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7. The special case of ! = 2

Consider the GUE ensemble density

g(" ) = exp

{
!

1
4

n

#
k=1

" 2
k

}

$
i< j

|" i ! " j|2

whereZn is the normalizing constant. More generally, letµ be a Borel probability measure
on R and consider the densityf on Rn proportional to|%(x)|2 with respect to the measure
µ" n. All of what we say in this section will apply to this more general density6. This is
symmetric in" 1, . . . , " n. The following lemma shows that it is possible to explicitly inte-
grate out a subset of variables and get marginal densities of any subset of the co-ordinates.
As we discussed earlier, this is crucial to computing local properties of the system of par-
ticles deÞned by the densityf .
Observation: Let p0, p1, . . . , pn! 1 be monic polynomials such thatpk has degreek. Then,

%(x)= det




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


= det




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p0(x2) p1(x2) p2(x2) . . . pn! 1(x2)

...
...

...
...

p0(xn) p1(xn) p2(xn) . . . pn! 1(xn)





as can be seen by a sequence of column operations. If&k is any polynomial with degree
k and having leading coefÞcientck, then we get%(x) = Cn det(A) whereai, j = &j(xi) with
the indexi running from 0 ton ! 1 and the indexj from 1 to n. The constantCn =
(c0c1 . . .cn! 1)! 1. Thus,

|%(x)|2 = C2
n det

(
A At) = C2

n det(Kn(xi,x j))i, j# n

whereKn(x,y) = # n! 1
j=0 &j(x)&j(y). It turns out that choosing&j to be the orthogonal poly-

nomials with respect toµ enables us to integrate out any subset of variables explicitly!

Lemma 56. Let (A,A ,µ) be a measure space. Let &k, 1 # k # n, be an orthonormal set in
L2(µ) and define K(x,y) = # n

k=1&k(x)&k(y). Define f : An $ R by

f (x) = (n!)! 1det(K(xi,x j))i, j# n .

(1) For any m # n and any " k, k # m ! 1, we have
Z

R

det(K(" i, " j))i, j# m µ(d" m) = (n ! m+1)det(K(" i, " j))i, j# m! 1 .

(2) f is a probability density on An with respect to µ" n. Further, if (" 1, . . . , " n) is
a random vector in Rn with density f , then " i are exchangeable, and for any
m # n, the density of (" 1, . . . , " m) with respect to µ" m is given by

fk(" 1, . . . , " m) =
(n ! k)!

n!
det(K(" i, " j))i, j# m .

Corollary 57. Let µ %P (R) have finite moments up to order 2n ! 2 and let &0, . . . ,&n! 1
be the first n orthogonal polynomials normalized so that

R
&k&! dµ = ' k,! . Then, the den-

sity f (x) = Z! 1
n |%(x)|2 on Rn with respect to a measure µ" n can be rewritten as f (x) =

(n!)! 1det(Kn(" i, " j))i, j# n where Kn(x,y) = # n! 1
j=0 &j(x)&j(y). Further, the marginal den-

sity of any k co-ordinates is given by (n! k)!
n! det(K(" i, " j))i, j# k.

6These are special cases of what are known asdeterminantal point processes.
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The corollary trivially follows from the lemma and the observations made before the
theorem. We now prove the lemma.

PROOF. (1) We need two properties of the kernel K. Both follow from or-
thonormality of ϕks.
(a) The reproducing kernel property:

R
K(x,y)K(y,z)µ(dy) = K(x,z).

(b)
R

K(x,x)µ(dx) = n.
By expanding the determinant

Z

R

det(K(λi,λ j)i, j≤m dλm = ∑
π∈Sm

sgn(π)
Z

R

m

∏
i=1

K(λi,λπ(i))dλm.

