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1. WHAT IS STATISTICS AND WHAT IS PROBABILITY?

Sometimes statistics is described as the art or science of decision making in the face of uncertainty.
Here are some examples to illustrate what it means.

Example 1. A psychic claims to have divine visions unavailable to most of us. You are assigned
the task of testing her claims. You take a standard deck of cards, shuffle it well and keep it face
down on the table. The psychic writes down the list of cards in some order - whatever her vision
tells her about how the deck is ordered. Then you count the number of correct guesses. If the
number is 1 or 2, perhaps you can dismiss her claims. If it is 45, perhaps you ought to be take her
seriously. Again, where to draw the line?

The logic is this. Roughly one may say that surprise is just the name for our reaction to an event
that we á priori thought to have low chance of occurring. Thus, we approach the experiment with
the belief that the psychic is just guessing at random, and if the results are such that under that
random-guess-hypothesis they have very small probability, then we are willing to be surprised,
that is willing to discard our preconception and accept that she is a psychic.

How low a probability is surprising? In the context of psychics, let us say, 1/10000. Once we fix
that, we must find a number m ≤ 52 such that by pure guessing, the probability to get more than
m correct guesses is less that 1/10000. Then we tell the psychic that if she gets more thanm correct
guesses, we accept her claim, and otherwise, reject her claim. This raises the simple (and you can
do it yourself)

Question 2. For a deck of 52 cards, find the number m such that

P(by random guessing we get more than m correct guesses) <
1

10000
.

In actual testing claims of psychics, the deck of cards used is not the standard deck of playing
card, but what are called “Zener cards”, shown below in the figure. Professor Trelawney guessed
8 cards correctly. Are you impressed? If not, what would it take to impress you enough to become
her disciple?

FIGURE 1. Zener cards: A deck of 25 card consisting of 5 cards each of the 5 differ-
ent types shown here. The experiment consists in guessing the type of each card in
a shuffled deck.
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Example 3. Recall the apocryphal story of two women who go to King Solomon with a child, each
claiming that it is her own daughter. The solution according to the story uses human psychology
and is not relevant to recall here. But is this a reasonable question that the king can decide?

Daughters resemble mothers to varying degrees, and one cannot be absolutely sure of guessing
correctly. On the other hand, by comparing various features of the child with those of the two
women, there is certainly a decent chance to guess correctly.

If we could always get the right answer, or if we could never get it right, the question would not
have been interesting. However, here we have uncertainty, but there is a decent chance of getting
the right answer. That makes it interesting - for example, we can have a debate between eyeists
and nosists as to whether it is better to compare the eyes or the noses in arriving at a decision.

?−→ ?←−

?−→ ?←−

?−→ ?←−

FIGURE 2. Three cases for King Solomon. In each case, guess which of the two
extreme pictures is the mother of the middle one. Some cases are easier than the
others. If it is trivially easy or impossibly hard, there is no uncertainty involved.

Example 4. The IISc cricket team meets the Basavanagudi cricket club for a match. Unfortunately,
the Basavanagudi team forgot to bring a coin to toss. The IISc captain helpfully offers his coin, but
can he be trusted? What if he spent the previous night doctoring the coin so that it falls on one
side with probability 3/4 (or some other number)?

Instead of cricket, they could spend their time on the more interesting question of checking if
the coin is fair or biased. Here is one way. If the coin is fair, in a large number of tosses, common
sense suggests that we should get about equal number of heads and tails. So they toss the coin
100 times. If the number of heads is exactly 50, perhaps they will agree that it is fair. If the number
of heads is 90, perhaps they will agree that it is biased. What if the number of heads is 60? Or 35?
Where and on what basis to draw the line between fair and biased? Again we are faced with the
question of making decision in the face of uncertainty.
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Summary: There are many situations in real life where one is required to make decisions under
uncertainty. A general template for the answer could be to fix a small number that we allow
as the probability of error, and deduce thresholds based on it. This brings us to the question of
computing probabilities in various situations.

Probability: Probability theory is a branch of pure mathematics, and forms the theoretical basis
of statistics. In itself, probability theory has some basic objects and their relations (like real num-
bers, addition etc for analysis) and it makes no pretense of saying anything about the real world.
Axioms are given and theorems are then deduced about these objects, just as in any other part of
mathematics.

But a very important aspect of probability is that it is applicable. In other words, there are many
real-world situations in which it is reasonable to take a model in probability and it turns out to
reasonably replicate features of the real-world situation.

In the example above, to compute the probability one must make the assumption that the deck
of cards was completely shuffled. In other words, all possible 52! orders of the 52 cards are
assumed to be equally likely. Whether this assumption is reasonable or not depends on how well
the card was shuffled, whether the psychic was able to get a peek at the cards, whether some
insider is informing the psychic of the cards etc. All these are non-mathematical questions, and
must be decided on other basis.

However...: Probability and statistics are very relevant in many situations that do not involve any
uncertainty on the face of it. Here are some examples.

Example 5. Compression of data. Large files in a computer can be compressed to a .zip format
and uncompressed when necessary. How is it possible to compress data like this? To give a very
simple analogy, consider a long English word like invertebrate. If we take a novel and replace every
occurrence of this word with “zqz”, then it is certainly possible to recover the original novel (since
“zqz” does not occur anywhere else). But the reduction in size by replacing the 12-letter word
by the 3-letter word is not much, since the word invertebrate does not occur often. Instead, if we
replace the 4-letter word “then” by “zqz”, then the total reduction obtained may be much higher,
as the word “then” occurs quite often.

This suggests the following optimal way to represent words in English. The 26 most frequent
words will be represented by single letters. The next 26 × 26 most frequent words will be repre-
sented by two letter words, the next 26 × 26 × 26 most frequent words by three-letter words, etc.
Assuming there are no errors in transcription, this is a good way to reduce the size of any text
document! Now, this involves knowing what the frequencies of occurrences of various words in
actual texts are. Such statistics of usage of words are therefore clearly relevant (and they could be
different for biology textbooks as compared to 19th century novels).
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Example 6. Search algorithms such as Google, use many randomized procedures. This cannot
be explained right now, but let us give a simple reason to say why introducing randomness is a
good idea in many situations. In the game of rock-paper-scissors, two people simultaneously shout
one of the three words, rock, paper or scissors. The rule is that scissors beats paper, paper beats
rock and rock beats scissors (if they both call the same word, they must repeat). In a game like
this, although there is complete symmetry in the three items, it would be silly to have a fixed
strategy. In other words, if you decide to always say rock, thinking that it doesn’t matter which
you choose, then your opponent can use that knowledge to always choose paper and thus win!
In many games where the opponent gets to know your strategy (but not your move), the best
strategy would involve randomly choosing your move.

2. DISCRETE PROBABILITY SPACES

Definition 7. Let Ω be a finite or countable1 set. Let p : Ω → [0, 1] be a function such that∑
ω∈Ω pω = 1. Then (Ω, p) is called a discrete probability space. Ω is called the sample space and

pω are called elementary probabilities.

• Any subset A ⊆ Ω is called an event. For an event A we define its probability as P(A) =∑
ω∈A pω.

• Any function X : Ω → R is called a random variable. For a random variable we define its
expected value or mean as E[X] =

∑
ω∈ΩX(ω)pω.

All of probability in one line: Take an (interesting) probability space (Ω, p) and an (interesting)

event A ⊆ Ω. Find P(A).

This is the mathematical side of the picture. It is easy to make up any number of probability
spaces - simply take a finite set and assign non-negative numbers to each element of the set so that
the total is 1.

Example 8. Ω = {0, 1} and p0 = p1 = 1
2 . There are only four events here, ∅, {0}, {1} and {0, 1}.

Their probabilities are, 0, 1/2, 1/2 and 1, respectively.

Example 9. Ω = {0, 1}. Fix a number 0 ≤ p ≤ 1 and let p1 = p and p0 = 1− p. The sample space is
the same as before, but the probability space is different for each value of p. Again there are only
four events, and their probabilities are P{∅} = 0, P{0} = 1− p, P{1} = p and P{0, 1} = 1.

Example 10. Fix a positive integer n. Let

Ω = {0, 1}n = {ω : ω = (ω1, . . . , ωn) with ωi = 0 or 1 for each i ≤ n}.

Let pω = 2−n for each ω ∈ Ω. Since Ω has 2n elements, it follows that this is a valid assignment of

elementary probabilities.

1For those unfamiliar with countable sets, it will be explained in some detail later.
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There are 2#Ω = 22n events. One example is Ak = {ω : ω ∈ Ω and ω1 + . . .+ ωn = k}where k is
some fixed integer. In words, Ak consists of those n-tuples of zeros and ones that have a total of k

many ones. Since there are
(
n
k

)
ways to choose where to place these ones, we see that #Ak =

(
n
k

)
.

Consequently,

P{Ak} =
∑
ω∈Ak

pω =
#Ak
2n

=


(
n
k

)
2−n if 0 ≤ k ≤ n,

0 otherwise.

It will be convenient to adopt the notation that
(
a
b

)
= 0 if a, b are positive integers and if b > a or

if b < 0. Then we can simply write P{Ak} =
(
n
k

)
2−n without having to split the values of k into

cases.

Example 11. Fix two positive integers r and m. Let

Ω = {ω : ω = (ω1, . . . , ωr) with 1 ≤ ωi ≤ m for each i ≤ r}.

The cardinality of Ω is mr (since each co-ordinate ωi can take one of m values). Hence, if we set

pω = m−r for each ω ∈ Ω, we get a valid probability space.

Of course, there are 2m
r

many events, which is quite large even for small numbers like m = 3

and r = 4. Some interesting events are A = {ω : ωr = 1}, B = {ω : ωi 6= 1 for all i}, C =

{ω : ωi 6= ωj if i 6= j}. The reason why these are interesting will be explained later. Because of

equal elementary probabilities, the probability of an event S is just #S/mr.

• Counting A: We have m choices for each of ω1, . . . , ωr−1. There is only one choice for ωr.

Hence #A = mr−1. Thus, P(A) = mr−1

mr = 1
m .

• CountingB: We havem−1 choices for each ωi (since ωi cannot be 1). Hence #B = (m−1)r

and thus P(B) = (m−1)r

mr = (1− 1
m)r.

• Counting C: We must choose a distinct value for each ω1, . . . , ωr. This is impossible if
m < r. If m ≥ r, then ω1 can be chosen as any of m values. After ω1 is chosen, there are
(m− 1) possible values for ω2, and then (m− 2) values for ω3 etc., all the way till ωr which
has (m− r + 1) choices. Thus, #C = m(m− 1) . . . (m− r + 1). Note that we get the same
answer if we choose ωi in a different order (it would be strange if we did not!).

