! i′ (because
since j " j′ and i " i′, we would get j ! i leading to the conclusion that j " i which cannot be). We say that a
state i is absorbing if pi,i = 1. In this case {i} is an equivalence class by itself.

Example 111. (Gambler’s ruin). Let S = {0,1, . . . ,L} where L ≥ 1 is an integer. Let pi,i+1 = pi,i−1 = 1/2 for
0 < i < L and p0,0 = 1 and pL,L = 1. This is SRW on Z absorbed at 0 and L.

In this case, if 0 < i < L and j is any state, then i ! j. But 0 ! j only for j = 0 and L ! j only for j = L. Thus,
we get the equivalence classes S1 = {1, . . . ,L− 1}, S2 = {0} and S3 = {L}. Here 0 and L are (the only) absorbing
states.

Example 112. Let S = Z2 = {(m,n) : m,n ∈ Z}. Let p(u1,v1),(u2,v2) = 1
2 if u1−u2 =±1, v1 = v2. Then, it is easy to

see that each horizontal line Sk := {(u,k) : u ∈ Z} is an irreducible class. In this chain, a MC will always stay inside
the irreducible class. In otherwords, if i ∈ Sk and j ∈ S!, then i ! j if and only if k = !.

Let us keep the same state space and change the transition probabilities to

p(u1,v1),(u2,v2) =






1
4 if u1−u2 =±1, v1 = v2.
1
2 if v1− v2 = 1, u1 = u2.

0 otherwise.

In this case, again the irreducible classes are Sk := {(u,k) : u ∈ Z}. Further, if i ∈ Sk and j ∈ S!, then i ! j if and
only if !≥ k. Transitions can happen from one equivalence class to another (but never both ways!).

The MC is said to be irreducible if there is only one class. Then all states communicate with each other. Irre-
ducible chains are nice, and most of the examples we see are irreducible. However, occasionally we will consider
chains with absorbing states and that invariably leads to more classes.

Many properties of states are class properties in the sense that if two states are in the same irreducible class, then
either both have that property or both do not.
Lemma: Recurrence and transience are class properties.
Proof: Suppose i is recurrent and i " j. Then, there exist r,s ≥ 1 such that p(r)

i, j > 0 and ps
j,i > 0. Now, it is clear

that p(n+r+s)
j, j ≥ p(s)

j,i p(n)
i,i p(r)

i, j . Therefore, ∑n p(n+r+s)
j, j ≥ p(s)

j,i p(r)
i, j ∑n p(n)

i,i = ∞ as i is recurrent. Thus, ∑n p(n)
j, j = ∞ and we

see that j is recurrent. Thus states in one irreducible class are all recurrent or all transient.

We can now prove the following fact.
Theorem: All states in an irreducible, finite state space Markov chain are recurrent.
Proof: By irreducibility, all states must be transient or all states recurrent. Observe that ∑ j∈S p(n)

i, j = 1 for each n and

hence ∑∞
n=1 ∑i∈S p(n)

i, j = ∞. Rerrange the sum to write ∑i∈S ∑∞
n=1 p(n)

i, j = ∞. As the outer sum is over finitely many

states, there must be at leasy one j such that ∑∞
n=1 p(n)

i, j = ∞. Find r such that p(r)
j,i > 0 and use p(n+r)

i,i ≥ p(n)
i, j p(r)

j,i to
conclude that i is recurrent. Thus all states are recurrent.
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Observe that this is false in infinite state space. For example, for biased random walk on Z with pi,i+1 = 0.8 and
pi,i−1 = 0.2, all states are transient, but the chain is irreducible.

STATIONARY MEASURE AND DISTRIBUTION

Let X0,X1, . . . be a Markov chain with stat space S and transition matrix P = (pi, j)i, j∈S.
Let π = (πi)i∈S be a vector of non-negative numbers indexed by S. We say that π is a stationary measure for

the MC above if ∑i∈S πi pi, j = π j for every j ∈ S. If π is a probability vector, i.e., if ∑i∈S πi = 1, we say that π is a
stationary distribution. If π is a stationary measure, then cπ is also a stationary measure for any c > 0.