Fix π. There are two cases.
Case 1: π(m) = m. then by property (b), the term becomes

m−1

∏
i=1

K(λi,λπ(i))
Z

K(λm,λm)dλm = n
m−1

∏
i=1

K(λi,λσ(i)).

where σ ∈Sm−1 is defined by σ(i) = π(i). Observe that sgn(σ) = sgn(π).
Case 2: Fix π(m) $= m. Let p = π−1(m) and q = π(m) (thus p,q < m). By
property (a) above,

Z

R

m

∏
i=1

K(λi,λπ(i))dλm = ∏
i$=p,m

K(λi,λπ(i))
Z

R

K(λp,λm)K(λm,λq)dλm

= ∏
i$=m

K(λi,λσ(i))

where σ(i) = π(i) for i $= p and σ(p) = q. Then σ∈Sm−1 and sgn(σ) =−sgn(π).
Now consider any σ∈Sm−1. It arises from one permutation π in Case 1, and

from m− 1 distinct π in Case 2. As the sgn(σ) has opposing signs in the two
cases, putting them together, we see that

R

R
det(K(λi,λ j)i, j≤n dλm is equal to

(n− (m−1)) ∑
σ∈Sn−1

n−1

∏
i=1

K(λi,λσ(i)) = (n−m+1)det(K(λi,λ j)i, j≤n−1 .

(2) Let m < n and let fm(x1, . . . ,xm) =
R

Rn−m f (x1, . . . ,xn)dµ(xm+1) . . .dµ(xn). Induc-
tively applying the integration formula in part (2), we get

fm(λ1, . . . ,λm) = C−1
n (n−m)!det(K(λi,λ j)i, j≤m .

In particular, if we integrate out all variables, we get C−1
n n!. Thus, we must have

Cn = n! for f to be a probability density (the positivity of f is clear because
(K(xi,x j))i, j≤n is n.n.d, being of the form AAt ).

Plugging the value of Cn back into the expression for fm shows that

fm(λ1, . . . ,λm) =
(n−m)!

n!
det(K(λi,λ j)i, j≤k .!

These integration formulas are what make β = 2 special. None of this would work if
we considered density proportional to |∆(x)|β with respect to µ⊗n. As a corollary of these
integration formulas, we can calculate the mean and variance of the number of points that
fall in a given subset.

Proposition 58. In the setting of Lemma 56, let N(·) = ∑n
k=1 δλk be the unnormalized

empirical measure. Let I ⊆ A be a measurable subset. Then,
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(i) E
[
(N(I))m↓

]
=

R
Im det(K(xi,x j)i, j≤k dµ(x) where (k)m↓ = k(k−1) . . .(k−m+1).

(ii) E[N(I)] =
R

I K(x,x)dµ(x) and Var(N(I)) =
R

I
R

Ic |K(x,y)|2dµ(y)dµ(x).
(iii) Let TI be the integral operator on L2(I,µ) with the kernel K. That is TI f (x) =R

I K(x,y) f (y)dµ(y) for x ∈ I. Let θ1,θ2, . . . be the non-zero eigenvalues of T . Then
θi ∈ (0,1] and if ξi ∼ Ber(θi) are independent, then N(I) d= ξ1 +ξ2 + . . ..

PROOF. (i) Write N(I) = ∑n
k=1 1λk∈I . Use the exchangeability ofλk to write

E
[
(N(I))m↓

]
= E



 ∑
i1,...,im≤n

distinct

1λi1∈I1λi2∈I . . .1λim∈I



 = (n)↓mP [λi ∈ I, 1≤ i ≤ m] .

Using the density of(λ1, . . . ,λm) given in Lemma 56 we get

E
[
(N(I))m↓

]
=

Z

Im
det(K(xi,x j))i, j≤m dµ(x).

(ii) Apply the formula in part (i) withm = 1 to getE[N(I)] =
R

I K(x,x)dµ(x). Expressing
the variance ofN(I) in terms ofE[N(I)] andE[N(I)(N(I)−1)] one arrives at

Var(N(I)) =
Z

I

K(x,x)dµ(x)−
Z

I

Z

I
|K(x,y)|2dµ(x)dµ(y).

Write the Þrst integral as
R

I
R

A |K(x,y)|2dµ(y) by the reproducing property ofK. Sub-
tracting the second term give

R
I
R

Ic |K(x,y)|2dµ(x)dµ(y).
(iii) With I = A, we haveTA f = ∑n

k=1〈 f ,ϕk〉ϕk. Thus,T is a projection operator with rank
n. Clearly, 0≤ TI ≤ TA from which it follows thatθi ∈ [0,1] and at mostn of them
are nonzero. Ifψi are the corresponding eigenfunctions, then it is easy to see that
K(x,y) = ∑i θiψi(x)ψi(y).

!