Thus, P(C) = m(m−1)...(m−r+1)
mr . Note that this formula is also valid for m < r since one

of the factors on the right side is zero.

2.1. Probability in the real world. In real life, there are often situations where there are several
possible outcomes but which one will occur is unpredictable in some way. For example, when we
toss a coin, we may get heads or tails. In such cases we use words such as probability or chance,
event or happening, randomness etc. What is the relationship between the intuitive and mathematical
meanings of words such as probability or chance?
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In a given physical situation, we choose one out of all possible probability spaces that we think
captures best the chance happenings in the situation. The chosen probability space is then called a
model or a probability model for the given situation. Once the model has been chosen, calculation of
probabilities of events therein is a mathematical problem. Whether the model really captures the
given situation, or whether the model is inadequate and over-simplified is a non-mathematical
question. Nevertheless that is an important question, and can be answered by observing the real

life situation and comparing the outcomes with predictions made using the model2.
Now we describe several “random experiments” (a non-mathematical term to indicate a “real-

life” phenomenon that is supposed to involve chance happenings) in which the previously given
examples of probability spaces arise. Describing the probability space is the first step in any prob-
ability problem.

Example 12. Physical situation: Toss a coin. Randomness enters because we believe that the coin
may turn up head or tail and that it is inherently unpredictable.

The corresponding probability model: Since there are two outcomes, the sample space Ω = {0, 1}
(where we use 1 for heads and 2 for tails) is a clear choice. What about elementary probabilities?

Under the equal chance hypothesis, we may take p0 = p1 = 1
2 . Then we have a probability model

for the coin toss.
If the coin was not fair, we would change the model by keeping Ω = {0, 1} as before but letting

p1 = p and p0 = 1− p where the parameter p ∈ [0, 1] is fixed.
Which model is correct? If the coin looks symmetrical, then the two sides are equally likely to

turn up, so the first model where p1 = p0 = 1
2 is reasonable. However, if the coin looks irregular,

then theoretical considerations are usually inadequate to arrive at the value of p. Experimenting
with the coin (by tossing it a large number of times) is the only way.

There is always an approximation in going from the real-world to a mathematical model. For
example, the model above ignores the possibility that the coin can land on its side. If the coin is
very thick, then it might be closer to a cylinder which can land in three ways and then we would
have to modify the model...

Thus we see that example 9 is a good model for a physical coin toss. What physical situations
are captured by the probability spaces in example 10 and example 11?

2Roughly speaking we may divide the course into two parts according to these two issues. In the probability part

of the course, we shall take many such models for granted and learn how to calculate or approximately calculate

probabilities. In the statistics part of the course we shall see some methods by which we can arrive at such models, or

test the validity of a proposed model.
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Example 10: This probability space can be a model for tossing n fair coins. It is clear in what sense,
so we omit details for you to fill in.

The same probability space can also be a model for the tossing of the same coin n times in
succession. In this, we are implicitly assuming that the coin forgets the outcomes on the previous
tosses. While that may seem obvious, it would be violated if our “coin” was a hollow lens filled
with a semi-solid material like glue (then, depending on which way the coin fell on the first toss,
the glue would settle more on the lower side and consequently the coin would be more likely to
fall the same way again). This is a coin with memory!

Example 11: There are several situations that can be captured by this probability space. We list
some.

• There are r labelled balls and m labelled bins. One by one, we put the balls into bins “at

random”. Then, by letting ωi be the bin-number into which the ith ball goes, we can capture
the full configuration by the vector ω = (ω1, . . . , ωn). If each ball is placed completely at

random then the probabilities are m−r for each configuration ω.
In that example, A is the event that the last ball ends up in the first bin, B is the event

that the first bin is empty and C is the event that no bin contains more than one ball.

• Ifm = 6, then this may also be the model for throwing a fair die r times. Then ωi is the out-

come on the ith throw. Of course, it also models throwing r different (and distinguishable)
fair dice.

• If m = 2 and r = n, this is same as Example 10, and thus models the tossing of n fair coins
(or a fair coin n times).

• Let m = 365. Omitting the possibility of leap years, this is a model for choosing r people
at random and noting their birthdays (which can be in any of 365 “bins”). If we assume
that all days are equally likely as a birthday (is this really true?), then the same probability
space is a model for this physical situation. In this example, C is the event that no two
people have the same birthday.

The next example is more involved and interesting.

Example 13. Real-life situation: Imagine a man-woman pair. Their first child is random, for
example, the sex of the child, or the height to which the child will ultimately grow, etc cannot be
predicted with certainty. How to make a probability model that captures the situation?

A possible probability model: Let there be n genes in each human, and each of the genes can take
two possible values (Mendel’s “factors”), which we denote as 0 or 1. Then, let Ω = {0, 1}n = {x =

(x1, . . . , xn) : xi = 0 or 1}. In this sense, each human being can be encoded as a vector in {0, 1}n.
11



To assign probabilities, one must know the parents. Let the two parents have gene sequences
a = (a1, . . . , an) and b = (b1, . . . , bn). Then the possible offsprings gene sequences are in the set
Ω0 := {x ∈ {0, 1}n : xi = ai or bi, for each i ≤ n}. Let L := #{i : ai 6= bi}.

One possible assignment of probabilities is that each of these offsprings is equally likely. In that
case we can capture the situation in the following probability models.

(1) Let Ω0 be the sample space and let px = 2−L for each x ∈ Ω0.

(2) Let Ω be the sample space and let

px =

2−L if x ∈ Ω0

0 if x 6∈ Ω0.

The second one has the advantage that if we change the parent pair, we don’t have to change the
sample space, only the elementary probabilities. What are some interesting events? Hypotheti-
cally, the susceptibility to a disease X could be determined by the first ten genes, say the person is
likely to get the disease if there are at-most four 1s among the first ten. This would correspond to
the event that A = {x ∈ Ω0 : x0 + . . . + x10 ≤ 4}. (Caution: As far as I know, reading the genetic
sequence to infer about the phenotype is still an impractical task in general).

Reasonable model? There are many simplifications involved here. Firstly, genes are somewhat
ill-defined concepts, better defined are nucleotides in the DNA (and even then there are two copies
of each gene). Secondly, there are many “errors” in real DNA, even the total number of genes can
change, there can be big chunks missing, a whole extra chromosome etc. Thirdly, the assumption
that all possible gene-sequences in Ω0 are equally likely is incorrect - if two genes are physically
close to each other in a chromosome, then they are likely to both come from the father or both
from the mother. Lastly, if our interest originally was to guess the eventual height of the child or
its intelligence, then it is not clear that these are determined by the genes alone (environmental
factors such as availability of food etc. also matter). Finally, in case of the problem that Solomon
faced, the information about genes of the parents was not available, the model as written would
be use.

Remark 14. We have discussed at length the reasonability of the model in this example to indicate
the enormous effort needed to find a sufficiently accurate but also reasonably simple probability
model for a real-world situation. Henceforth, we shall omit such caveats and simply switch back-
and-forth between a real-world situation and a reasonable-looking probability model as if there
is no difference between the two. However, thinking about the appropriateness of the chosen
models is much encouraged.
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3. EXAMPLES OF DISCRETE PROBABILITY SPACES

Example 15. Toss n coins. We saw this before, but assumed that the coins are fair. Now we do
not. The sample space is

Ω = {0, 1}n = {ω = (ω1, . . . , ωn) : ωi = 0 or 1 for each i ≤ n}.

Further we assign pω = α
(1)
ω1 . . . α

(n)
ωn . Here α(j)

0 and α
(j)
1 are supposed to indicate the probabilities

that the jth coin falls tails up or heads up, respectively. Why did we take the product of α(j)
· s and

not some other combination? This is a non-mathematical question about what model is suited
for the given real-life example. For now, the only justification is that empirically the above model
seems to capture the real life situation accurately.

In particular, if the n coins are identical, we may write p = α
(j)
1 (for any j) and the elementary

probabilities become pω = p
∑
i ωiqn−

∑
i ωi where q = 1− p.

Fix 0 ≤ k ≤ n and let Bk = {ω :
∑n

i=1 ωi = k} be the event that we see exactly k heads out

of n tosses. Then P(Bk) =
(
n
k

)
pkqn−k. If Ak is the event that there are at least k heads, then

P(Ak) =
n∑̀
=k

(
n
`

)
p`qn−`.

Example 16. Toss a coin n times. Again

Ω = {0, 1}n = {ω = (ω1, . . . , ωn) : ωi = 0 or 1 for each i ≤ n},

pω = p
∑
i ωiqn−

∑
i ωi .

This is the same probability space that we got for the tossing of n identical looking coins. Implicit
is the assumption that once a coin is tossed, for the next toss it is as good as a different coin but with
the same p. It is possible to imagine a world where coins retain the memory of what happened
before (or as explained before, we can make a “coin” that remembers previous tosses!), in which
case this would not be a good model for the given situation. We don’t believe that this is the case
for coins in our world, and this can be verified empirically.

Example 17. Shuffle a deck of 52 cards. Ω = S52, the set of all permutations3 of [52] and pπ = 1
52!

for each π ∈ S52. More generally, we can make a model for a deck of n cards, in which case the
sample space is Sn and elementary probabilities are 1/n! for each n.

3We use the notation [n] to denote the set {1, 2, . . . , n}. A permutation of [n] is a vector (i1, i2, . . . , in) where i1, . . . , in
are distinct elements of [n], in other words, they are 1, 2, . . . , n but in some order. Mathematically, we may define a

permutation as a bijection π : [n]→ [n]. Indeed, for a bijection π, the numbers π(1), . . . , π(n) are just 1, 2, . . . , n in some

order.
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As an illustration, when n = 3, the sample space is

S3 = {(1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1)}

where (2, 3, 1) denotes the deck where the top card is 2, the next one is 3 and the bottom card is 1.
The elementary probabilities are all 1/6 in this case.

Example 18. “Psychic” guesses a deck of cards. The sample space is Ω = S52 × S52 and p(π,σ) =

1/(52!)2 for each pair (π, σ) of permutations. In a pair (π, σ), the permutation π denotes the actual
order of cards in the shuffled deck, and σ denotes the order guessed by the psychic. If the guesses
are purely random, then the probabilities are as we have written.

An interesting random variable is the number of correct guesses. This is the functionX : Ω→ R

defined by X(π, σ) =
∑52

i=1 1πi=σi . Correspondingly we have the events Ak = {(π, σ) : X(π, σ) ≥
k}.

