
LIMITING EIGENVALUE DISTRIBUTION FOR BAND RANDOM MATRICES 

S. A. Molchanov,  L. A. Pastur, and A. M. Khorunzhii 

An equation is obtained for the Stieltjes transform of the normalized eigenvalue distribution of band random matrices in the limit 
in which the band width and rank of the matrix simultaneously tend to infinity. Conditions under which this limit agrees with 
the semicircle law are found. 

1. S T A T E M E N T  O F  P R O B L E M ,  F O R M U L A T I O N  O F  R E S U L T S ,  A N D  D I S C U S S I O N  

Random symmetric, or Hermitian matrices arise in many branches of physics and mathematics (see, for example, the 
reviews [1--5] and the references there). Among the many and numerous problems associated with the properties of Such 
matrices, one of the simplest and, at the same time, most important is that of the distribution of their eigenva!ues. As was first 
shown by Wigner [6], in the case of  matrices with independent Gaussian elements this problem can be solved exactly in the limit 
of infinite rank of  these matrices. Namely, let the symmetric matrix W (n) of rank n = 2m + 1 have elements of the form 

W(~)(x, y)=n-'Z2V(x, y), [xl, ly]<~m, (1.1) 

where V(x, y) = V(y, x) are independent (for x _< y) Gaussian variables such that 

E{V(x, y)}=O, E{V:(x, V)}=V ~. (1.2) 

We denote by ) ' -m . . . . .  ~krn the eigenvalues of W (n), and let 

N ~ ( ; Q = n - '  E t (1.3) 

be the function, normalized by the rank of the matrix, that counts its eigenvalues. Then in accordance with [6[ 

lira Z {N~ (~,) } =N,,~ (X), (1.4) 

where the nondecreasing function Nw(X) is differentiable and its derivative - -  the density of states - -  has the 

n , ,  ( Z ) = X , , - '  ( ) , )  = - ,  ~ ( 1 . 5 )  

[ O. 17,1 >2V.  
This limit function is called the Wigner distribution, or the semicircle law. 

Wigner's proof [6] was based on the moment method. Namely, he showed that for any k = 0, 1, ... there exist the limits 

limn-'E{Tr(W(~))~}= l imn- 'E{ ~ ,  )~zk}~rn~ 

of the moments of  the function (1.3). Here, m k = V2kMk, where M k is the number of different root trees (graphs without cycles) 
containing k links. The generating function of the numbers M k is readily found and gives the semicircle law. 

This method can be used not only for Gaussian matrices, but it requires the existence of all moments of  the quantities V(x, 
y) (as in the analogous situation in the central limit theorem). In particular, it can be readily applied to band matrices, which 
are defined below in (1.7)--(I .9).  

Experience gained in probability theory teaches us that it is much more convenient to work with generating functions rather 
than the moments of random variables (in fact, generating functions also make their appearance in Wigner's work). I t  was noted 
in [7] that in the given context the generating function 

00 

n - ~ ,  z -~-~ Tr(W(~))~=n-~ Tr(W~>-zI) -~, Imz~O,  
/ t ~ O  
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which is generated by the resolvent (W (n) - z/)-1 of the random matrix, is particularly conveneint. The use of this generating 
function made it possible to show that the semicircle law arises as the limit for the eigenvalue distribution of symmetric matrices 
with any elements (not necessarily equally distributed) that are independent for x < y and in addition to (1.2) satisfy the 
following condition: for any c > 0 

t im ----i Z l V 2 d P { V ( x ' y ) < V } = O "  (1.6) 
T t ~  n 2 

lxl, IvI<~ra [lZl>~e V~ 
Under this condition, Nn(X) in (1.3) converges to Nw(X) not only in the mean (as in (1.4)), but also in probability [4,5]. 

The condition (I .6) is the natural analog of Lindeberg's condition in probability theory, the necessary and sufficient 
condition for the validity of  the central limit theorem. In accordance with [5], the condition (1.6) is also necessary for 
convergence of the function (1.3) to (1.4)--(1.5) in probability. This enables us to conclude that the semicircle law (t .5) is as 
universal a limit form of the eigenvalue distribution of random symmetric matrices with independent (except for the symmetry 
condition) elements as the normal law is the universal limit of the distribution of sums of independent random variables. 