Remark 59. In random matrix theory, one often encounters the following situation. Let
µ ∈ P (C) such that

R
|z|2n−2µ(dz) < ∞. On Cn deÞne the densityf (x) ∝ |∆(x)|2 with

respectµ⊗n. Then we can again orthogonalize 1,z, . . . ,zn−1 with respect toµ to getϕk, 0≤
k≤ n−1 and the kernelK(z,w) = ∑n−1

j=0 ϕ j(z)ϕ j(w). The density can be rewritten asf (x) =
(n!)−1det(K(xi,x j))i, j≤n. This is of course a special case of the more general situation
outlined in Lemma 56, except that one needs to keep track of conjugates everywhere when
taking inner products.

8. Determinantal point processes

Consider the densityfm of (λ1, . . . ,λm) as described in Lemma 56. Let us informally
refer to it as the chance thatλi falls at locationxi for 1≤ i≤m. Then the chance thatLn :=
∑n

k=1 δλk puts a point at eachxi, i ≤ m, is precisely(n)m↓ fm(x1, . . . ,xm) = det(K(xi,x j)).
For any random variableL taking values in the space of locally Þnite counting mea-

sures (eg.,Ln), one can consider this chance (informally speaking), called themth joint
intensity ofL. If for every m, the joint intensities are given by det(K(xi,x j)) for some
K(x,y), then we say thatL is adeterminantal point process. A determinantal point process
may have inÞnitely many points.

If a point process which has a Þxed Þnite total number of points, then we can randomly
arrange it as a vector and talk in terms of densities. But when we have inÞnitely many
points, we cannot do this and instead talk in terms of joint intensities. Like densities, joint
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intensities may or may not exist. But if they do exist, they are very convenient to work
with. In random matrix theory we usually get finite determinantal processes, but in the
limit we often end up with infinite ones. Therefore, we shall now give precise definitions
of point processes, joint intensities and determinantal processes7

Definition 60. Let A be a locally compact Polish space (i.e., a complete separable metric
space) and let µ be a Radon measure on A. A point process Lon A is a random integer-
valued positive Radon measure on A. If L almost surely assigns at most measure 1 to
singletons, we call it a simplepoint process;

Definition 61. If L is a simple point process, its joint intensitiesw.r.t. µ are functions (if
any exist) pk : Ak → [0,∞) for k≥ 1, such that for any family of mutually disjoint subsets
I1, . . . , Ik of A,

(31) E

[
k

∏
j=1

L(I j)

]
=

Z

I1×...×Ik

pk(x1, . . . ,xk)dµ(x1) . . .dµ(xk).

In addition, we shall require that pk(x1, . . . ,xk) vanish if xi = xj for some i $= j .

Definition 62. A point process L on A is said to be a determinantal processwith kernel K
if it is simple and its joint intensities with respect to the measure µ satisfy

(32) pk(x1, . . . ,xk) = det(K(xi ,xj))1≤i, j≤k ,

for every k≥ 1 and x1, . . . ,xk ∈ A.

Exercise 63. When λ has density as in Lemma 56, check that the point process L =
∑n

k=1 δλk
is a determinantal point process with kernel K as per the above definition.

9. One dimensional ensembles

Let V : R→R be a function that increases fast enough at infinity so that
R

e−βV(x)dx<
∞ for all β > 0. Then, define the probability measure µn(dx) = e−nV(x)/Zn and the let λ be
distributed according to the measure Z−1

n,β|∆(x)|βe−n∑n
k=1 V(xk). Under some conditions on

V, the empirical measure of λ converges to a fixed measure µV,β. Then one asks about
We will now concentrate on two particular examples of β = 2 ensembles.

(1) The GUE (scaled by
√

2). The density is Z−1
n |∆(λ)|2 exp{−∑n

k=1 λ2
k/4}. To write

it in determinant form, we define µ as the N(0,2) distribution, that is µ(dx) =
(2
√

π)−1e−x2/4dx. Let Hk, k ≥ 0, be the orthogonal polynomials with respect
to µ obtained by applying Gram-Schmidt to the monomials 1,x,x2, . . .. Hk are
called Hermite polynomials. The kernel is Kn(x,y) = ∑n−1

k=0 Hk(x)Hk(y). We have
chosen them to be orthonormal,

R
Hk(x)H!(x)dµ(x) = δk,!. Hermite polynomials

are among the most important special functions in mathematics.
(2) The CUE (circular unitary ensemble). Let µ be the uniform measure on S1 and

on (S1)n define the density f (x) = |∆(x)|2 with respect to µ⊗n. In this case zk =
eikt are themselves orthonormal, but it is a bit more convenient to take ϕk(t) =
e−i(n−1)t/2eikt . Then, the kernel is

e−i(n−1)s/2ei(n−1)t/2 1−ein(s−t)

1−ei(s−t) = Dn(s− t), Dn(u) :=
sin(nu/2)
sin(u/2)

.