Example 19. Toss a coin till a head turns up. Ω = {1, 01, 001, 0001, . . .} ∪ {0̄}. Let us write

0k1 = 0 . . . 01 as a short form for k zeros (tails) followed by 1 and 0̄ stands for the sequence of all

tails. Let p ∈ [0, 1]. Then, we set p0k1 = qkp for each k ∈ N. We also set p0̄ = 0 if p > 0 and p0̄ = 1 if
p = 0. This is forced on us by the requirement that elementary probabilities add to 1.

Let A = {0k1 : k ≥ n} be the event that at least n tails fall before a head turns up. Then

P(A) = qnp+ qn+1p+ . . . = qn.

Example 20. Place r distinguishable balls in m distinguishable urns at random. We saw this
before (the words “labelled” and “distinguishable” mean the same thing here). The sample space

is Ω = [m]r = {ω = (ω1, . . . , ωr) : 1 ≤ ωi ≤ m} and pω = m−r for every ω ∈ Ω. Here ωi indicates

the urn number into which the ith ball goes.

Example 21. Birthday “paradox” There are n people at a party. What is the chance that two of
them have the same birthday?

This can be thought of as a balls in bin problem, where the bins are labelled 1, 2, . . . , 365 (days
of the year), and the balls are labelled 1, 2, . . . , n (people). The sample space can be copied from
the previous example with r = n and m = 365. In doing this, we have omitted the possibility of
February 29th, which simplifies our life a little bit. What are the elementary probabilities? Let us

assume that all sample points have equal probability4.

4This assumption is not entirely realistic, for example, Figure 3 shows actual data from a specific geographic location

over a specific period of time. Seasonal variation is apparent! In addition there are complications such as the possibility

of a pair of twins attending the party.
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FIGURE 3. Frequencies of birthdays in the United States of America from 1969 to
1988. Data taken from Andrew Gelman.

The event of interest is that there is at least one bin that has at least two balls. In other words,

A = {ω = (ω1, . . . , ωn) : ωi = ωj for some i < j}.

In this case, it is easier to calculate the probability of

Ac = {ω = (ω1, . . . , ωn) : ωi 6= ωj for all i < j}.

Indeed, the cardinality of Ac is m(m−1) . . . (n−m+ 1) (each person has to be assigned a different
birthday), whence

P(A) = 1− m(m− 1) . . . (m− n+ 1)

mr
.

If n > m, the probability is obviously zero. The reason this is called a “paradox” is that even for n
much smaller than m, the probability becomes significantly large. For example, for m = 365, here
are the probabilities for a few values of n:

n 5 15 25 35 45

P(A) 0.027 0.253 0.569 0.814 0.941

Example 22. Place r indistinguishable balls in m distinguishable urns at random. Since the
balls are indistinguishable, we can only count the number of balls in each urn. The sample space
is

Ω = {(`1, . . . , `m) : `i ≥ 0, `1 + . . .+ `m = r}.

We give two proposals for the elementary probabilities.
15
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(1) Let pMB
(`1,...,`m) = m!

`1!`2!...`m!
1
mr . These are the probabilities that result if we place r labelled

balls in m labelled urns, and then erase the labels on the balls.

(2) Let pBE
(`1,...,`m) = 1

(m+r−1
r−1 )

for each (`1, . . . , `m) ∈ Ω. Elementary probabilities are chosen so

that all distinguishable configurations are equally likely.

That these are legitimate probability spaces depend on two combinatorial facts.

Exercise 23. (1) Let (`1, . . . , `m) ∈ Ω. Show that #{ω ∈ [m]r :
∑r

j=1 1ωj=i = `i for each i ∈

[m]} = n!
`1!`2!...`m! . Hence or directly, show that

∑
ω∈Ω

pMB
ω = 1.

(2) Show that #Ω =
(
m+r−1
r−1

)
. Hence,

∑
ω∈Ω

pBEω = 1.

The two models are clearly different. Which one captures reality? We can arbitrarily label the
balls for our convenience, and then erase the labels in the end. This clearly yields elementary

probabilities pMB . Or to put it another way, pick the balls one by one and assign them randomly

to one of the urns. This suggests that pMB is the “right one”.
This leaves open the question of whether there is a natural mechanism of assigning balls to urns

so that the probabilities pBE shows up. No such mechanism has been found. But this probability
space does occur in the physical world. If r photons (“indistinguishable balls”) are to occupy m
energy levels (“urns”), then empirically it has been verified that the correct probability space is

the second one!5

Example 24. Sampling with replacement from a population. Define Ω = {ω ∈ [N ]k : ωi ∈
[N ] for 1 ≤ i ≤ k} with pω = 1/Nk for each ω ∈ Ω. Here [N ] is the population (so the size of

the population is N ) and the size of the sample is k. Often the language used is of a box with N
coupons from which k are drawn with replacement.

Example 25. Sampling without replacement from a population. Now we take

Ω =
{
ω ∈ [N ]k : ωi are distinct elements of [N ]

}
,

pω =
1

N(N − 1) . . . (N − k + 1)
for each ω ∈ Ω.

5The probabilities pMB and pBE are called Maxwell-Boltzmann statistics and Bose-Einstein statistics. There is a

third kind, called Fermi-Dirac statistics which is obeyed by electrons. For general m ≥ r, the sample space is

ΩFD = {(`1, . . . , `m) : `i = 0 or 1 and `1 + . . . + `m = r} with equal probabilities for each element. In words, all

distinguishable configurations are equally likely, with the added constraint that at most one electron can occupy each

energy level.
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Fix m < N and define the random variable X(ω) =
∑k

i=1 1ωi≤m. If the population [N ] contains

a subset, say [m], (could be the subset of people having a certain disease), then X(ω) counts the
number of people in the sample who have the disease. Using X one can define events such as
A = {ω : X(ω) = `} for some ` ≤ m. If ω ∈ A, then ` of the ωi must be in [m] and the rest in
[N ] \ [m]. Hence

#A =

(
k

`

)
m(m− 1) . . . (m− `+ 1)(N −m)(N −m− 1) . . . (N −m− (k − `) + 1).

As the probabilities are equal for all sample points, we get

P(A) =

(
k
`

)
m(m− 1) . . . (m− `+ 1)(N −m)(N −m− 1) . . . (N −m− (k − `) + 1)

N(N − 1) . . . (N − k + 1)

=
1(
N
k

)(m
`

)(
N −m
k − `

)
.

This expression arises whenever the population is subdivided into two parts and we count the
number of samples that fall in one of the sub-populations.

Example 26. Gibbs measures. Let Ω be a finite set and let H : Ω → R be a function. Fix β ≥ 0.

Define Zβ =
∑

ω e
−βH(ω) and then set pω = 1

Zβ
e−βH(ω). This is clearly a valid assignment of

probabilities.
This is a class of examples from statistical physics. In that context, Ω is the set of all possible

states of a system andH(ω) is the energy of the state ω. In mechanics a system settles down to the
state with the lowest possible energy, but if there are thermal fluctuations (meaning the ambient
temperature is not absolute zero), then the system may also be found in other states, but higher

energies are less and less likely. In the above assignment, for two states ω and ω′, we see that

pω/pω′ = eβ(H(ω′)−H(ω)) showing that higher energy states are less probable. When β = 0, we get
pω = 1/|Ω|, the uniform distribution on Ω. In statistical physics, β is equated to 1/κT where T is
the temperature and κ is Boltzmann’s constant.

Different physical systems are defined by choosing Ω and H differently. Hence this provides a
rich class of examples which are of great importance in probability.

It may seem that probability is trivial, since the only problem is to find the sum of pω for ω
belonging to event of interest. This is far from the case. The following example is an illustration.

Example 27. Percolation. Fixm,n and consider a rectangle in Z2,R = {(i, j) ∈ Z2 : 0 ≤ i ≤ n, 0 ≤
j ≤ m}. Draw this on the plane along with the grid lines. We see (m + 1)n horizontal edges and
(n+ 1)m vertical edges. Let E be the set of N = (m+ 1)n+ (n+ 1)m edges and let Ω be the set of
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all subsets of E. Then |Ω| = 2N . Let pω = 2−N for each ω ∈ Ω. An interesting event is

A = {ω ∈ Ω : the subset of edges in ω

connect the top side of R to the bottom side of R}.

This may be thought of as follows. Imagine that each edge is a pipe through which water can
flow. However each tube may be blocked or open. ω is the subset of pipes that are open. Now
pour water at the top of the rectangle R. Will water trickle down to the bottom? The answer is yes
if and only if ω belongs to A.

Finding P(A) is a very difficult problem. When n is large and m = 2n, it is expected that P(A)

converges to a specific number, but proving it is an open problem as of today!6

We now give two non-examples.

Example 28. A non-example - Pick a natural number uniformly at random. The sample space
is clearly Ω = N = {1, 2, 3, . . .}. The phrase “uniformly at random” suggests that the elementary
probabilities should be the same for all elements. That is pi = p for all i ∈ N for some p. If p = 0,
then

∑
i∈N pi = 0 whereas if p > 0, then

∑
i∈N pi = ∞. This means that there is no way to assign

elementary probabilities so that each number has the same chance to be picked.
This appears obvious, but many folklore puzzles and paradoxes in probability are based on

the faulty assumption that it is possible to pick a natural number at random. For example, when
asked a question like “What is the probability that a random integer is odd?”, many people answer
1/2. We want to emphasize that the probability space has to be defined first, and only then can
probabilities of events be calculated. Thus, the question does not make sense to us and we do not

have to answer it!7

Example 29. Another non-example - Throwing darts. A dart is thrown at a circular dart board.
We assume that the dart does hit the board but were it hits is “random” in the same sense in which
we say the a coin toss is random. Intuitively this appears to make sense. However our framework
is not general enough to incorporate this example. Let us see why.

6In a very similar problem on a triangular lattice, it was proved by Stanislav Smirnov (2001) for which he won a

fields medal. Proof that computing probabilities is not always trivial!
7For those interested, there is one way to make sense of such questions. It is to consider a sequence of probability

spaces Ω(n) = {1, 2, . . . , n} with elementary probabilities p(n)
i = 1/n for each i ∈ Ωn. Then, for a subset A ⊆ Z, we

consider Pn(A ∩ Ωn) = #(A ∩ [n])/n. If these probabilities converge to a limit x as n → ∞, then we could say that

A has asymptotic probability x. In this sense, the set of odd numbers does have asymptotic probability 1/2, the set

of numbers divisible by 7 has asymptotic probability 1/7 and the set of prime numbers has asymptotic probability 0.