In this paper, we shall consider an ensemble of  random matrices more general than (1.1), (1.2), namely, those for which 
the elements have the form 

W~'~) (x, y)=b~'~' V (x, y)v( L~Y ). (1.7) 

Here, 0 < b n <_ n is the sequence of integers such that b n --, ~ and there exists the finite or infinite limit 

2 ~ =  lira n-~--/> 1, (1.8) 
n ~  b n  

with V(x, y) = V(y, x) a family of  equally distributed and independent, for x -< y, random variables satisfying (1.2). 
The function v(t), [ t [ < 2~, is a piecewise continuous even function of compact support for which 

In particular, if 

2v 

sup Iv(t)l<~Vo, ~ v~ ( t )d t= l .  
[ t l~2v  --2v 

(1.9) 

v (t)=)5, (t), (1. I0) 

where Xl(t) is the characteristic function of the interval [-1/2, 1/2], then the matrix elements (1.7) are nonvanishing only in a 
"band" of widths b n symmetric with respect to the principal diagonal. 

I f b  n does not depend on n (and is finite), then we have a finite-difference operator of order/3 + 1 = (b + 1)/2. Here, 
even in the case b = 1, i.e., in the case of operators of second order (Jacobi matrices), the calculation of the limit Nn(X), which 
is called the integrated density of  states, requires the solution of a certain integral equation, and this can be done only in a few 
cases (see, for example, [8] and the references given there). But i f b  n ~ oo as n ~ oo and the limit (1.8) is equal to infinity, 
then the number bnn of nonvanishing elements is infinitesimally small compared with the number n 2 of  nonvanishing elements 
of the Wigner matrices (1. I)--(1.2), although it does grow more rapidly than n, i.e., the number of nonvanishing elements of 
the Jacobi matrices. 

We now formulate the main result of the paper. 
TI-IEOREM 1. The normalized counting function NnO 9 in (l .3) for  the ensemble (1.7)--(1.9) for  every X converges in 

probability to a nonrandom limit integrated density o f  states N(X) that is an absolutely continuous function whose derivative (the 
density o f  states) is bounded. At  the same time 

a) i f  the number v in (1.8) is equal to infinity, then N(X) is identical with the semicircle law (1.5); 
b) i f  the number v in (1.8) is finite, then N(X) agrees with the semicircle law i f  and only i f  the function v2(t) in (1.7) is 

the restriction to the interval ( - 2 u ,  2~) o f  an even 2~-periodic function. 
Thus, if the width of the band of nonvanishing matrix elements (I .7) grows more slowly than the rank of the matrices the 

limit integrated density of  states is always the Wigner density. But if the number of  nonvanishing elements of these matrices 
has the same order as for Wigner matrices, then the semicircle law arises if and only if these matrices are cyclic, or, in terms 
of statistical physics, in the case when the boundary conditions are cyclic and not zero-value conditions. 

It is here appropriate to mention that in the recent [9] a numerical analysis of band matrices of  the form (1.7), (1.10) and 
certain heuristic arguments provided the basis for a very interesting conjecture, according to which the spectral properties of 
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such matrices and, in the first place, the property of  localization of  their states are determined by the parameter x = bn2/n (the 
numerical results demonstrate a clearly expressed localization when x < < 1 and almost complete absence when x > > 1). In 
the interpretation of  [9], this parameter is analogous to the localization length (reciprocal Lyapunov exponent) in the theory of  
localization (for a discussion of  this last, see, for example, [8]). 

In accordance with our (rigorous) results, this parameter does not play a special role in the formation of  the density of  
states of  the considered matrices. However, we are not inclined to regard our results as incompatible with the interesting 
conjecture made in [9], since, as is well known, the integrated density of  states has very little sensitivity to the localization 
properties of  the states of  random operators (especially when b > 1). 