If we write π = (πi)i∈S as a row vector, the condition for π to be a stationary measure may be written in matrix
form as π ·P = π. Thus, π is a left eigenvector of P with eigenvalue 1. However, á priori, not every such eigenvector
may qualify as a stationary measure as we need the non-negativity condition πi ≥ 0. It is important to note that we
are talking about left eigenvector here. The vector ui = 1 for al i is a right eigenvector with eigenvalue 1 but not
necessarily a stationary measure.

What is the interpretation of stationary measure? If π is a stationary distribution and the initial state X0 ∼ π, then

P(X1 = j) = ∑
i

P(X1 = j,X0 = i) = ∑
i

πi pi, j = π j.

Thus, X1 also has the same distribution. Similarly, it is easy to see that the marginal distribution of Xn is π for each
n. Thus, Xn are identically distributed, of course, they are not independent. If π is just a stationary measure (i.e., not
a probability vector), this probabilistic interpretation makes no sense.

Exercise 113. If π is a stationary measure, show that ∑i∈S πi p
(n)
i, j = π j for all j ∈ S and all n≥ 0.

Example 114. Consider the Ehrenfest chain. Let πi =
(N

i

)
. Then, for any j ∈ S,

∑
i∈S

πi pi, j = π j−1 p j−1, j +π j+1 p j+1, j =
(

N
j−1

)
N− j +1

N
+

(
N

j +1

)
j +1
N

=
(

N
j

)
.

This calculation also holds for j = 0 and j = N. Thus, π is a stationary measure. In this case, we can get a stationary
distribution by normalizing π to get σi =

(N
i

)
2−N .

Example 115. Consider SRW on a graph G = (V,E). Recall that this means S = V and pu,v = 1v∼u
du

where du is the
degree of the vertex u. Let πu = du for u ∈V . Then,

∑
u

π(u)p(u,v) = ∑
u

du
1u∼v

du
= ∑

u
1u∼v = dv = π(v).

Thus, π is a stationary measure. If the graph is finite, then we can normalize it by ∑u∈V πu to get a stationary
distribution.

For example, for Random walk on the hypercube, the stationary distribution is πx = 2−N for each x ∈ {0,1}N .
For SRW on Z, a stationary measure is πi = 1 for all i. For random transposition shuffling of cards, the uniform
distribution on all permutations is again stationary.

Example 116. Reflected, biased RW on Z+. Let pi,i+1 = p = 1− pi,i−1 for i ≥ 1 and p0,1 = 1. If π is a stationary
measure, it must satisfy πi =

REVERSIBILITY

Let X0,X1,X2, . . . be a MC with state space S and transitions P = (pi, j)i, j∈S. Let π = (πi)i∈S where πi ≥ 0. We say
that the MC is reversible with respect to π if πi pi, j = π j p j,i for all i, j ∈ S. We may also say that P is reversible w.r.t.
π.

In this case, observe that ∑i∈S πi pi, j = ∑i π j p j,i = π j since ∑i p j,i = 1 for each j. Thus, π is a stationary measure
for P.

The point is that the equations for stationary measure are difficult to solve in general. But it is easier to check if
our chain is reversible w.r.t. some π and actually find that π if it is reversible. There are further special properties of
reversible measures, but we shall not get there.

Example 117. SRW on G = (V,E). Then, pu,v = 1v∼u
du

and pv,u = 1u∼v
dv

. It is easy to see that du pu,v = dv pv,u for all
u,v ∈V . Thus the chain is reversible and πu = du is a stationary measure.
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Check that the Ehrenfest chain, random transposition shuffle are reversible. Consequently get stationary measures
for them. The top to random shuffle is clearly not reversible (w.r.t any π) because there exist π,σ such that pπ,σ > 0
but pσ,π = 0. The following exercise is useful in finding stationary measures in some cases where we do not have
reversibility.

Exercise 118. Let P and Q be two transition matrices on the same state space S. Suppose π = (πi)i∈S is a vector of
non-negative numbers such that πi pi, j = π jq j,i for all i, j. Then show that π is a stationary measure for P as well as
for Q.

Exercise 119. Let P be the transition matrix for the top to random shuffle. Define an appropriate “random to top”
shuffle and let Q denote its transition matrix and use the previous exercise to show that the uniform distribution on
Sn is stationary for both P and Q.