7For more detailed discussion on joint intensities, consult chapter 1 of the book ? available at
http://math.iisc.ernet.in/ manju/GAF book.pdf. Chapter 4 of the same book has discussion and examples of
determinantal point processes.
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Dn is the well-known Dirichlet kernel (caution: what is usually calledDn is
our D2n+1). We shall later see that the eigenvalues of a random unitary matrix
sampled from the Haar measure are distributed as CUE.

The GUE and CUE are similar in the local structure of eigenvalues. However, there are
edge phenomena in GUE but none in CUE. However, all calculations are simpler for the
CUE as the kernel is even simpler than the GUE kernel. The difÞculty is just that we are
less familiar with Hermite polynomials than with monomials. Once we collect the facts
about Hermite functions the difÞculties mostly disappear. The study of the edge is rather
difÞcult, nevertheless.

10. Mean and Variance of linear statistics in CUE

Let λ be distributed according to CUEn. Let h : S1 → R be a bounded measurable
function. LetNn(h) be the linear statistic∑n

k=1 h(λk). Then,

E[Nh] =
Z

h(x)K(x,x)dµ(x) = n
2πZ

0

h(t)
dt
2π

.

Actually this holds for any rotation invariant set of points on the circle. In particular,
E[Nn(I)] = |I|/ 2π.

The variance is considerably more interesting. Write the Fourier series ofh(t) =
∑k∈Z akeikt whereak =

R 2π
0 h(t)e−ikt dt

2π . This equality is inL2. Then,

Var(Nn(h)) =
1
2

πZ

−π

πZ

−π

(h(t)−h(s))2Kn(s, t)Kn(t,s)
dt ds
4π2 .

We write

(h(t)−h(s))2 = ∑
k,!∈Z

aka! (eikt−eiks)(e−i! t−e−i! s), Kn(t,s)Kn(s, t)=
n−1

∑
p,q=0

ei(p−q)t ei(q−p)s.

Hence,

Var(Nn(h)) =
1
2 ∑

k,!∈Z

n−1

∑
p,q=0

aka!

πZ

−π

πZ

−π

(eikt−i! t + eiks−i! s− eiks−i! t − eikt−i! s)ei(p−q)t ei(q−p)s dt ds
4π2

=
1
2 ∑

k,!∈Z

n−1

∑
p,q=0

aka!
{

δk−!+p−qδq−p +δp−qδk−!+q−p−δk+p−qδ−!+q−p−δ−!+p−qδk+q−p
}

=
1
2 ∑

k,!∈Z

n−1

∑
p,q=0

aka! δk−!
{

δp−q +δp−q−δk+p−q−δk+q−p
}

=
1
2 ∑

k∈Z
|ak|2

n−1

∑
p,q=0

{
2δp−q−δk+p−q−δk+q−p

}

= ∑
k∈Z

|ak|2 (n− (n−|k|)+) .

Remark 64. The variance can be written as∑|k|≤n |k||öh(k)|2 +n∑|k|> n |ak|2 whereöh(k) =
ak. The Þrst sum is the contribution of low frequencies inh while the second gives the
contribution of the high frequencies. For smooth functions, the high frequency Fourier co-
efÞcients will be small and the Þrst term dominates. For more wild functions, the second
sum becomes signiÞcant. We shall consider two cases next.
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Case 1: h ! H1/2 which by definition means that " h" 2
H1/2 := ! k! Z |k||ak|2 < " . Observe

that if h ! Cr, then h(r) has the Fourier series ! k! Z(# ik)2ake# ikt and hence ! |k|2r|ak|2 =
" h(r)" 2

L2 . Thus H1/2 can be roughly called those functions hat have half a derivative. In-
deed, one can also write the norm in a different way as

Exercise 65. Show that " h" 2
H1/2 =

#R

# #

#R

# #

(h(t)# h(s))2

(t# s)2
dt ds
4#2 .