In what follows, we shall need the Stieltjes transformflz),  Im z ~ 0, of  a nondecreasing function #()`), # ( - o ~ )  = 0, 
# ( + o , )  = 1; it is defined as 

] ( z ) = f  d~(~,) , I m z r  (1.11) 
A - - Z  

The functionflz) is obviously analytic for non_real z and satisfies the inequalities 

[ ] (z ) i~<!Imz]  -~, I m f ( z ) I m z > 0 ,  I m z ~ 0 .  (1.12) 

The second of  these inequalities defines the class of  functions called Nevanlinna functions. The function #(X) can be recovered 
fromflz)  by means o f  the Stieltjes--Perron inversion formula 

~q 

g ( ) ~ ) - ~ x ( ) , z ) = l l i m  ~ I m f ( 2 + i e ) d Z ,  (t .13) 
g ' [  e , 0  ~.~_ 

where X 1 and )'2 are points of  continuity of  #()'). 
We now formulate the main technical result, from which Theorem 1 can be readily reduced. 
T H E O R E M  2. Let rn(z ) be the Stieltjes transform of  the function (1.3). Then there exists a nonrandom Nevanlinna 

function r(z) such that for  all nonreal z 

At the same time: 
a) i f  in the relation (1.8) v = ~ ,  then 

where the parameter V is determined by (1.2); 
b) i f  in the relation (1.8) v < oo , then 

p -  l im [ r , ( z ) - r ( z ) i = O .  (1.14) 
n - - ~  oo 

V'-'r'-+rz + t =0 ,  (1.15) 

v 

r ( z ) =  9-~ r(t; z)dt,  (1.16) 

where the function r(t; Z), [ t [ < v, Im Z ~ O, is the unique solution o f  the equation 
v 

- - ,o  

that for  every t satisfies the inequagties (1.2). * 
We deduce Theorem 1 from Theorem 2. The existence of the limit integrated density of  states N(X) follows from (I ,  14) 

and a lemma in [7] that is, roughly speaking, a generalization of  Helly's well-known theorems to the case of  convergence in 
probability. 

To establish that in case a) o f  Theorem 1 we obtain the semicircle law, we note that the solution of  Eq. (1.15) in the class 
(1.12) has the form 

--z + y z2 -4  V z 
r,~ (z) :  , (1 .18)  

2V 2 

in which the branch of  the function having asymptotic behavior z as [ z I "-" oo is chosen. From this and from (1.13) we obtain 
(1.5). 

*A similar result is in the book [5]. 
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We now turn to the case of  finite v. Here, i f  the function v2(t) is 2v-periodic, then Eq. (1.7) also has a t-independent 
solution r(z), which is obviously identical to (1.18). This again leads to (1.5). 

Now suppose v2(t) does not possess this property. Then, as is readily seen, the function 

cannot be a constant on the interval ( - v ,  v). 
powers of  z have the form 

v "1 

z z ~ zS,  a~=-~-~v ~(t)dt ,  a2= u2(t)dt. 

Hence and from the Cauchy--Schwarz inequality we obtain the rigorous inequality 

a~Zaz-i<:2. 

On the other hand, for the semicircle law [for which u(t) =- const, I t [ _< v], a12a2 -1 = 2. 
case of  nonperiodic v2(t) the integrated density of  states cannot be the semicircle law. 

v 

z t ( t )~  ~ v~ ( t - t ' ) d t  ' 
m y  

It follows from this that the first three terms of  the expansion of  r(z) in inverse 

Therefore, in the considered 

In [4] (see also [5]) there was considered an ensemble of  random matrices more general than (1.1)--(1.2),  namely, of  the 
form 

ho ~ ~ + W  (~), (1.19) 

where the "unperturbed" matrix ho(n) is diagonal and its eigenvalues IX_m(n) , ..., Ixm(n) are such that the counting function 
analogous to (1.3), namely, 

N~ ~) (~)=n-' 2 i (I.20) 

converges in the limit n --, oo to some limit function No(), ) at every continuity point of  this function. Then if 

ro (z) = S dmo (;~) (I .21) 

is the Stieltjes transform of  this integrated density of  states of  the unperturbed operator hO(n) the Stieltjes transform r(z) of  the 
total operator (1.19) is the unique solution in the class (1.12) of  the functional equation 

r(z) ~ro (z+ V2r(z) ). (1.22) 

In the case r 0 = - z  -1 ,  corresponding to h0 (n) -- 0, this equation obviously reduces to (1.15). 
We now briefly describe the results that can be obtained for an ensemble of  the form 

ho(~)+W~ ('~, (I .23) 

which bears the same relation to (1.7) as the ensemble (1.19) does to (1. l) (the corresponding proofs will be given in a separate 
publication). These results can be obtained by a generalization of  the method used below to analyze the ensemble (1.7). 