EXISTENCE OF STATIONARY MEASURE

The following theorem shows that a stationary measure exists.
Theorem: Let X0,X1,X2, . . . be a MC with state space S and transitions P = (pi, j)i, j∈S. Fix a recurrent state x ∈ S.
For any j ∈ S, define π j := Ex

[
∑τ+

x −1
n=0 1Xn= j

]
as the expected number of visits to j before returning to x. Then π is a

stationary measure for the MC.
Proof: We can rewrite π j := Ex

[
∑∞

n=0 1Xn= j,n<τ+
x

]
= ∑∞

n=0 Px(Xn = j, n < τ+
x ).

Now fix j ∈ S and consider ∑i∈S πi pi, j. Before proceeding, observe that Px(Xn+1 = j
∣∣Xn = i,n < τ+

x ) = pi, j for
any n≥ 0. Hence,

∑
i∈S

πi pi, j = ∑
i∈S

∞

∑
n=0

Px(Xn = i, n < τ+
x )pi, j

= ∑
i∈S

∞

∑
n=0

Px(Xn = i, n < τ+
x )Px(Xn+1 = j

∣∣Xn = i,n < τ+
x )

= ∑
i∈S

∞

∑
n=0

Px(Xn+1 = j, Xn = i, n < τ+
x ).(7)

We split into two cases.
Case 1: j $= x. Then, Px(Xn+1 = j, Xn = i, n < τ+

x ) = Px(Xn+1 = j, Xn = i, n+1 < τ+
x ). Thus,

∑
i∈S

πi pi, j = ∑
i∈S

∞

∑
n=0

Px(Xn+1 = j, Xn = i, n+1 < τ+
x )

=
∞

∑
n=0

∑
i∈S

Px(Xn+1 = j, Xn = i, n+1 < τ+
x )

=
∞

∑
n=0

Px(Xn+1 = j, n+1 < τ+
x )

= π j

since the n = 0 term is irrelevant when j $= x.
Case 2: j = x. In this case, πx = 1 by the definition. On the other hand, from (7), we see that

∑
i∈S

πi pi,x = ∑
i∈S

∞

∑
n=0

Px(Xn+1 = x, Xn = i, n < τ+
x )

=
∞

∑
n=0

∑
i∈S

Px(Xn+1 = j, Xn = i, n < τ+
x )

=
∞

∑
n=0

Px(Xn+1 = j, n < τ+
x )

=
∞

∑
n=0

Px(τ+
x = n+1)

= 1

because we assumed that x is a recurrent state. This finishes the proof.
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Remark: If x is a transient state, then the definition of π can still be made and we see that in fact πi = G(x, i) for all
i ∈ S. Further, observe that we used the recurrence of x only in the last step. In other words, when x is transient, we
still have the equation

∑
i∈S

G(x, i)pi, j = G(x, j), for j "= x.

We say that the function i→ G(x, i) is discrete harmonic except at i = x.

Proposition: If a MC has a stationary distribution π, then any state i ∈ S with πi > 0 is necessarily recurrent.
Proof: Fix j ∈ S such that π j > 0. Then, π j = ∑i∈S πi p

(n)
i, j and hence

∞ =
∞

∑
n=1

π j =
∞

∑
n=1

∑
i∈S

πi p
(n)
i, j = ∑

i∈S
πi

∞

∑
n=1

p(n)
i, j = ∑

i∈S
πi

αi, j

1−α j, j
≤ 1

1−α j, j

since αi, j ≤ 1 and ∑i πi = 1.

UNIQUENESS OF STATIONARY MEASURES

In general stationary measures are not unique. For example, suppose S = S1&S2 where S1,S2 are the irreducible
classes of the Markov chain and suppose both
Theorem: Let X0,X1,X2, . . . be an irreducible MC with state space S and transitions P = (pi, j)i, j∈S. Then, the
stationary measure is unique up to multiplication by constants. That is, if π and σ are two stationary measures, then
there is some c > 0 such that πi = cσi for all i ∈ S.
Proof: Fix x ∈ S and write for any j

π j = πx px, j +
∗

∑
i

πi pi, j

Using the first equation for each πi in the second summand we get

π j = πx px, j +πx

∗

∑
i

px,i pi, j +
∗

∑
i,!