If h ! H1/2, we use the inequality n # (n # k)+ $ | k| to see that

Var(Nn(h)) $
1
2 !

k! Z

|ak|2|k| = " h" 2
H1/2 .

This means that even as the expectation grows linearly in n, the variance stays bounded!
Further, for each k fixed, n # (n # k)+ % |k| as n % " , and hence by DCT Var(Nn(h)) %
" h" 2

H1/2 as n % " .

Case 2: h is the indicator of an arc I = [a,b]. Then Nn(h) = Nn(I). We assume that the arc
is proper (neither I or Ic is either empty or a singleton). The Fourier coefficients are given
by ak =

Rb
a e# ikt dt

2# = i(e# ikb# e# ika)
2#k . Evidently h is not in H1/2.

We work out the special case when I = [# #/2,#/2]. Then ak = sin(#k/2)
#k which is zero

if k is even and equal to (# 1) j# 1

#(2 j+1) if k = 2 j +1. Thus,

Var(Nn) = 2
"

!
j=0

n # (n # 2 j # 1)+
#2(2 j +1)2

= 2
&n# 1

2 '

!
j=0

2 j +1
#2(2 j +1)2 +2 !

j>&n# 1
2 '

n
#2(2 j +1)2 .

As ! j>m j# 2 = O(m# 1), the second term is O(1). The first term is easily seen to be
2
#2

1
2 logn+O(1). Thus, Var(Nn) = 1

#2 logn+O(1). Although it increases to infinity with n,
the variance grows remarkably slower than the mean. Compare with sums of independent
random variables where the mean and variance are both of order n. In the next exercise,
take I = [# $,$] without losing generality and show that the variance is asymptotically the
same.

Exercise 66. Let f be a 2#-periodic function on R such that " f " 2 := (2#)# 1 R#
# # | f |2 is

finite. Let f̂ (k) :=
R#

# # f (t)e# ikt dt
2# denote its Fourier coefficients. Let f%(t) = f (t # %) be

the translates of f for any %! R.
(1) Use the Plancherel theorem to show that 4 ! k! Z | f̂ (k)|2 sin2(k%) = " f%# f# %" 2.

[Hint: f̂%(k) = e# ik%f̂ (k)]
(2) Let f (t) = t on [# #,#] and extended periodically. Show that f̂ (k) = (# 1)k

k and
hence conclude that for %! [0,#]

"

!
k=1

sin2(k%)
k2 = %(## %).

(3) Fix %! [0,#] and let An = ! n
k=1

sin2(k%)
k and Bn = ! n

k=1
cos2(k%)

k . Show that An +
Bn = logn+O(1) and Bn # An = O(1) as n % " . Conclude that both An and Bn
are equal to 1

2 logn+O(1).



11. FREDHOLM DETERMINANTS AND HOLE PROBABILITIES 49

(4) Deduce that Var(Nn(I)) = 1
! 2 logn+O(1) as n→ " for any proper arc I (proper

means 0 < |I| < 2! ).

Observe that the constant in front of logn does not depend on the length of the interval.
Essentially the entire contribution to the variance comes from a few points falling inside
or outside the interval at the two endpoints. Points which “were supposed to fall” deep in
the interior of I (or deep in Ic) have almost no chance of falling outside of I (outside of Ic,
respectively) and do not contribute to the variance. This shows the remarkable rigidity of
the CUE.

Proposition 67. In the setting of the previous discussion, for any proper arc I, as n→ " ,

Nn(I)− |I|
2!

! −1√logn
d→ N(0,1).

PROOF. Fix an arc I. By part (c) of Lema 56, Nn(I) is a sum of independent Bernoulli
random variables. By the Lindeberg Feller CLT for triangular arrays, any sum of inde-
pendent Bernoullis converges to N(0,1) after subtracting the mean and dividing by the
standard deviation, provided the variance of the random variable goes to infinity. As
Var(Nn(I))∼ c logn, this applies to our case. !

Next we compute the covariance between N(I) and N(J). We take I and J to be
disjoint. Then, Cov(N(I),N(J)) =−

R
I
R

J |K(x,y)|2dµ(x)dµ(y).

11. Fredholm determinants and hole probabilities

Let (A,A ,µ) be a probability space. Let K : A2 →R or C be a kernel such that ‖K‖ :=
supx,y |K(x,y)| < " . Let T be the integral operator with kernel K.