We consider first the case when the function v(t) has the form (1.10) and b = n, i.e., the case when the perturbation is 
a matrix of  the form (1.1), (1.2). In this case, the result is given by the same formula (1.22), which in [4] was proved for 
diagonal ho (n). In the considered general case, in which ho (n) is, in general, nondiagonal, the requirement on ho (n) remains the 
same as in [4], i.e., one requires only the existence of the limit integrated density of  states. This requirement is satisfied, for 
example, when ho (n) is the restriction to the interval I x I , I Y I -< m of the matrix of  a metrically transitive operator that 
does not depend on W (n) (concerning such operators, see, for example, the review [10]). An important special case corresponds 
to Toeplitz h0(n). Thus, the deformed semicircle law is valid not only for diagonal ho (n) but also in the much more general case 
of  nondiagonal ho (n) possessing a limit integrated density of  states. 

Now suppose v(t) is an arbitrary function that satisfies the conditions (1.9) and b = o(n), i.e., in (1.8) v = oo. In this 
case, formula (1.22) can be established for diagonal ho (n) whose elements form an ergodic sequence that does not depend on 
WI(n) and, in the case of  Toeplitz h0(n), whose elements depend on the difference of  the indices. However,  formula (1.22) 
cannot be true for all ho (n) even if a restriction is made to diagonal matrices. Thus, if 
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where #(t), I t [  

where 

< %, is a piecewise continuous function, then the result has the form 

r ( z ) "  ~ rre(z--tx(t) )dt = ~ r~.(z-p.)No(d~x), 

is the unperturbed density of  states. 
form 

(i.24) 

No(~)=I {te[--'/2, '/21 " ~(t) <<-lx} [ 

From this and (1.13) it follows that the corresponding integrated density of  states has the 

N(~,) = f N~ (~,-~)dNo (li), (I .25) 

i.e., is the convolution of  the semicircle law and the unperturbed integrated density of  states. Such a formula is typical for 
random operators that, besides the "macroscopic" length scale n, contain a further length scale which is large compared with 
the "interatomic" distance but small compared with the macroscopic scale (see [8]). In our case, b plays the role of  this second 
scale, since our condition (1.7) for u = ~ can be understood as the mathematical expression of  the inequalities 

l<<b<<n. 

Similar but less simply formulated results can also be obtained in some other cases. 

2.  P R O O F  O F  T H E O R E M  2 F O R  G A U S S I A N  M A T R I C E S  

To make the proof  more transparent, we begin with matrices (1.7) whose elements are Gaussian random variables 
satisfying the conditions (1.2). We need the two following facts. 

1. I f  ~ is a Gaussian random variable, E{~} = 0, E{~ 2} = V 2, a n d r e )  is a boundedly differentiable function, then 

E {~] (~) } = E  {]' (~)}. 

2. If W is a symmetric real matrix of  rank n = 2m + 1 with elements W(x, y), I x ] , i Y 1 
- z ) - l (x ,  y) is the matrix of  its resolvent (Green's function), then 

OG(x,y) G(x, t)G(s, y) -G(z ,  s)G(t, y). (2,2) 
ow(t ,s )  

The relation (2.1) can be proved by integration by parts. The relation (2.2) follows from the resolvent identity 

( A + B - z ) - * =  (A-z)- ' - -  (A-z)  -IB(A+B-z)-*, (2.3) 

if in it we set A = W, B = 6W, and from the inequalities 

I ( A - z ) - '  (x, y) 1< it ( A - z )  -zl] < j im z i -1, (2.4) 

which hold for any symmetric matrix A. 
We now consider the following sequence of  moments of  the matrix elements Gn(X , y) of  the Green's  function G = (W (n): 

- z) -1 of  the matrices (1.7): 

E{G(x, ,  x, ) . . ,  a(xh, x~)}~g~(x . . . . . .  xk; z). (2.5) 

Suppose first k = 1. Then from the resolvent identity (2.3) for A = 0, B = W (n) we obtain 

g,(x,;z)=_z_t + t_ Z E{V(x, ,y)G(y, xl)}. 
!/b I,~ <,,~ 

Calculating the mathematical expectation in the second term on the right by means of  (2.2) and (i .7), we find that 

VZ Z v2( z ' - y  ~gz(y, xdz)+p,(x,;z) ,  (2.6) g, (z,, z ) = - z - '  --;gtyj<.~ \ b I 

(2.t) 

_< m, a n d G ( x , y )  = (W 
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where 

p,(x,; z )=- -2g  t ~, 

By means of  the Cauchy--Schwarz inequality (1.9) and (2.4) we can readily show that 

Io,(x~; z ) I <  (vv~ 
brl~ , 

where 

~ l = I I m z [ .  