π!p!,i pi, j

Iterating the same gives us for any m≥ 1,

π j = πx

m

∑
k=1

Px(Xk = j,Xk−1 "= x, . . . ,X1 "= x) +
∗

∑
i

πiPi(Xm = j,Xm−1 "= x, . . . ,X1 "= x,X0 "= x)

As the MC is irreducible and recurrent, for each i ∈ S we have

Pi(Xm = j,Xm−1 "= x, . . . ,X1 "= x,X0 "= x)≤ Pi(τx ≥ m)→ 0

as m→ ∞.
As x is a recurrent state,

Pπ(Xm = j,Xm−1 "= x, . . . ,X1 "= x,X0 "= x) = ∑
i∈S

πiPi(Xm = j,Xm−1 "= x, . . . ,X1 "= x,X0 "= x)→ 0

as m→ ∞. From this we would like to claim that

lim
m→∞

∗

∑
i

πiPi(Xm = j,Xm−1 "= x, . . . ,X1 "= x,X0 "= x) = 0.

This is obvious if S is finite, because each summand is going to zero and the number of summands is fixed. If S is
infinite, one can still argue this using what is called Monotone convergence theorem. We omit those details. Thus,
we get

π j = πx

∞

∑
k=1

Px(Xk = j,Xk−1 "= x, . . . ,X1 "= x) = πxEx

[
τ+

x −1

∑
k=0

1Xk= j

]
= πxµ j.

where µ is the stationary measure that we constructed, starting from x and using the excursion back to x. Thus,
uniqueness follows.
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39. VARIOUS CONSEQUENCES

The existence and uniqueness of stationary measures and the proof we gave for it has various consequences. Let
us say that an state i in the state space is positive recurrent if Ei[τ+

i ] < ∞. Of course, a positive recurrent state has to
be recurrent.

Let X0,X1,X2, . . . be an irreducible, recurrent MC with state space S and transitions P = (pi, j)i, j∈S.
Suppose x ∈ S. Then, we can define the stationary measure

πx
i := Ex

[
τ+

x −1

∑
n=0

1Xn=i

]
.

Clearly,

∑
i∈S

πi = ∑
i∈S

Ex

[
τ+

x −1

∑
n=0

1Xn=i

]
= Ex

[
τ+

x −1

∑
n=0

∑
i∈S

1Xn=i

]
= Ex[τ+

x ].

Thus, x is positive recurrent if and only if ∑i πi < ∞. Thus, the stationary measure πx can be normalized to a stationary
distribution if and only if x is positive recurrent.

By the uniqueness of stationary measure (up to constant multiples), either all stationary measures are normalizable
or none is. And the stationary distribution, if it exists, is unique.

From two states x and y we get two stationary measures πx and πy. Either both or normalizable or neither. Hence,
either both x and y are positive recurrent or neither. More generally you can prove the following (directly).

Exercise 120. In any MC, positive recurrence is a class property.

Note that ∑i πx
i = Ex[τ+

x ] and πx(x) = 1. If an irreducible chain is positive recurrent, the unique stationary distri-
bution is given by θi = πx

i
Ex[τ+

x ] (for any x). In particular,

θx =
1

Ex[τ+
x ]

, θi = θxπx
i .

Now, whether or not the chain is positive recurrent, by the uniqueness of stationary measures up to constant multiples,
for any x,y, there is a constant c > 0 such that πx

i = cπy
i for all i. In particular, take i = y to get c = πx

y. Thus, πx
i = πy

i πx
y.

In particular, πy
xπx

y = 1, a non-trivial identity.
The usefulness of the identity θi = 1

Ei[τ+
i ]

for irreducible positive recurrent chains goes in reverse. Often we can

guess the stationary distribution θ (for example, if the chain is reversible) and consequently compute Ei[τ+
i ] < ∞.

Example 121. Consider the Ehrenfest chain on {0,1,2, . . . ,N}. We have seen that θi =
(N

i

)
2−N is the stationary

distribution. Consequently,

E0[τ+
0 ] =

1
θ0

= 2N , EN/2[τ+
N/2] =

1
θN/2

∼
√

π
√

N.

With n = 1023, these two numbers are about 21023 and 1012, vastly differing in magnitude. For example, if we assume
that 1010 steps of the chain take place in one second (I don’t know if this is a reasonable approximation to reality),
then to return from N/2 to N/2 takes 100 seconds (on average) while return from 0 to 0 takes more than 21022 years!