Definition 68. The Fredholm determinant of the operator I−T which we shall also call
the Fredholm determinant associated to the kernel K is defined as

#(K) :=
"

$
m=0

(−1)m

m!

Z

Am

det(K(xi,x j))i, j≤m dµ(x1) . . .dµ(xm).

Recall the Hadamard inequality for matrices which says that if M is a square matrix
with columns uk, k ≤ n, then |det(M)| ≤ %n

j=1 ‖u j‖. Therefore, |det(K(xi,x j))i, j≤m | ≤
(‖K‖

√
m)m for any m and any x1, . . . ,xm. This shows that #(K) is well-defined for any K

with ‖K‖< " .

Remark 69. Let M be an n×n matrix with eigenvalues &j, j ≤ n. Then, we leave it as an
exercise to show the identity

$
1≤i1<i2<...<i≤m

&i1&i2 . . .&im = $
1≤i1<i2<...<i≤m

det
(
Mip,iq

)
p,q≤m

for any m ≥ 1. For m = 1 this is just the identity $ &i = $ i Mi,i. For any m ≥ 1, one can
think of the identity as being exactly the same identity, applied to a different matrix. If M
acts on a vector space V , then one can define the operator M∧k on the alternating tensor
power V∧k as 〈M(e j1 ∧ . . .∧ e jk),ei1 ∧ . . .∧ eik〉 = det

(
Mip, jq

)
p,q≤k. This has eigenvalues

&i1&i2 . . .&ik where i1 < i2 < .. . < ik. Expressing tr(M∧k) in two ways gives the above
identity.
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Anyhow, from this identity, we get the following expression for det(I−M)= ∏n
j=1(1−

θ j).

det(I−M) =
n

∏
j=1

(1−θ j)

= 1−∑
i

θi + ∑
i< j

θiθ j− ∑
i< j< k

θiθ jθk + . . .

= 1−∑
i

Mi,i +
1
2 ∑

i, j
det

[
Mi,i Mi, j
M j,i M j, j

]
− 1

6 ∑
i, j,k

det




Mi,i Mi, j Mi,k
M j,i M j, j M j,k
Mk,i Mk, j Mk,k



+ . . .

Thus, det(I −M) is exactly what we defined as ∆(K), provided we take A = [n] and
K(i, j) = Mi, j. With the usual philosophy of regarding an integral kernel as a matrix
(K(x,y))x,y, we arrive at the definition of the Fredholm determinant. The following ex-
ercise is instructive in this respect.

Exercise 70. Let T be the integral operator with a Hermitian kernel K with ‖K‖ < ∞. Let
θ j be the eigenvalues of T . Then, for any m≥ 1, we have

∑
i1< i2<...< im

θi1θi2 . . .θim =
1

m!

Z

Am

det(K(xi,x j))i, j≤m dµ(x1) . . .dµ(xm).

We shall need the following simple lemma later8.

Lemma 71. Let K and L be two kernels on L2(A,A ,µ) such that C = max{‖K‖,‖L‖} < ∞.
Then,

|∆(K)−∆(L)| ≤ ‖K−L‖
(

∞

∑
m=0

m(C
√

m)m−1

m!

)
.

PROOF. Fix m≥ 1 and x1, . . . ,xm ∈A. Let X0 =(K(xi,x j))i, j≤m and Xm =(L(xi,x j))i, j≤m.
For 1≤ k≤m, let Xk be the matrix whose first k rows are those of X0 and the rest are those
of Xm. Then, det(X0)−det(Xm) = ∑m−1

k=1 det(Xk−1)−det(Xk). Using Hadamard’s inequality
we see that |det(Xk−1)−det(Xk)| is bounded by (C

√
m)m−1‖K−L‖. Thus

|det(K(xi,x j))i, j≤m−det(L(xi,x j))i, j≤m | ≤ m(C
√

m)m−1‖K−L‖.

Integrate over x js and then sum over m (after multiplying by (−1)m−1/ m! to get the
claimed result. !

The importance of Fredholm determinants for us comes from the following expression
for “hole probabilities” or “gap probabilities” in determinantal processes.

Proposition 72. Let (A,A ,µ) be a probability space and let K be a finite rank projection
kernel (that is K(x,y) = ∑n

j=1 ϕ j(x)ϕ j(y) for some orthonormal set {ϕ j}). Let λ have
density (n!)−1 det(K(xi,x j))i, j≤n. Let I ⊆ A be a measurable subset of A. Then P(N(I) =
0) = ∆(KI), where KI is the kernel K restricted to I× I.