However, this notion of asymptotic probability has many shortcomings. Many subsets of natural numbers will not have

an asymptotic probability, and even sets which do have asymptotic probability fail to satisfy basic rules of probability

that we shall see later. Hence, we shall keep such examples out of our system.
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The dart board can be considered to be the disk Ω = {(x, y) : x2 + y2 ≤ r2} of given radius r.
This is an uncountable set. We cannot assign elementary probabilities p(x,y) for each (x, y) ∈ Ω

in any reasonable way. In fact the only reasonable assignment would be to set p(x,y) = 0 for each

(x, y) but then what is P(A) for a subset A? Uncountable sums are not well defined.
We need a branch of mathematics called measure theory to make proper sense of uncountable

probability spaces. This will not be done in this course although we shall later say a bit about the
difficulties involved. The same difficulty shows up in the following “random experiments” also.

(1) Draw a number at random from the interval [0, 1]. Ω = [0, 1] which is uncountable.

(2) Toss a fair coin infinitely many times. Ω = {0, 1}N := {ω = (ω1, ω2, . . .) : ωi = 0 or 1}.
This is again an uncountable set.

Remark 30. In one sense, the first non-example is almost irredeemable but the second non-example
can be dealt with, except for technicalities beyond this course. We shall later give a set of working
rules to work with such “continuous probabilities”. Fully satisfactory development will have to
wait for a course in measure theory.

4. BASIC RULES OF PROBABILITY

So far we have defined the notion of probability space and probability of an event. But most
often, we do not calculate probabilities from the definition. This is like in integration, where
one defined the integral of a function as a limit of Riemann sums, but that definition is used
only to find integrals of xn, sin(x) and a few such functions. Instead, integrals of complicated

expressions such as x sin(x) + 2 cos2(x) tan(x) are calculated by various rules, such as substitution
rule, integration by parts etc. In probability we need some similar rules relating probabilities of
various combinations of events to the individual probabilities.

Proposition 31. Let (Ω, p·) be a discrete probability space.

(1) For any event A, we have 0 ≤ P(A) ≤ 1. Also, P(∅) = 0 and P(Ω) = 1.

(2) Finite additivity of probability: If A1, . . . , An are pairwise disjoint events, then P(A1 ∪ . . . ∪
An) = P(A1) + . . .+ P(An). In particular, P(Ac) = 1−P(A) for any event A.

(3) Countable additivity of probability: If A1, A2, . . . is a countable collection of pairwise disjoint
events, then P(∪Ai) =

∑
iP(Ai).

All of these may seem obvious, and indeed they would be totally obvious if we stuck to finite
sample spaces. But the sample space could be countable, and then probability of events may
involve infinite sums which need special care in manipulation. Therefore we must give a proof.
In writing a proof, and in many future contexts, it is useful to introduce the following notation.
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Notation: Let A ⊆ Ω be an event. Then, we define a function 1A : Ω → R, called the indicator
function of A, as follows.

1A(ω) =

1 if ω ∈ A,

0 if ω 6∈ A.

Since a function from Ω to R is called a random variable, the indicator of any event is a random
variable. All information about the event A is in its indicator function (meaning, if we know the
value of 1A(ω), we know whether or not ω belongs to A). For example, we can write P(A) =∑

ω∈Ω 1A(ω)pω.

Now we prove the proposition.

Proof. (1) By definition of probability space P(Ω) = 1 and P(∅) = 0. If A is any event, then
1∅(ω)pω ≤ 1A(ω)pω ≤ 1Ω(ω)pω. By Exercise 149, we get∑

ω∈Ω

1∅(ω)pω ≤
∑
ω∈Ω

1A(ω)pω ≤
∑
ω∈Ω

1Ω(ω)pω.

As observed earlier, these sums are just P(∅), P(A) and P(Ω), respectively. Thus, 0 ≤
P(A) ≤ 1.

(2) It suffices to prove it for two sets (why?). Let A,B be two events such that A ∩ B = ∅. Let
f(ω) = pω1A(ω) and g(ω) = pω1B(ω) and h(ω) = pω1A∪B(ω). Then, the disjointness of A
and B implies that f(ω) + g(ω) = h(ω) for all ω ∈ Ω. Thus, by Exercise 149, we get∑

ω∈Ω

f(ω) +
∑
ω∈Ω

g(ω) =
∑
ω∈Ω

h(ω).

But the three sums here are precisely P(A), P(B) and P(A ∪B). Thus, we get P(A ∪B) =

P(A) + P(B).

(3) This is similar to finite additivity but needs a more involved argument. We leave it as an
exercise for the interested reader. �

Exercise 32. Adapt the proof to prove that for a countable family of events Ak in a common prob-
ability space (no disjointness assumed), we have

P(∪kAk) ≤
∑
k

P(Ak).

Definition 33 (Limsup and liminf of sets). If Ak, k ≥ 1, is a sequence of subsets of Ω, we define

lim supAk =
∞⋂
N=1

∞⋃
k=N

Ak, and lim inf Ak =
∞⋃
N=1

∞⋂
k=N

Ak.
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In words, lim supAk is the set of all ω that belong to infinitely many of the Aks, and lim inf Ak is
the set of all ω that belong to all but finitely many of the Aks.

Two special cases are of increasing and decreasing sequences of events. This means A1 ⊆ A2 ⊆
A3 ⊆ . . . and A1 ⊇ A2 ⊇ A3 ⊇ . . .. In these cases, the limsup and liminf are the same (so we refer
to it as the limit of the sequence of sets). It is ∪kAk in the case of increasing events and ∩kAk in the
case of decreasing events.

Exercise 34. Events below are all contained in a discrete probability space. Use countable additiv-
ity of probability to show that

(1) If Ak are increasing events with limit A, show that P(A) is the increasing limit of P(Ak).

(2) If Ak are decreasing events with limit A, show that P(A) is the decreasing limit of P(Ak).

Now we re-write the basic rules of probability as follows.

The basic rules of probability:

(1) P(∅) = 0, P(Ω) = 1 and 0 ≤ P(A) ≤ 1 for any event A.

(2) P

(⋃
k

Ak

)
≤
∑
k

P(Ak) for any countable collection of events Ak.

(3) P

(⋃
k

Ak

)
=
∑
k

P(Ak) if Ak is a countable collection of pairwise disjoint events.

5. INCLUSION-EXCLUSION FORMULA

In general, there is no simple rule for P(A∪B) in terms of P(A) and P(B). Indeed, consider the

probability space Ω = {0, 1} with p0 = p1 = 1
2 . If A = {0} and B = {1}, then P(A) = P(B) = 1

2

and P(A∪B) = 1. However, if A = B = {0}, then P(A) = P(B) = 1
2 as before, but P(A∪B) = 1

2 .

This shows that P(A ∪ B) cannot be determined from P(A) and P(B). Similarly for P(A ∩ B) or
other set constructions.

However, it is easy to see that P(A∪B) = P(A)+P(B)−P(A∩B). This formula is not entirely
useless, because in special situations we shall later see that the probability of the intersection is
easy to compute and hence we may compute the probability of the union. Generalizing this idea
to more than two sets, we get the following surprisingly useful formula.

Proposition 35 (Inclusion-Exclusion formula). Let (Ω, p) be a probability space and let A1, . . . , An be
events. Then,

P

(
n⋃
i=1

Ai

)
= S1 − S2 + S3 − . . .+ (−1)n−1Sn
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where

Sk =
∑

1≤i1<i2<...<ik≤n
P(Ai1 ∩Ai2 ∩ . . . ∩Aik).

We give two proofs, but the difference is only superficial. It is a good exercise to reason out why
the two arguments are basically the same.

First proof. For each ω ∈ Ω we compute its contribution to the two sides. If ω 6∈
⋃n
i=1Ai, then pω

is not counted on either side. Suppose ω ∈
⋃n
i=1Ai so that pω is counted once on the left side. We

count the number of times pω is counted on the right side by splitting into cases depending on the
exact number of Ais that contain ω.

Suppose ω belongs to exactly one of the Ais. For simplicity let us suppose that ω ∈ A1 but
ω ∈ Aci for 2 ≤ i ≤ n. Then pω is counted once in S1 but not counted in S2, . . . , Sn.

Suppose ω belongs to A1 and A2 but not any other Ai. Then pω is counted twice in S1 (once
for P(A1) and once for P(A2)) and subtracted once in S2 (in P(A1 ∩ A2)). Thus, it is effectively
counted once on the right side. The same holds if ω belongs to Ai and Aj but not any other Aks.

If ω belongs to A1, . . . , Ak but not any other Ai, then on the right side, pω is added k times in S1,

subtracted
(
k
2

)
times in S2, added

(
k
3

)
times in Sk and so on. Thus pω is effectively counted

(
k

1

)
−
(
k

2

)
+

(
k

3

)
− . . .+ (−1)k−1

(
k

k

)

times. By the Binomial formula, this is just the expansion of 1− (1− 1)k which is 1. �

Second proof. Use the definition to write both sides of the statement. Let A = ∪ni=1Ai.

LHS =
∑
ω∈A

pω =
∑
ω∈Ω

1A(ω)pω.

Now we compute the right side. For any i1 < i2 < . . . < ik, we write

P (Ai1 ∩ . . . ∩Aik) =
∑
ω∈Ω

pω1Ai1∩...∩Aik (ω) =
∑
ω∈Ω

pω

k∏
`=1

1Ai` (ω).
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Hence, the right hand side is given by adding over i1 < . . . < ik, multiplying by (−1)k−1 and then
summing over k from 1 to n.

RHS =
n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n

∑
ω∈Ω

pω

k∏
`=1

1Ai` (ω)

=
∑
ω∈Ω

n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n
pω

k∏
`=1

1Ai` (ω)

= −
∑
ω∈Ω

pω

n∑
k=1

∑
1≤i1<...<ik≤n

k∏
`=1

(−1Ai` (ω))

= −
∑
ω∈Ω

pω

 n∏
j=1

(1− 1Aj (ω)) − 1


=

∑
ω∈Ω

pω1A(ω).

because the quantity
n∏
j=1

(1 − 1Aj (ω)) equals −1 if ω belongs to at least one of the Ais, and is zero

otherwise. Thus the claim follows. �

As we remarked earlier, it turns out that in many settings it is possible to compute the probabil-
ities of intersections. We give an example now.