PERIODICITY OF MARKOV CHAINS

Consider an irreducible recurrent Markov chain. Assume that it has a unique stationary distribution π. Ideally, we
would like to say that for large n, the p.m.f of Xn is approximately π, regardless of the initial distribution. There is
one hitch in this as the following example shows.

Example 122. Let G be the cyclic graph with vertex set {1,2,3,4} with edges {i, i+1}, 1≤ i≤ 3 and {4,1}. The
unique stationary distribution is given by πi = 1/4 for i ∈ {1,2,3,4}.

Let X0 = 1. Then, Xn ∈ {1,3} if n is even and Xn ∈ {2,4} if n is odd. Thus, we cannot say that p(n)
1,i = P1(Xn = i)

has a limit. Still, it seems that only the parity of n matters. In other words, while p(2n)
1,i = 0 for i = 2,4 and p(2n+1)

1,i = 0

for i = 1,3, it seems reasonable to expect that p(2n+1)
1,i → 1

2 for i = 2,4 and p(2n)
1,i →

1
2 for i = 1,3.

The issue here is called periodicity and is the only obstacle to what we initially wanted to claim.
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Definition 123. Let X0,X1, . . . be a Markov chain with state space S and transition matrix P = (pi, j)i, j∈S. Fix i ∈ S
and consider the set Ti = {n≥ 1 : p(n)

i,i > 0}. Then we say that di = g.c.d.(Ti) is the period of i. If di = 1 for all i ∈ S,
then we say that the Markov chain is aperiodic.

Example 124. For SRW on Zd , clearly di = 2 for all i. It is periodic (we shall say with period 2).
Consider SRW on the cycle graph with N vertices. If N is even, then again di = 2 for all i. However, if N is odd,

di = 1 for all i (because p(2)
i,i > 0 and p(N)

i,i > 0).
Consider the problem of gambler’s ruin with S = {0,1, . . . ,L}. Check that d0 = dL = 1, while di = 2 for 1≤ i≤

L−1.

Lemma: In any MC, if i ! j, then di = d j. Thus, all states in the same irreducible class have the same period. In
particular, all states in an irreducible Markov chain have the same period.
Proof: Find r,s such that p(r)

i, j > 0 and p(s)
j,i > 0. Then, p(n+r+s)

i,i ≥ p(n)
j, j p(r)

i, j p(s)
j,i . With n = 0, this shows that di divides

r+ s. Secondly, for any n ∈ Tj, we see that n+ r+ s ∈ Ti and hence di divided n+ r+ s. In particular, di divided n for
all n ∈ Tj. Thus, di divided d j. Reversing the roles of i and j we see that d j must also divide di, and hence di = d j.

Remark 125. If a MC is irreducible, and pi,i > 0 for some i ∈ S, then the chain is aperiodic. This is obvious, since
di = 1 and hence d j = 1 for all j. In particular, any lazy random walk on a graph (with laziness parameter τ > 0) is
aperiodic. More generally, starting with any MC (S,P) and a number 0 < τ < 1, we can make a lazy version of the
MC as follows.

Define qi, j = (1−τ)pi, j for j %= i and qi,i = pi,i +τ(1− pi,i). Then, the MC with transitions q is aperiodic because
qi,i > 0 for all i. This is called a lazy version of the original MC.

The point is that periodicity is a pain. The statements of the theorems are cleaner for aperiodic chains. There are
two ways to deal with periodicity. One is to make a lazy version of the chain - this does not really change the nature
of the chain, but makes it go slower. As lazy chains are aperiodic, the statements are cleaner for it.

An alternate is to consider the chain at times 0,d,2d, . . . only. It is easy to check that X0,Xd ,X2d , . . . is an aperiodic
MC (possibly on a smaller state space).

We shall use the following fact about aperiodic chains.
Lemma: Let (S,P) be an irreducible, aperiodic MC. Fix any i, j ∈ S. Then, there exists N ≥ 1 such that p(n)

i, j > 0 for
all n≥ N.
Proof: First consider the case i = j. The set Ti := {n ≥ 1 : p(n)

i,i > 0} has g.c.d. 1. Observe that n,m ∈ Ti implies

an+bm ∈ Ti for all a,b≥ 0 since p(an+bm)
i,i ≥ (p(n)

i,i )a(p(m)
i,i )b. We claim that there is some N such that N,N +1 ∈ Ti.