Similarly, for k > 1, using in the first factor in (2.5) the resolvent identity, we obtain 

"E 
tu',~<ra 

where 

(2.7) 

(2.8) 

(2.9) 

(2.i0) 

19~(x~ . . . .  , xk ;z )  ] ~  ( V V ~  
brlh+~ - (2.11) 

We shall now regard the relations (2.6) and (2.7) as an infinite system of  integral equations for the moments (2.5). For 
this, we introduce the Banach space ~9, o f  sequences [ =  {f~ (x~ . . . . .  x~) }~--1, in which I xi ] <_ m, i = 1 . . . . .  k, and the norm 
is defined as 

[]][]= sup ~ k sup max  [h (x  . . . . . .  xk)[, 

where [ is a fixed number satisfying the inequality 

2 V < ~ < a V .  

By virtue of  the inequality (2.4), the sequences g in (2.5) and o in (2.8), (2.11) belong to !0= if 

J im z ] ~ l ~ > 3 V  , 

with 

(2.12) 

(2.13) 

(2.14) 

flplt~<@, (2.15) 

where c does not depend on n and b. 
We define in ~ the vector a={--z6h, '}~=1 and the operator A: 

 9 t K'~ z / x i - - y \  
(A/)~(~, . . . . .  ~ ) = - ~ I ~ - , ( ~  . . . . .  ~ ) - ~ Z . ~  ~ ~ - T - ) h + ~ ( y , ~ -  . . . . .  ~ ) ,  k>~.  (2.17) 

Z, ',yl~m 

Then the relations (2.6) and (2.10) can be written in the form of  the following linear equation in ~ :  

g = A g + a + 9 .  (2.18) 

It is easy to show that if IlY]l = I then 

[ (A/,) (z, Xh)[  

and therefore under the conditions (1.9), (2.13), and (2.14) and for sufficiently large b 

IiA 1[~<~< ~. (2.19) 

Hence and from the relations (2.18) and (2.11) we conclude that if r =  {r~ (xi . . . . .  zh; z)} e~=l s the unique solution belonging 
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to ~ ,  of  the equation 

then 

In particular, by virtue of  (2.12) 

r ("~=Ar (">+a, (2.20) 

c l 
[le-r~"' [l < l - - ~  -b-- (2,21) 

lira max I E {G (x~, x~)-r~ "' (x,, z) i =0 .  (2.22) 
n ~  I x I [ ~ m  

Thus, we have reduced the problem to the system (2.20). This infinite system of  linear equations can, in its tam,  be reduced 
by the factorizing ansatz 

k 

r~(z~ . . . . .  zk; z) = I I  r[~ (z,; z), 

to a single but nonlinear equation for rl(n): 

= .: x-Y)r(~(z)r~ (y), 
z zb ~ 0 ~ 

(2,23) 

o r  

rl'"' ( z ) = - ( z +  V-~-f Z v:(x-Y )/l'~l (y) ) -1 (2.24) 
JJ~'~m 

One can show that the nonlinear operator defined by the right-hand side of  the last equation will be contractive in the metric 
space of  sequences [(x,  z),  lz[<~m, z6C\~, which for every x are Nevaniinna functions with metric 

sup max I]1(x; z ) - f ~ ( x ; z ) t .  (2.25) 
! I n l  z i ~ 3 1 "  : x ~ m  

Therefore, the unique solution of  Eq. (2.24) in this space determines by means of  (2.23) a solution of  the system (2.20) that 
is unique by virtue of  (2.19). 