Example 36. Let Ω = S52×S52 with pω = 1
(52!)2 for all ω ∈ Ω. Consider the eventA = {(π, σ) : π(i) 6=

σ(i) ∀i}. Informally, we imagine two shuffled decks of cards kept side by side (or perhaps one
shuffled deck and another permutation denoting a “psychic’s predictions” for the order in which
the cards occur). Then A is the event that there are no matches (or correct guesses).

Let Ai = {(π, σ) : π(i) = σ(i)} so that Ac = A1 ∪ . . . ∪A52. It is easy to see that P(Ai1 ∩Ai2 . . . ∩
Aik) = 1

52(52−1)...(52−k+1) for any i1 < i2 < . . . < ik (why?). Therefore, by the inclusion-exclusion

formula, we get

P(Ac) =

(
52

1

)
1

52
−
(

52

2

)
1

(52)(51)
+ . . .+ (−1)51

(
52

52

)
1

(52)(51) . . . (1)

= 1− 1

2!
+

1

3!
− 1

4!
+ . . .− 1

52!

≈ 1− 1

e
≈ 0.6321

by the expansion e−1 = 1− 1
2! + 1

3! − . . .. Hence P(A) ≈ e−1 ≈ 0.3679.

Example 37. Place n distinguishable balls in r distinguishable urns at random. Let A be the event
that some urn is empty. The probability space is Ω = {ω = (ω1, . . . , ωn) : 1 ≤ ωi ≤ r} with
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pω = r−n. Let A` = {ω : ωi 6= `} for ` = 1, 2 . . . , r. Then, A = A1 ∪ . . . ∪ Ar−1 (as Ar is empty, we

could include it or not, makes no difference).

It is easy to see that P(Ai1 ∩ . . . ∩ Aik) = (r − k)nr−n = (1 − k
r )n. We could use the inclusion-

exclusion formula to write the expression

P(A) = r

(
1− 1

r

)n
−
(
r

2

)(
1− 2

r

)n
+ . . .+ (−1)r−2

(
r

r − 1

)(
1− r − 1

r

)n
.

The last term is zero (since all urns cannot be empty). I don’t know if this expression can be
simplified any more.

We mention two useful formulas that can be proved on lines similar to the inclusion-exclusion
principle. If we say “at least one of the events A1, A2, . . . , An occurs”, we are talking about the
union, A1 ∪ A2 ∪ . . . ∪ An. What about “at least m of the events A1, A2, . . . , An occur”, how to
express it with set operations. It is not hard to see that this set is precisely

Bm =
⋃

1≤i1<i2<...<im≤n
(Ai1 ∩Ai2 ∩ . . . ∩Aim).

The event that “exactly m of the events A1, A2, . . . , An occur” can be written as

Cm = Bm \Bm+1 =
⋃
S⊆[n]

|S|=m

(⋂
i∈S

Ai

)⋂⋂
i 6∈S

Aci

 .

Exercise 38. Let A1, . . . , An be events in a probability space (Ω, p) and let m ≤ n. Let Bm and Cm

be as above. Show that

P(Bm) =

n∑
k=m

(−1)k−m
(
k − 1

k −m

)
Sk

= Sm −
(
m

1

)
Sm+1 +

(
m+ 1

2

)
Sm+2 −

(
m+ 2

3

)
Sm+3 + . . .

P(Cm) =
n∑

k=m

(−1)k−m
(
k

m

)
Sk

= Sm −
(
m+ 1

1

)
Sm+1 +

(
m+ 2

2

)
Sm+2 −

(
m+ 3

3

)
Sm+3 + . . .

Exercise 39. Return to the setting of exercise 36 but with n cards in a deck, so that Ω = Sn × Sn
and p(π,σ) = 1

(n!)2 . Let Am be the event that there are exactly m matches between the two decks.
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(1) For fixed m ≥ 0, show that P(Am)→ e−1 1
m! as n→∞.

(2) Assume that the approximations above are valid for n = 52 and m ≤ 10. Find the proba-
bility that there are at least 10 matches.

5.1. Mobius function. Suppose f : N 7→ R is a given function and g : N 7→ R is defined by g(n) =∑n
k=1 f(k). Then, we can recover the function f from the function g by setting f(n) = g(n)− g(n− 1).

Now let Pn denote the collection of all subsets of {1, 2, . . . , n}. Given f : Pn 7→ R, create a new function g

by g(A) =
∑
B:B⊆A f(B). How to recover f from g? It is easy to see that it should be possible to do. Indeed,

first we can get f(∅) = g(∅). Then we can recover the value at singleton sets by f({i}) = g({i})− f(∅), and

so on. With a little work, one arrives at the answer f(A) =
∑
B:B⊆A(−1)|A|−|B|g(B) (check!).

Now let f : N 7→ R be a function and define g(n) =
∑
d:d|n f(d). That is, sum over all divisors of n

(include 1 and n, of course). How to recover f from g? Again, it is kind of clear that we can first recover

f(1) = g(1), then recover f(p) for prime numbers p by f(p) = g(p) − f(1), then recover f(p1p2) for two

primes, etc. With some work, one finds that f(n) =
∑
d:d|n µ(n/d)g(d), where µ(m) is defined to be (−1)r if

m is a product of r distinct prime numbers and defined to be 0 if m is divisible by the square of some prime

number.

Do you see anything common in these situations? Do you see that the second example was used in

the proof of the inclusion-exclusion formula for probabilities? In all these situations, there is a “partial

order” - the usual ordering of integers, or the inclusion order of sets, or the divisibility order of natural

numbers. Given f and defining g(x) =
∑
y:y≤x f(y), we recover f from g by a formula of the form f(x) =∑

y:y≤xM(x, y)g(y) whereM is a function that is associated to the partially ordered set. For example, in the

above three examples: (a) M(n,m) = 1 if m = n − 1 and 0 otherwise, (b) M(A, b) = (−1)|A|−|B| if B ⊆ A

and 0 otherwise, (c) M(n, d) = µ(n/d) in the third example.

6. BONFERRONI’S INEQUALITIES

Inclusion-exclusion formula is nice when we can calculate the probabilities of intersections of
the events under consideration. Things are not always this nice, and sometimes that may be
very difficult. Even if we could find them, summing them with signs according to the inclusion-
exclusion formula may be difficult as the example 37 demonstrates. The idea behind the inclusion-
exclusion formula can however be often used to compute approximate values of probabilities, which
is very valuable in most applications. That is what we do next.

We know that P(A1 ∪ . . . ∪ An) ≤ P(A1) + . . . + P(An) for any events A1, . . . , An. This is an
extremely useful inequality, often called the union bound. Its usefulness is in the fact that there
is no assumption made about the events Ais (such as whether they are disjoint or not). The fol-
lowing inequalities generalize the union bound, and gives both upper and lower bounds for the
probability of the union of a bunch of events.
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Lemma 40 (Bonferroni’s inequalities). Let A1, . . . , An be events in a probability space (Ω, p) and let
A = A1 ∪ . . . ∪An. Then, S1 − S2 ≤ P(A) ≤ S1. More generally,

P(A) ≤ S1 − S2 + · · ·+ Sm if m is odd,

P(A) ≤ S1 − S2 + · · · − Sm if m is even

Proof. We shall write out the proof for the cases m = 1 and m = 2. When m = 1, the inequality is
just the union bound

P(A) ≤ P(A1) + . . .+ P(An)

which we know. When m = 2, the inequality to be proved is

P(A) ≥
∑
k

P(Ak)−
∑
k<`

P(Ak ∩A`)

To see this, fix ω ∈ Ω and count the contribution of pω to both sides. Like in the proof of the
inclusion-exclusion formula, for ω 6∈ A1 ∪ . . . ∪ An, the contribution to both sides is zero. On the
other hand, if ω belongs to exactly r of the sets for some r ≥ 1, then it is counted once on the left

side and r−
(
r
2

)
times on the right side. Not that r−

(
r
2

)
= 1

2r(3− r) which is always non-positive

(one if r = 1, zero if r = 2 and non-positive if r ≥ 3). Hence we get LHS ≥ RHS.
Similarly, one can prove the other inequalities in the series. We leave it as an exercise. The key

point is that r −
(
r
2

)
+ . . . + (−1)k−1

(
r
k

)
is non-negative if k is odd and non-positive if k is even

(prove this). Here as always
(
x
y

)
is interpreted as zero if y > x. �

Here is an application of these inequalities.

Example 41. Return to Example 37. We obtained an exact expression for the answer, but that is
rather complicated. For example, what is the probability of having at least one empty urn when
n = 40 balls are placed at random in r = 10 urns? It would be complicated to sum the series.
Instead, we could use Bonferroni’s inequalities to get the following bounds.

r

(
1− 1

r

)n
−
(
r

2

)(
1− 2

r

)n
≤ P(A) ≤ r

(
1− 1

r

)n
.

If we take n = 40 and r = 10, the bounds we get are 0.1418 ≤ P(A) ≤ 0.1478. Thus, we get a
pretty decent approximation to the probability. By experimenting with other numbers you can
check that the approximations are good when n is large compared to r but not otherwise. Can you
reason why?

7. INDEPENDENCE - A FIRST LOOK

We remarked in the context of inclusion-exclusion formulas that often the probabilities of inter-
sections of events is easy to find, and then we can use them to find probabilities of unions etc. In
many contexts, this is related to one of the most important notions in probability.
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Definition 42. Let A,B be events in a common probability space. We say that A and B are inde-
pendent is P(A ∩B) = P(A)P(B).

Example 43. Toss a fair coin n times. Then Ω = {ω : ω = (ω1, . . . , ωn), ωi is 0 or 1} and pω =

2−n for each ω. Let A = {ω : ω1 = 0} and let B = {ω : ω2 = 0}. Then, from the definition of
probabilities, we can see that P(A) = 1/2, P(B) = 1/2 (because the elementary probabilities are

equal, and both the sets A and B contain exactly 2n−1 elements). Further, A ∩ B = {ω : ω1 =

1, ω2 = 0} has 2n−2 elements, whence P(A∩B) = 1/4. Thus, P(A∩B) = P(A)P(B) and hence A
and B are independent.

If two events are independent, then the probability of their intersection can be found from the
individual probabilities. How do we check if two events are independent? By checking if the
probability of the event is equal to the product of the individual probabilities! It seems totally
circular and useless! There are many reasons why it is not an empty notion as we shall see.