8We have borrowed much of this section from the book of Anderson, Guionnet and Zeitouni ? where the
reader may find more about these objects. F.Riesz and Sz. Nagy’s great book on Functional analysis is another
good reference for Fredholm’s work in functional analysis.
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PROOF. From part (c) of Lemma ??, we know that P(N(I) = 0) = ! j(1− " j) where
" j are the eigenvalues of the integral operator TI with kernel KI . Hence,

P(N(I) = 0) = 1−#
i

" i +#
i< j

" i" j− #
i< j<k

" i" j" k + . . .

=
$

#
m=0

(−1)m

m!

Z

Im

det(K(xi,x j))i, j≤m dµ(x1) . . .dµ(xm)

by Exercise 70. The last expression is %(KI) by definition. !

12. Gap probability for CUE

Let &be distributed as CUEn ensemble and unwrap the circle onto the interval [−' , ' ].
Thus & follows the measure on [−' , ' ]n given by

1
n!

det(Kn(ti, t j))i, j≤n
dt1 . . .dtn

(2' )n , where Kn(t,s) =
sin

( n
2 (s− t)

)

sin
( s−t

2
) .

Scale up by a factor of n/2 to get &̃= n&/2 which follows the measure (on [−n' /2,n' /2]n)

1
n!

det
(
K̃n(ti, t j)

)
i, j≤n

dt1 . . .dtn
(2' )n , where K̃n(t,s) =

2
n

Kn

(
2t
n

,
2s
n

)
.

Then,

K̃n(t,s) =
2sin(s− t)
nsin

( s−t
n

) → K(t,s) :=
2sin(s− t)

s− t
.

It is also easy to see that the convergence is uniform over (t,s) in any compact subset of
R2. Further, ‖K̃n‖ ≤ 2 and ‖K‖ ≤ 2. Thus, by Lemma 71, we see that %(K̃n,I)→%(KI) for
any compact interval I. By Proposition prop:holefordeterminantal this shows that for any
a < 0 < b,

P
(

&i %∈
[

2a
n

,
2b
n

]
∀i≤ n

)
= P

(
&̃i %∈ [−a,b] ∀i≤ n

)
→%(K[a,b])

as n→ $ . This gives the asymptotics of gap probabilities in CUE. Some remarks are due.
Of course, it is incorrect to say that we have calculated the gap probability unless we

can produce a number or decent bounds for this probability. For example, we could define
F(t) := %(K[−t,t]) which is the asymptotic probability that the nearest eigenvalue to 0 in
CUEn is at least 2t/n away. Can we find F(t)? All we need to so is study the kernel K
(called the sine kernel) and deduce F(t) from it. This is not trivial, but has been done by
???? They show that F(t) can be characterized in terms of the solution to a certain second
order ODE, called the ?????? We do not prove this result in this course.

Secondly, we considered only the gap probability, but we could also consider the dis-
tributional limit of the whole point process L̃n := # k ( &̃k

. But then we must employ the
language of Section ??. In that language, it is not difficult to show that the convergence
of K̃n to K implies that L̃n converges in distribution to L, the determinantal point process
with kernel K. The latter is a stationary point process on the line (and hence has infinitely
many points, almost surely). Basically this distributional convergence is the statement
that all the joint intensities det(Kn(xi,x j)i, j≤m converge to the corresponding quantities
det(K(xi,x j)i, j≤m. However, note that the distributional convergence does not automati-
cally imply convergence of the gap probability, because the latter is expressed as a series
involving joint intensities of all orders. That is why we had to establish Lemma 71 first.
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13. Hermite polynomials

Our next goal is to prove results for GUE analogous to those that we found for CUE.
Additionally, we would also like to study the edge behaviour in GUE, for which there is no
analogue in CUE. In this section we shall establish various results on Hermite polynomials
that will be needed in carrying out this programme.

For n≥ 0, deÞne÷Hn(x) := (−1)ne−x2/2 dn

dxn e−x2/2. It is easily seen that÷Hn is a monic
polynomial of degreen. It is also easy to see that the coefÞcients ofxn−1,xn−3 etc. are
zero. Consider

Z
Hn(x)Hm(x)e−x2/2 dx√

2π
= (−1)n

Z
Hn(x)

dn

dxn e−x2/2 dx√
2π

=
Z

e−x2/2 dn

dxn Hn(x)
dx√
2π

=

!
0 if n < m becauseHn has degree onlyn.

n! if m= n.