We now divide the interval ( - v ,  v) into intervals of  length 1/b. Then the sum in (2.24) can be interpreted as an integral 
sum. This gives the justification for introducing the "limit" (as n, b --, oo) equation 

v 

- v  

where the continuous variable ranges over the interval [ - v ,  v], and the function r(t; z) is piecewise continuous with respect to 
t E [ - v ,  p] for every nonreal z and is a Nevanlinna function with respect to z for each fixed t. 

Equation (2.26), like (2.24), can be uniquely solved in the space with metric 

sup sup I f~ (t; z ) - ] 2  (t; z) [. (2.27) 
IIm zL~,~3~r " Iq~--~--v 

It follows from this and from our conditions on the function v(t) in (1.7) that the difference of  the solutions of  these equations 
satisfies the limit relation 

l im sup sup sup [ r (t; z) - -  r~ ~) (x; z) I 0. (2.28) 
n ~  I l m  zt>~3V [x!~*n x _< _ < x + l  

-6" ~ t ~  - 7  
By virtue of  this relation and (2.22), 

v 

n--~-r l ira z I ~ 3 V  n [xl~ra 

where in the case J, = oo the integral is to be understood as 

(2.29) 
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T 

lira (2T) -~ ~ . . .  dt. 
~ T  

Up to now, our results have applied to the cases of  both finite and infinite ~, in (1.8). Now suppose I, = co. Then the 
solution of Eq. (2.26) does not depend on t and by virtue of (1.15) is identical to (1.18). In addition, by virtue of the spectral 
theorem 

r = = - -  G(x, x) (2.30) 
n ! x l ~ m  

is identical to the Stiel~es transform of the function (1.3). Therefore, in the considered case the relation (2.29) is transformed 
into 

lim sup IE{r~(z)}-r~(z)l=O. (2.31) 
r ~  j im  z l ~ 3 V  

We have proved a weakened form of Theorem la, in which convergence in probability is replaced by convergence of mean 
values. 

We now show that there also holds the stronger relation 

lira sup E{ir~(z)-r(z)[~}=O, 
n ~  IIrn z [ ~ 3 g  

from which (1.14) obviously follows. 
For this, we consider for all k, l > 1 the sequence of moments 

g~, ~=(x,, . . .  ,x~, y,, . . . ,  y~)= E(G(x,, x , ) . . .  G(~, z~)G (y~, y~)...  G(y~, y~)}. 

Arguing essentially as in the derivation of the system (2.6), (2.10), we find that 

(2.32) 

(2.33) 

g~,~(x,, y , )=- - -~g~_~ ,~ - - -~ ,  v 2 gk+,.z(g, xi . . . . .  yz)+p~ ~, (2.34) 
 9 . . ~ z,  b l y l < ~ m  ' 

where g0. 0 = -  l/z, g~. 0=~ ,  go, z-=gz and (cf. (2.11)) 

2VoZ(k+l) I p~,~ I< (2.35) 
3rl~+z+~ 

Therefore, regarding again the relations (2.34) as a system of equations in an appropriate Banach space, we find as in the case 
of (2.21) that its solution differs by an amount of order O(1/b) from the solution of the equation of the same form as (2.34) but 
without PLt on the right-hand side. Like (2.23), this last equation has the factorizing solution 

r~,z (x, . . . .  , y,) = r ,  (z~) . . .  r, (x~)r, ( g , ) . . .  r, (yz), 

where, as before, rl(x; z) satisfies (2.24). Therefore, in particular (cf. (2.22)) 

sup max IEtG(x,x)G(g,y)}--E{G(x,x)}EIG(g,g)}I=O(t-r (2.36) 
l i ra  z l ~ 3 V  [ x [ , l y l ~ r a  

It follows from this that for (2.30) 

sup E{ l r , -E{r , } [ z }=o(~- ) .  (2.37) 
I I m  zl~3-r  - 

In order to obtain (2.32), it is now merely necessary to take into account the relation (2.28) which enables us to replace E{rn} 
in (2.37) by 

Theorem 2 is proved for Gaussian matrices. 
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3. PROOF OF THEOREM 2 UNDER T H E  C O N D I T I O N  OF 
F I N I T E  V A R I A N C E  O F  T H E  M A T R I X  E L E M E N T S  

Now suppose the random variables V(x, y) in (2.7) are arbitrary independent (for x _< y) symmetric, V(x, y) = V(y, x), 
and equally distributed quantities that satisfy the conditions (1.2). 