Indeed, take any n,n + k ∈ Ti. If k = 1 we are done, else, because the g.c.d. of Ti is 1, we must have m ∈ Ti that is
not divisible by k. Write m = nk + r with 0≤ r < k. Then, nk,nk + r ∈ Ti and their difference is r < k. Continue to
decrease the difference till you get 1.

Now we have N such that N,N +1 ∈ Ti. Pick any number m≥ N2 and write it as m = N(N + k)+ r where k ≥ 0
and 0≤ r≤N−1. Rewrite this as m = (N +1)r+(N +k−r)N. Since N,N +1 ∈ Ti, taking a = N +k−r and b = r,
we see that m ∈ Ti for all m≥ N2. This completes the proof for j = i.

If j %= i, find r such that p(r)
i, j > 0 and N such that p(n)

i,i > 0 for all n ≥ N. Then, p(n)
i, j ≥ p(n−r)

i,i p(r)
i, j > 0 for all

n≥ N + r. This completes the proof.

CONVERGENCE THEOREM FOR IRREDUCIBLE, APERIODIC CHAINS

Theorem: Let X0,X1,X2, . . . be an irreducible, aperiodic Markov chain on a state space S with transition matrix
P = (pi, j)i, j∈S and having stationary distribution π. Then, for any i, j ∈ S, we have p(n)

i, j → π j as n→ ∞.
Proof: Let X0,X1, . . . be a MC with X0 = i and transitions given by P. Let Y0,Y1, . . . be an independent MC with the
same state space and transitions but with Y0 ∼ π. Define τ := min{n ≥ 0 : Xn = Yn} as the first time when the two
chains meet.
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The key point is that P(Xn = !,n≥ τ) = P(Yn = !,n≥ τ) which can be seen as follows.

P(Xn = !,n≥ τ) =
n

∑
m=1

∑
i∈S

P(Xn = !,τ = m,Xm = i)

=
n

∑
m=1

∑
i∈S

P(Xn = !
∣∣Xm = i)P(τ = m,Xm = i)

=
n

∑
m=1

∑
i∈S

P(Yn = !
∣∣Ym = i)P(τ = m,Ym = i)

= P(Yn = !,n≥ τ).
Now write

P(Xn = !) = P(Xn = !,n≥ τ)+P(Xn = !,n < τ).
P(Yn = !) = P(Yn = !,n≥ τ)+P(Yn = !,n < τ).

Subtract to get
∣∣P(Xn = !)−P(Yn = !)

∣∣≤ P(Xn = !,n < τ)+P(Yn = !,n < τ)≤ 2P(τ > n).

If we show that P(τ < ∞) = 1, then P(τ > n)→ 0 as n→ ∞ and hence we get

sup
!

∣∣ p(n)
x,! −π!

∣∣ = sup
!

∣∣P(Xn = !)−P(Yn = !)
∣∣≤ 2P(τ > n)→ 0.

In particular, it follows that p(n)
x,! → π! for any x,!.

It only remains to prove that τ is finite with probability one. To see this, observe that Zn := (Xn,Yn) is a Markov
chain on S×S with transition probabilities q((i, j),(i′, j′)) = pi,i′ p j, j′ . We claim that Zn is an irreducible chain. To
see this, fix i, j, i′, j′ ∈ S and invoke aperiodicity of the MC on S to get an N such that p(n)

i,i′ > 0 and p(n)
j, j′ > 0 for all

n ≥ N. Then q(n)((i, j),(i′, j′)) = p(n)
i,i′ p(n)

j, j′ > 0 for n ≥ N. Hence the Q-chain is irreducible. Further, if we define
θ(i, j) = πiπ j, then ∑(i, j) θ(i, j) = 1 and

∑
(i, j)∈S

θ(i, j)q((i, j),(i′, j′)) =

(

∑
i

πi pi,i′

)(

∑
j

π j p j, j′

)
= πi′π j′ = θ(i′, j′).

Thus, θ is a stationary distribution for the Q-MC and hence the chain must be recurrent. Therefore, for any fixed
i ∈ S, the chain Zn hits (i, i) with probability one. Therefore, τ < ∞ with probability one.
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