ThusHn(x) := 1√
n!

÷Hn(x) deÞne an orthonormal sequence of polynomials with respect to

N(0,1) measure calledHermite polynomials. Let ψn(x) = (2π)−1/4e−x2/4Hn(x) be the
Hermite functions. Then{ψn : n≥ 0} for an ONB forL2(R,Lebesgue). The following
properties may be derived easily (or look up any book on special functions, for example,
Andrews, Askey and Roy?).

Exercise 73. (1)
"
− d

dx +x
#

÷Hn(x)= ÷Hn+1(x) and hence also
"
− d

dx +x
#

Hn(x)=
√

n+1Hn+1(x).
(2) Hermite functions are eigenfunctions of the Hermite operator:

"
− d

dx + x
2

#
ψn(x)=√

n+1ψn+1(x) and
" d

dx + x
2

#
ψn(x) =

√
nψn−1(x). Consequently,

(33)
$
− d2

dx2 +
x2

4

%
ψn(x) =

$
n+

1
2

%
ψn(x).

(3) Three term recurrence: x÷Hn(x) = n ÷Hn−1(x)+ ÷Hn+1(x). Consequently,xHn(x) =√
nHn−1(x)+

√
n+1Hn+1(x).

We now derive two integral representations for Hermite polynomials. Observe that
dn

dxn e−(x−w)2/2
&
&
w=0 = (−1)n dn

dxn e−x2/2. Therefore, Þxingx, we get the power series expan-

sione−(x−w)2 = ∑∞
n=0Hn(x)wn/n! which simpliÞes toexw−w2

2 = ∑∞
n=0Hn(x)wn/n!. Thus,

(34) Hn(x) =
1

2πi

Z

γ

exw−w2
2

wn+1 dw, for any closed curveγ with Indγ(0) = 1.

A second integral representation will be obtained from the well-known identity

e−x2/2 =
Z

R

e−itxe−t2/2 dt√
2π

=
Z

R

cos(tx)e−t2/2 dt√
2π

.

Differentiaten times with respect tox to get

(35) ÷Hn(x) =

'
()

(*

(−1)mR

R
cos(tx)xne−t2/2 dt√

2π if n = 2m.

(−1)m−1 R

R
sin(tx)xne−t2/2 dt√

2π if n = 2m−1.

We end the section with the Christoffel-Darboux formula.



13. HERMITE POLYNOMIALS 53

Lemma 74. Let µ be a probability measure on R with infinite support. Let pk be the
orthogonal polynomials with respect to µ normalized so that pn(x) = κnxn + . . . with κn > 0.
Then,

n−1

∑
k= 0

pk(x)pk(y) =
κn−1

κn

pn(x)pn−1(y)− pn−1(x)pn(y)
x− y

.

For x = y the right hand should be interpreted as κn−1
κn

(pn(x)p′n−1(x)− p′n(x)pn−1(x)) .

PROOF. Write the three term recurrence

xpn(x) = bn−1 pn−1(x) + an pn(x) + bn pn+ 1(x).

Multiply by pn(y) to get the equation

xpn(x)pn(y) = bn−1 pn−1(x)pn(y) + an pn(x)pn(y) + bn pn+ 1(x)pn(y).

Write this same equation with x and y reversed and subtract from the above equation to get

(x−y)pn(x)pn(y) = −bn−1(pn−1(y)pn(x)− pn−1(x)pn(y))+ bn(pn(y)pn+ 1(x)− pn(x)pn+ 1(y)) .

Put k in place of n and sum over 0≤ k ≤ n−1 to get the identity
n−1

∑
k= 0

pk(x)pk(y) = bn−1
pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
.

In the original three term recurrence equate the coefficients of xn+ 1 to see that bnκn+ 1 = κn.
This completes the proof. !
Corollary 75. For any n≥ 1, we have

n−1

∑
k= 0

ψk(x)ψk(y) =
√

n
ψn(x)ψn−1(y)−ψn−1(x)ψn(y)

x− y
.

The corollary follows immediately from the lemma. The importance for us is that it
makes it very clear that analysis of the GUE for large n depends on understanding ψn (or
equivalently, understanding Hn) for large n.