Firstly, in physical situationsdependence is related to a basic intuition we have about whether
two events are related or not. For example, suppose you are thinking of betting Rs.1000 on a
particular horse in a race. If you get the news that your cousin is getting married, it will perhaps
not affect the amount you plan to bet. However, if you get the news that one of the other horses
has been injected with undetectable drugs, it might affect the bet you want to place. In other
words, certain events (like marriage of a cousin) have no bearing on the probability of the event
of interest (the event that our horse wins) while other events (like the injection of drugs) do have
an impact. This intuition is often put into the very definition of probability space that we have.

For example, in the above example of tossing a fair coin n times, it is our intuition that a coin
does not remember how it fell previous times, and that chance of its falling head in any toss is

just 1/2, irrespective of how many heads or tails occured before8 And this intuition was used in

defining the elementary probabilities as 2−n each. Since we started with the intuitive notion of
independence, and put that into the definition of the probability space, it is quite expected that the
event that the first toss is a head should be independent of the event that the second toss is a tail.
That is the calculation shown in above.

But how is independence useful mathematically if the conditions to check independence are the
very conclusions we want?! The answer to this lies in the following fact (to be explained later).
When certain events are independent, then many other collections of events that can be made out
of them also turn out to be independent. For example, if A,B,C,D are independent (we have not
yet defined what this means!), then A ∪ B and C ∪ D are also independent. Thus, starting from
independence of certain events, we get independence of many other events. For example, any

8It may be better to attribute this to experience rather than intuition. There have been reasonable people in history

who believed that if a coin shows heads in ten tosses in a row, then on the next toss it is more likely to show tails

(to ‘compensate’ for the overabundance of heads)! Clearly this is also someone’s intuition, and different from ours.

Only experiment can decide which is correct, and any number of experiments with real coins show that our intuition

is correct, and coins have no memory.
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event depending on the first four tosses is independent of eny event depending on the next five
tosses.

8. CONDITIONAL PROBABILITY AND INDEPENDENCE

Definition 44. Let A,B be two events in the same probability space.

(1) If P(B) 6= 0, we define the conditional probability of A given B as

P
(
A
∣∣∣B) :=

P(A ∩B)

P(B)
.

(2) We say that A and B are independent if P(A ∩ B) = P(A)P(B). If P(B) 6= 0, then A and

B are independent if and only if P(A
∣∣∣∣∣∣ B) = P(A) (and similarly with the roles of A and

B reversed). If P(B) = 0, then A and B are necessarily independent since P(A ∩ B) must
also be 0.

What do these notions mean intuitively? In real life, we keep updating probabilities based on
information that we get. For example, when playing cards, the chance that a randomly chosen
card is an ace is 1/13, but having drawn a card, the probability for the next card may not be the
same - if the first card was seen to be an ace, then the chance of the second being an ace falls to
3/51. This updated probability is called a conditional probability. Independence of two events A
and B means that knowing whether or not A occured does not change the chance of occurrence
of B. In other words, the conditional probability of A given B is the same as the unconditional
(original) probability of A.

Example 45. Let Ω = {(i, j) : 1 ≤ i, j ≤ 6} with p(i,j) = 1
36 . This is the probability space corre-

sponding to a throw of two fair dice. Let A = {(i, j) : i is odd} and B = {(i, j) : j is 1 or 6} and
C = {(i, j) : i+ j = 4}. Then A∩B = {(i, j) : i = 1, 3, or 5, and j = 1 or 6}. Then, it is easy to see
that

P(A ∩B) =
6

36
=

1

6
, P(A) =

18

36
=

1

2
, P(B) =

12

36
=

1

3
.

In this case, P(A ∩B) = P(A)P(B) and hence A and B are independent. On the other hand,

P(A ∩ C) = P{(1, 3), (2, 2)} =
1

18
, P(C) = P{(1, 3), (2, 2), (3, 1)} =

1

12
.

Thus, P(A ∩ C) 6= P(A)P(C) and hence A and C are not independent.
This agrees with the intuitive understanding of independence, since A is an event that depends

only on the first toss and B is an event that depends only on the second toss. Therefore, A and B
ought to be independent. However, C depends on both tosses, and hence cannot be expected to

be independent of A. Indeed, it is easy to see that P(C
∣∣∣∣∣∣ A) = 1

9 .

Example 46. Let Ω = S52 with pπ = 1
52! . Define the events

A = {π : π1 ∈ {10, 20, 30, 40}}, A = {π : π2 ∈ {10, 20, 30, 40}}.
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Then both P(A) = P(B) = 1
13 . However, P(B

∣∣∣∣∣∣ A) = 3
51 . One can also see that P(B

∣∣∣∣∣∣ Ac) = 4
51 .

In words, A (respectively B) could be the event that the first (respectively second) card is an
ace. Then P(B) = 4/52 to start with. When we see the first card, we update the probability. If the

first card was not an ace, we update it to P(B
∣∣∣∣∣∣ Ac) and if the first card was an ace, we update it to

P(B
∣∣∣∣∣∣ A).

Caution: Independence should not be confused with disjointness! If A and B are disjoint, P(A ∩
B) = 0 and hence A and B can be independent if and only if one of P(A) or P(B) equals 0.
Intuitively, if A and B are disjoint, then knowing that A occurred gives us a lot of information
about B (that it did not occur!), so independence is not to be expected.

Exercise 47. IfA andB are independent, show that the following pairs of events are also indepen-
dent.

(1) A and Bc.

(2) Ac and B.

(3) Ac and Bc.

Total probability rule and Bayes’ rule: Let A1, . . . , An be pairwise disjoint and mutually exhaus-
tive events in a probability space. Assume P(Ai) > 0 for all i. This means that Ai ∩Aj = ∅ for any
i 6= j and A1 ∪ A2 ∪ . . . ∪ An = Ω. We also refer to such a collection of events as a partition of the
sample space.

Let B be any other event.

(1) (Total probability rule). P(B) = P(A1)P(B
∣∣∣∣∣∣ A1) + . . .+ P(An)P(B

∣∣∣∣∣∣ An).

(2) (Bayes’ rule). Assume that P(B) > 0. Then, for each k = 1, 2, . . . , n, we have

P(Ak
∣∣∣∣∣∣ B) =

P(Ak)P(B
∣∣∣∣∣∣ Ak)

P(A1)P(B
∣∣∣∣∣∣ A1) + . . .+ P(An)P(B

∣∣∣∣∣∣ An)
.

Proof. The proof is merely by following the definition.

(1) The right hand side is equal to

P(A1)
P(B ∩A1)

P(A1)
+ . . .+ P(An)

P(B ∩An)

P(An)
= P(B ∩A1) + . . .+ P(B ∩An)

which is equal to P(B) since Ai are pairwise disjoint and exhaustive.
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(2) Without loss of generality take k = 1. Note that P(A1 ∩B) = P(A1)P(B ∩A1). Hence

P(A1

∣∣∣∣∣∣ B) =
P(A1 ∩B)

P(B)

=
P(A1)P(B

∣∣∣∣∣∣ A1)

P(A1)P(B
∣∣∣∣∣∣ A1) + . . .+ P(An)P(B

∣∣∣∣∣∣ An)

where we used the total probability rule to get the denominator. �

Exercise 48. Suppose Ai are events such that P(A1 ∩ . . . ∩An) > 0. Then show that

P(A1 ∩ . . . ∩An) = P(A1)P(A2

∣∣∣∣∣∣ A1)P(A3

∣∣∣∣∣∣ A1 ∩A2) . . .P(An
∣∣∣∣∣∣ A1 ∩ . . . ∩An−1).

Example 49. Consider a rare disease X that affects one in a million people. A medical test is used
to test for the presence of the disease. The test is 99% accurate in the sense that if a person has no
disease, the chance that the test shows positive is 1% and if the person has disease, the chance that
the test shows negative is also 1%.

Suppose a person is tested for the disease and the test result is positive. What is the chance that
the person has the disease X?

Let A be the event that the person has the disease X . Let B be the event that the test shows
positive. The given data may be summarized as follows.

(1) P(A) = 10−6. Of course P(Ac) = 1− 10−6.

(2) P(B
∣∣∣∣∣∣ A) = 0.99 and P(B

∣∣∣∣∣∣ Ac) = 0.01.

What we want to find is P(A
∣∣∣∣∣∣ B). By Bayes’ rule (the relevant partition is A1 = A and A2 = Ac),

P(A
∣∣∣∣∣∣ B) =

P(B
∣∣∣∣∣∣ A)P(A)

P(B
∣∣∣∣∣∣ A)P(A) + P(B

∣∣∣∣∣∣ Ac)P(Ac)
=

0.99× 10−6

0.99× 10−6 + 0.01× (1− 10−6)
= 0.000099.

The test is quite an accurate one, but the person tested positive has a really low chance of actu-
ally having the disease! Of course, one should observe that the chance of having disease is now

approximately 10−4 which is considerably higher than 10−6.
A calculation-free understanding of this surprising looking phenomenon can be achieved as

follows: Let everyone in the population undergo the test. If there are 109 people in the population,

then there are only 103 people with the disease. The number of true positives is approximately

103 × 0.99 ≈ 103 while the number of false positives is (109 − 103) × 0.01 ≈ 107. In other words,
among all positives, the false positives are way more numerous than true positives.

The surprise here comes from not taking into account the relative sizes of the sub-populations
with and without the disease. Here is another manifestation of exactly the same fallacious reason-
ing.
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FIGURE 4. A population of healthy (blue) and diseased (red) individuals. Filled
circle indicates those who tested positive and hollow circles indicate those who
tested negative. The majority of those who tested positive are in fact healthy.

Question: A person X is introverted, very systematic in thinking and somewhat absent-minded.
You are told that he is a doctor or a mathematician. What would be your guess - doctor or mathe-
matician?

As we saw in class, most people answer “mathematician”. Even accepting the stereotype that a
mathematician is more likely to have all these qualities than a doctor, this answer ignores the fact
that there are perhaps a hundred times more doctors in the world than mathematicians! In fact,

the situation is identical to the one in the example above, and the mistake is in confusing P(A
∣∣B)

and P(B
∣∣A).

Medical diagnosis: Several different physiological problems can give rise to the same symptoms
in a person. When a patient goes to a doctor and tells his/her symptoms, the doctor tries to guess
the underlying disease that is causing the symptoms. This is Bayes rule at work (or ought to be at
work). Even though one may not be to write down all the probabilities, there is a lesson from the
previous examples, which is that a priori chances of different diseases must be taken into account.
In other words, suppose a rare but serious lung problem P always causes some symptom X to
show. Suppose that common cold Q (rather common) also causes the symptom X in 1% of the
cases.