We assume at first that in addition V(x, y) are bounded, i.e., 

IV(x,  y)I~<C<oo. (3.1) 

We show that in this case we again obtain the system of equations (2.6), (2.10) with remainder term t)k that has the order 
O(b-l /2) .  It is easy to show that all the subsequent arguments in Sec. 2 used only this system. 

We shall proceed from the following relation, which is obtained from the resolvent identity (2.3) by regarding the fixed 
element V(x, y) in it as a perturbation: 

G(t, s ) = G  (t, s)--~-~ (GV~'JG) (t, s), (3,2) 

where G=Glv (~  ~)=0 .. . . . . .  and WY is a matrix for which only V(x, y) and V(y, x) = V(x, y) are nonvanishing elements. We 
again consider the system of  moments (2.5) and, as in the derivation of (2.10), replace G(xl, Xl) by means o f  the identity 

G ( x , , x i ) = _ t  + I_ Z V(x, ,y)G(y,z~) ,  (3.3) 
" zT'b , : ~  

y m 

so that 

where G i = G(x i, xi). 
X 1 . 

t g~(x~ . . . . .  X k ) = - - - -  gk-~ (Xz . . . .  , Xh)-I- ~ E {V ( z ,  y)G (y, x~) Gz . . . Gk} , (3.4) 
z zl/b 

In the second term here on the right, we replace G 2 by its expression from (3.2) for ~ = s = X2~ X = 
Then this term takes the form 

z b  u 

V(y, xl) [ cT(x~, y)V (x~, x2)+5(z2, z,)G (y, x2) ] c~. . .  v~}. (3,5) 
Using the same arguments as in the derivation of  (2.8), we can show that the second member in the second term does not exceed 

E{[  (GG*) (xi, xz)]':~[ (GG*)(x2, x2)l :"~} ~< b.q;T;. (3.6) b~l~ t l Z - - J I / y  

To estimate the first member,  we use (3.2) and express G(x 2, y) in terms of  G(x2, y) and 

- 

Yb 

The first o f  the obtained terms can be estimated by means of  inequalities analogous to (3.6), and, as is readily seen, the other 
two are bounded by 

t K "~ d 1 c 3 
-- + ~ __ , 

b~b , rt k+3 gb rl ~+~ 

Therefore, the replacement in the second term in (3.4) of  G(x 2, x 2) by G(x 2, x2), which does not contain V(x, y), leads to an 
error 2c2(~b'q k+2) -1 .  Similarly, replacement in the obtained expression of  G 3 by G 3 gives the same error. Therefore, making 
such a substitution for  all G 2, G 3 . . . . .  G k in (3.4), we find that the second term in (3.3) can be written in the form 

I Z E { V ( x ~ , y ) G ( y , x ~ ) ~ 2  . . . ~ } + 9 ~ ,  (xi . . . . .  x~), (3.7) 
zf-b'  

where 

]9~ ~' t ~  2 d ( k - - t )  (3.8) 
b't] h+z 
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We now integrate the relation (3.1) once and set t = y, s = Xl: 

G(g, & ) = ~ ( y ,  x , ) -V(x ,  y)[G(y, V)~(x~, x,)+ 6~(y, zJ]+(GV=~V~YG) (y, x,).  (3.9) 

We substitute this expression for G(y, Xl) in (3.7). Then because E{V(x, y)} = 0 and the remaining factors in the first term 
in (3.7) do not depend on V(x, y), the first term on the right in (3.9) does not contribute to (3.7), the second makes the 
contribution 

t z x - - y  ^ 

h/l~ra 

while the remaining two are small in the limit b --, ~ .  
show that these terms, which we denote by pk (3) a n d  pk (2), admit the estimates 

2c 3c = 
Ip~ =' I ~  < -  IpF' I ~  < ~  

We introduce the notation 

More precisely, arguments like those that led to (2.8), (2. I I), and (3.8) 

g ~ ( , , . . , ,  z J = E { ~ ( x ,  z,) . . .  C(x~, z~)}. 