If you are a doctor and you encounter a patient with symptom X , what would be your first
guess - that is is caused by P or by Q? Is such reasoning really used by doctors? It has been
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observed from various experiments that people do not naturally/intuitively do the right reasoning
in such cases - they tend to overestimate the chance of the cause being the rare disease P .

9. INDEPENDENCE OF THREE OR MORE EVENTS

Definition 50. Events A1, . . . , An in a common probability space are said to be independent if
P (Ai1 ∩Ai2 ∩ . . . ∩Aim) = P(Ai1)P(Ai2) . . .P(Aim) for every choice of m ≤ n and every choice
of 1 ≤ i1 < i2 < . . . < im ≤ n.

The independence of n events requires us to check 2n equations (that many choices of i1, i2, . . .).
Should it not suffice to check that each pair of Ai and Aj are independent? The following example
shows that this is not the case!

Example 51. Let Ω = {0, 1}n with pω = 2−n for each ω ∈ Ω. Define the events A = {ω : ω1 = 0},
A = {ω : ω2 = 0} and C = {ω : ω1 + ω2 = 0 or 2}. In words, we toss a fair coin n times and A

denotes the event that the first toss is a tail, B denotes the event that the second toss is a tail and C
denotes the event that out of the first two tosses are both heads or both tails. Then P(A) = P(B) =

P(C) = 1
4 . Further,

P(A ∩B) =
1

4
, P(B ∩ C) =

1

4
, P (A ∩ C) =

1

4
, P(A ∩B ∩ C) =

1

4
.

Thus, A,B,C are independent pairwise, but not independent by our definition because P(A∩B ∩
C) 6= 1

8 = P(A)P(B)P(C).

Intuitively this is right. Knowing A does not given any information about C (similarly with A
and B or B and C), but knowing A and B tells us completely whether or not C occurred! Thus is
is right that the definition should not declare them to be independent.

Exercise 52. Let A1, . . . , An be events in a common probability space. Then, A1, A2, . . . , An are
independent if and only if the following equalities hold: For each i, define Bi as Ai and Aci . Then

P(B1 ∩B2 ∩ . . . ∩Bn) = P(B1)P(B2) . . .P(Bn).

Note: This should hold for any possible choice of Bis. In other words, the system of 2n equalities
in the definition of independence may be replaced by this new set of 2n equalities. The latter
system has the advantage that it immediately tells us that if A1, . . . , An are independent, then
A1, A

c
2, A3, . . . (for each i choose Ai or its complement) are independent.

10. SUBTLETIES OF CONDITIONAL PROBABILITY

Conditional probabilities are quite subtle. Apart from the common mistake of confusing P(A
∣∣∣∣∣∣B)

for P(B
∣∣∣∣∣∣ A), there are other points one sometimes overlooks. In fact, most of the paradoxical
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sounding puzzles in probability are based on confusing aspects of conditional probability. Let us
see one.

Question 53. A man says “I have two children, and one of them is a boy”. What is the chance that
the other one is a girl?

There are four possibilities BB,BG,GB,GG, of which GG has been eliminated. Of the remain-
ing three, two are favourable, hence the chance is 2/3 that the other child is a girl. This is a possible
solution. If you accept this as reasonable, here is another question.

Question 54. A man says “I have two children, and one of them is a boy born on a Monday”.
What is the chance that the other one is a girl?

Does the addition of the information about the boy change the probability? One opinion is
that it should not. The other is to follow the same solution pattern as before. Write down all the
2×2×7×7 possibilities: BBss (boy, boy, Sunday, Sunday),BBsm (boy, boy, Sunday, Monday), etc.
The given information that one is a boy who was born on Sunday eliminates many possibilities
and what remain are 27 possibilities BGm∗, GB ∗ m, BBm∗, BB ∗ m where ∗ is any day of the
week. Take care to not double count BBmm to see that there are 27 possibilities. Of these, 14 are
favourable (i.e., the other child is a girl), hence we conclude that the probability is 14/27.

Is the correct answer 14/27 as calculated here or is it 2/3? Since the information of the day of
birth of the boy is irrelevant, why should we change our earlier answer of 2/3?

Both answers can be correct, depending on the interpretation of what the experiment is. The
main reason for all the confusion leading to multiple interpretations is avoided if one realizes this:
To compute conditional probabilities, it is not enough to know what the person said, but also what else he
could have said. Not realizing this point is the main source of confusion in many popular puzzles in
probability. We leave you to understand this statement in the context of the problem, but explain
it in more general terms.

What are we conditioning on?: In talking about conditional probability, we should really think
of a measurement. To start, we have a discrete probability space (Ω, p) which defines probabilities
of various events. A measurement is a function T : Ω 7→ R. Let us say that the measurement can
take three values, 0, 1, 2. Let Ai = {ω : T (ω) = i}, for i = 1, 2, 3. Then A1, A2, A3 are pairwise
disjoint and their union is Ω. As a result of the measurement, we get to know whether ω belongs
to A1 or to A2 or to A3. But we would not know which of these it belongs to. Based on what the
measurement actually shows, we update our probabilities. For example, if it shows T (ω) = 2, we

update our probabilities of events to Q(A) = P(A
∣∣∣∣∣∣ A2).

The problem with puzzles like the one above is that they don’t specify what is being measured.
Depending on the interpretation, different answers are possible. For example, if a person says “I
have two children, one of whom is a girl”, it is giving the result of a measurement without saying
what was being measured. Did the person check the sex of the eldest child and report “girl” as
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the measurement? Did he check whether or not he has a girl child and then report “Yes” as the
measurement?

One lesson from this is this. We should not think of P(·
∣∣∣∣∣∣ A) alone, but of both P(·

∣∣∣∣∣∣ A) and

P(·
∣∣∣∣∣∣ Ac). We make a measurement which corners ω into A or into Ac, and we have to be ready to

deploy P(·
∣∣∣∣∣∣ A) or P(·

∣∣∣∣∣∣ Ac), depending on the outcome of that measurement.

11. DISCRETE PROBABILITY DISTRIBUTIONS

Let (Ω, p) be a probability space and X : Ω → R be a random variable. We define two objects
associated to X .

Probability mass function (pmf). The range ofX is a countable subset of R, denote it by Range(X) =

{t1, t2, . . .}. Then, define fX : R→ [0, 1] as the function

fX(t) =

P{ω : X(ω) = t} if t ∈ Range(X).

0 if t 6∈ Range(X).

One obvious property is that
∑

t∈R fX(t) = 1. Conversely, any non-negative function f that is

non-zero on a countable set S and such that
∑

t∈R f(t) = 1 is a pmf of some random variable.

Cumulative distribution function (CDF). Define FX : R→ [0, 1] by

FX(t) = P{ω : X(ω) ≤ t}.

Example 55. Let Ω = {(i, j) : 1 ≤ i, j ≤ 6} with p(i,j) = 1
36 for all (i, j) ∈ Ω. Let X : Ω → R be

the random variable defined by X(i, j) = i+ j. Then, Range(X) = {2, 3, . . . , 12}. The pmf of X is
given by

k 2 3 4 5 6 7 8 9 10 11 12

fX(k) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

and the CDF is given by

t < 2 [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11, 12) ≥ 12

FX(k) 0 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 1

Basic properties of a CDF: The following observations are easy to make.

(1) F is an increasing function on R.

(2) lim
t→+∞

F (t) = 1 and lim
t→−∞

F (t) = 0.

(3) F is right continuous, that is, lim
h↘0

F (t+ h) = F (t) for all t ∈ R.
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(4) F increases only in jumps. This means that if F has no jump discontinuities (an increasing
function has no other kind of discontinuity anyway) in an interval [a, b], then F (a) = F (b).

Since F (t) is the probability of a certain event, these statements can be proved using the basic rules
of probability that we saw earlier.

Proof. Let t < s. Define two events, A = {ω : X(ω) ≤ t} and B = {ω : X(ω) ≤ s}. Clearly A ⊆ B

and hence F (t) = P(A) ≤ P(B) = F (s). This proves the first property.
To prove the second property, let An = {ω : X(ω) ≤ n} for n ≥ 1. Then, An are increasing in n

and
⋃∞
n=1An = Ω. Hence, F (n) = P(An)→ P(Ω) = 1 as n→∞. Since F is increasing, it follows

that limt→+∞ F (t) = 1. Similarly one can prove that limt→−∞ F (t) = 0.
Right continuity of F is also proved the same way, by considering the events Bn = {ω : X(ω) ≤

t+ 1
n}. We omit details. �

Remark 56. It is easy to see that one can recover the pmf from the CDF and vice versa. For
example, given the pmf f , we can write the CDF as F (t) =

∑
u:u≤t f(u). Conversely, given the

CDF, by looking at the locations of the jumps and the sizes of the jumps, we can recover the pmf.

The point is that probabilistic questions about X can be answered by knowing its CDF FX .
Therefore, in a sense, the probability space becomes irrelevant. For example, the expected value
of a random variable can be computed using its CDF only. Hence, we shall often make statements
like “X is a random variable with pmf f” or “X is a random variable with CDF F”, without
bothering to indicate the probability space.

Some distributions (i.e., CDF or the associated pmf) occur frequently enough to merit a name.

Example 57. Let f and F be the pmf, CDF pair

f(t) =

p if t = 1,

q if t = 0,
FX(t) =


1 if t ≥ 1,

q if t ∈ [0, 1),

0 if t < 0.

A random variable X having this pmf (or equivalently the CDF) is said to have Bernoulli distribu-
tion with parameter p and write X ∼ Ber(p). For example, if Ω = {1, 2, . . . , 10} with pi = 1/10,
and X(ω) = 1ω≤3, then X ∼ Ber(0.3). Any random variable taking only the values 0 and 1, has
Bernoulli distribution.

Example 58. Fix n ≥ 1 and p ∈ [0, 1]. The pmf defined by f(k) =
(
n
k

)
pkqn−k for 0 ≤ k ≤ n is called

the Binomial distribution with parameters n and p and is denoted Bin(n, p). The CDF is as usual
defined by F (t) =

∑
u:u≤t f(u), but it does not have any particularly nice expression.

For example, if Ω = {0, 1}n with pω = p
∑
i ωiqn−

∑
i ωi , and X(ω) = ω1 + . . . + ωn, then X ∼

Bin(n, p). In words, the number of heads in n tosses of a p-coin has Bin(n, p) distribution.
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FIGURE 6. Pois(2.5) pmf on the left. On the right, we have the histogram of 100
samples from this distribution

Example 59. Fix p ∈ (0, 1] and let f(k) = qk−1p for k ∈ N+. This is called the Geometric distribution
with parameter p and is denoted Geo(p). The CDF is

F (t) =

0 if t < 1,

1− qk if k ≤ t < k + 1, for some k ≥ 1.