Then the obtained result can be written in the form 

t s v2 [ :c~--y ~: g~(z, . . . . .  zJ=-z- 'g~_,(x~ . . . .  , z J - - ~  \ - - E  l ~ + , ( v , z , . . . , z , )+ p~ ( z , , . . . , zA ,  
lyl~:va 

where 

pk=p~(~+ph(Z~+pk (a), 

and by virtue o f  (3.8) and (3.10) 

(3.1o) 

(3.11) 

(3.12) 

c~k 
[p~ [~  < -= , (3.13) 

"g brl~+z 

where c 1 does not depend on b and is finite for c < oo (in reality, c I depends quadratically on c). 
The relation (3.12) differs from (2.10) in that, first, the second term on the fight contains gk+l and not gk+l and, second, 

the remainder Pk has in accordance with (3.13) the order O(b-]/2), and not O(b - l )  as in (2.11). 
With regard to the first difference, the transition from gk+l back to gk+I can be made by means o f  the same identity (3.2), 

in which G and G are interchanged, and by means of  the arguments that lead to (3.12) and (3.13). As a result, we have 
obtained a relation that differs from (3.12) by the replacement o f~k+i  on the fight by gk+l. The resulting error has the same 
estimate as (3.13), i.e., it only changes the constant c 1 . 

Thus, we have arrived at equations of  the form (2.6) and (2.10) for arbitrary bounded V(x, y) that differ from these last 
obtained for Gaussian V(x, y) only in that the term Pk now has the order O(b-V2). However, it is easy to show that the final 
result expressed by Theorem 2 relies only on the fact that 1[ P 1[ ~ 0 for n, b --" oo and is therefore also valid in the case 
considered now of  V(x, y) satisfying (3.1). Of  course, the difference affects the rate o f  convergence o f  the corresponding 
quantities (r t to r, Nn(X ) to N(X)), which we intend to discuss in detail in a following paper. 

We now consider arbitrary independent (for x <__ y) and symmetric random variables V(x, y) = V(y, x). We introduce 
the truncated quantities 

and set 

I v(x ,  v) t <-c, 
[ v(~, v) I >c, 

V~ v(z ,y ) ,  

< = ( w : ' - z ) - , ,  G= (w(=,-z)-,. (314) 

Then if rn, c = n-1  Sp G c is the Stieltjes transform (2.30) of  the function (1.3) for Wc (n), then in accordance with the above in 
this and the previous sections for v = ~ ,  fixed c, and I I m  z ] ~ 3V 

tim E { t r,,,o (z)- r~ (z) t ~} =0,  (3.15) 
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where the function rc(Z ) is the unique solution of the equation 

r,(z)=--(z-bV,2r~(z)) -', V.Z= ~ VZdF(V) 
I V l ~ e  

and F(V) is the distribution function of the random variables V(x, y). It is clear that 

(3.16) 

where V 2 is defined in (1.2). 

and it is readily shown that 

lira VoZ= W, 

The "limit", as c ~ ~ ,  form of Eq. (3.16) has the form 

r(z)=-(z+v2r(z)) -', (3.17) 

lira sup ]r(z)-ro(z)[=O. (3.18) 
e~r tim zl~$V 

In addition, on the basis of  the resolvent identity (2.3), in which A + B = Vdn), B = Uc (n), 

t ( t  E IU: '~)(z,y)l  2)'/~ [ 1 1  I - = . n - ' S p G - n - ' S p G , . = . n - ~ S p G U ,  G,.<~ n+ ~ , 

from which we find on the basis of (2.4) and (3.14) that 

 9 const [ ']: 
E{Ir.(z)--r..o(z) I j < -  ~1" ~ ~ V2dF(V)) ' (3.!9) 

Ivl:>e 

where constant is an absolute constant. 
Therefore, if r(z) is the solution (1.18) of Eq. (3.17) (or (3.15)), then 

E{ tr-r i} < lr-rol +E {Ir=-r. ol+lr.o-r.l). 
Hence, taking into account (3.15), (3.18), (3.19), and (2.4), we obtain the relation (1.14) for arbitrary matrices. 

In conclusion, we thank F. M. Izrailev; it was in discussion with him that the problem considered in this paper was 
formulated. S. A. Molchanov and L. A. Pastur are grateful to Professor R. Karmon and Professor A. Klein for the invitation 
to visit the University of California (Irvine), where this paper was completed and written. 
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