For example, the number of tosses of a p-coin till the first head turns up, is a random variable with
Geo(p) distribution.

Example 60. Fix λ > 0 and define the pmf f(k) = e−λ λ
k

k! . This is called the Poisson distribution with

parameter λ and is denoted Pois(λ). In the problem of a psychic (randomly) guessing the cards
in a deck, we have seen that the number of matches (correct guesses) had an approximately Pois(1)
distribution.

Example 61. Fix positive integers b, w and m ≤ b + w. Define the pmf f(k) =
(bk)(

w
m−k)

(b+wm )
where the

binomial coefficient
(
x
y

)
is interpreted to be zero if y > x (thus f(k) > 0 only for max{m− w, 0} ≤

k ≤ b). This is called the Hypergeometric distribution with parameters b, w,m and we shall denote it
by Hypergeo(b, w,m).

36



Consider a population with b men and w women. The number of men in a random sample
(without replacement) of size m, is a random variable with the Hypergeo(b, w,m) distribution.

Computing expectations from the pmf Let X be a random variable on (Ω, p) with pmf f . Then
we claim that

E[X] =
∑
t∈R

tf(t).

Indeed, let Range(X) = {x1, x2, . . .}. Let Ak = {ω : X(ω) = xk}. By definition of pmf we have
P(Ak) = f(xk). Further, Ak are pairwise disjoint and exhaustive. Hence

E[X] =
∑
ω∈Ω

X(ω)pω =
∑
k

∑
ω∈Ak

X(ω)pω =
∑
k

xkP(Ak) =
∑
k

xkf(xk).

Similarly, E[X2] =
∑

k x
2
kf(xk). More generally, if h : R → R is any function, then the random

variable h(X) has expectation E[h(X)] =
∑

k h(xk)f(xk). Although this sounds trivial, there is a

very useful point here. To calculate E[X2] we do not have to compute the pmf of X2 first, which
can be done but would be more complicated. Instead, in the above formulas, E[h(X)] has been
computed directly in terms of the pmf of X .

Exercise 62. Find E[X] and E[X2] in each case.

(1) X ∼ Bin(n, p).

(2) X ∼ Geo(p).

(3) X ∼ Pois(λ).

(4) X ∼ Hypergeo(b, w,m).

12. GENERAL PROBABILITY DISTRIBUTIONS

We take the first three of the four properties of CDF proved in the previous section as the defini-
tion of a CDF or distribution function, in general.

Definition 63. A (cumulative) distribution function (or CDF for short) is any function F : R →
[0, 1] be a non-decreasing, right continuous function such that F (t)→ 0 as t→ −∞ and F (t)→ 1

as t→ +∞.

If (Ω, p) is a discrete probability space and X : Ω 7→ R is any random variable, then the function
F (t) = P{ω : X(ω) ≤ t} is a CDF, as discussed in the previous section. However, there are
distribution functions that do not arise in this manner.
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Example 64. Let

F (t) =


0 if t ≤ 0,

t if 0 < t < 1,

1 if t ≥ 1.

Then it is easy to see that F is a distribution function. However, it has no jumps and hence it does
not arise as the CDF of any random variable on a discrete probability space.

There are two ways to rectify this issue.

(1) The first way is to learn the notion of uncountable probability spaces, which poses many
subtleties. It requires a semester or so of real analysis and measure theory. But after that
one can define random variables on uncountable probability spaces and the above example
will turn out to be the CDF of some random variable on some (uncountable) probability
space.

(2) Just regard CDFs such as in the above example as reasonable approximations to CDFs
of some discrete random variables. For example, if Ω = {ω0, ω1, . . . , ωN} and p(ωk) =

1/(N + 1) for all 0 ≤ k ≤ N , and X : Ω 7→ R is defined by X(ωk) = k/n, then it is easy to
check that the CDF of X is the function G given by

G(t) =


0 if t ≤ 0,

k
N+1 if k−1

N ≤ t < k
N for some k = 1, 2, . . . , N

1 if t ≥ 1.

Now, if N is very large, then the function G looks approximately like the function F . Just
as it is convenient to regard water as a continuous medium in some problems (although
water is made up of molecules and is discrete at small scales), it is convenient to use the
continuous function F as a reasonable approximation to the step function G.

We shall take the second option out. Whenever we write continuous distribution functions such
as in the above example, at the back of our mind we have a discrete random variable (taking a
large number of closely placed values) whose CDF is approximated by our distribution function.
The advantage of using continuous objects instead of discrete ones is that the powerful tools of
Calculus become available to us.

13. UNCOUNTABLE PROBABILITY SPACES - CONCEPTUAL DIFFICULTIES

The following two “random experiments” are easy to imagine, but difficult to fit into the framework of

probability spaces9.

9This section should be omitted by everyone other than those who are keen to know what we meant by the concep-

tual difficulties of uncountable probability spaces
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(1) Toss a p-coin infinitely many times: Clearly the sample space is Ω = {0, 1}N. But what is pω for any

ω ∈ Ω? The only reasonable answer is pω = 0 for all ω. But then how to define P(A) for any A? For

example, if A = {ω : ω1 = 0, ω2 = 0, ω3 = 1}, then everyone agrees that P(A) “ought to be” q2p, but

how does that come about? The basic problem is that Ω is uncountable, and probabilities of events

are not got by summing probabilities of singletons.

(2) Draw a number at random from [0, 1]: Again, it is clear that Ω = [0, 1], but it also seems reasonable

that px = 0 for all x. Again, Ω is uncountable, and probabilities of events are not got by summing

probabilities of singletons. It is “clear” that if A = [0.1, 0.4], then P(A) “ought to be” 0.3, but it gets

confusing when one tries to derive this from something more basic!

The resolution: Let Ω be uncountable. There is a class of basic subsets (usually not singletons) of Ω for

which we take the probabilities as given. We also take the rules of probability, namely, countable additivity,

as axioms. Then we use the rules to compute the probabilities of more complex events (subsets of Ω) by

expressing those events in terms of the basic sets using countable intersections, unions and complements

and applying the rules of probability.

Example 65. In the example of infinite sequence of tosses, Ω = {0, 1}N. Any set of the form A = {ω : ω1 =

ε1, . . . , ωk = εk} where k ≥ 1 and εi ∈ {0, 1} will be called a basic set and its probability is defined to be

P(A) =
∏k
j=1 p

εjq1−εj where we assume that p > 0. Now consider a more complex event, for example, B =

{ω : ωk = 1 for some k}. We can writeB = A1∪A2∪A3∪. . .whereAk = {ω : ω1 = 0, . . . , ωk−1 = 0, ωk = 1}.
Since Ak are pairwise disjoint, the rules of probability demand that P(B) should be

∑
kP(Ak) =

∑
k q

k−1p

which is in fact equal to 1.

Example 66. In the example of drawing a number at random from [0, 1], Ω = [0, 1]. Any interval (a, b)

with 0 ≤ a < b ≤ 1 is called a basic set and its probability is defined as P(a, b) = b − a. Now consider

a non-basic event B = [a, b]. We can write B = A1 ∪ A2 ∪ A3 . . . where Ak = (a + (1/k), b − (1/k)).

Then Ak is an increasing sequence of events and the rules of probability say that P(B) must be equal to

limk→∞P(Ak) = limk→∞(b − a − (2/k)) = b − a. Another example could be C = [0.1, 0.2) ∪ (0.3, 0.7].

Similarly argue that P({x}) = 0 for any x ∈ [0, 1]. A more interesting one is D = Q ∩ [0, 1]. Since it is a

countable union of singletons, it must have zero probability! Even more interesting is the 1/3-Cantor set.

Although uncountable, it has zero probability!

Consistency: Is this truly a solution to the question of uncountable spaces? Are we assured of never run-

ning into inconsistencies? Not always.

Example 67. Let Ω = [0, 1] and let intervals (a, b) be open sets with their probabilities defined as P(a, b) =
√
b− a. This quickly leads to problems. For example, P(0, 1) = 1 by definition. But (0, 1) = (0, 0.5) ∪

(0.5, 1) ∪ {1/2} from which the rules of probability would imply that P(0, 1) must be at least P(0, 1/2) +

P(1/2, 1) = 1√
2

+ 1√
2

=
√

2 which is greater than 1. Inconsistency!
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Exercise 68. Show that we run into inconsistencies if we define P(a, b) = (b− a)2 for 0 ≤ a < b ≤ 1.

Thus, one cannot arbitrarily assign probabilities to basic events. However, if we use the notion of distri-

bution function to assign probabilities to intervals, then no inconsistencies arise.

Theorem 69. Let Ω = R and let intervals of the form (a, b] with a < b be called basic sets. Let F be any distribution

function. Define the probabilities of basic sets as P{(a, b]} = F (b) − F (a). Then, applying the rules of probability
to compute probabilities of more complex sets (got by taking countable intersections, unions and complements) will
never lead to inconsistency.

Let F be any CDF. Then, the above consistency theorem really asserts that there exists (a possibly un-

countable) probability space and a random variable such that F (t) = P{X ≤ t} for all t. We say that X has

distribution F . However, it takes a lot of technicalities to define what uncountable probability spaces look

like and what random variables mean in this more general setting, we shall never define them.

The job of a probabilist consists in taking a CDF F (then the probabilities of intervals are already given

to us as F (b) − F (a) etc.) and find probabilities of more general subsets of R. Here are the working rules.

Instead we can use the following simple working rules to answer questions about the distribution of a

random variable.

(1) For an a < b, we set P{a < X ≤ b} := F (b)− F (a).

(2) If Ij = (aj , bj ] are countably many pairwise disjoint intervals, and I =
⋃
j Ij , then we define P{X ∈

I} :=
∑
j F (bj)− F (aj).

(3) For a general set A ⊆ R, here is a general scheme: Find countably many pairwise disjoint intervals

Ij = (aj , bj ] such that A ⊆ ∪jIj . Then we define P{X ∈ A} as the infimum (over all such coverings

by intervals) of the quantity
∑
j F (bj)− F (aj).

All of probability in another line: Take an (interesting) random variable X with a given CDF F and an

(interesting) set A ⊆ R. Find P{X ∈ A}.

There are loose threads here but they can be safely ignored for this course. We just remark about them

for those who are curious to know.

Remark 70. The above method starts from a CDF F and defines P{X ∈ A} for all subsetsA ⊆ R. However,

for most choices of F , the countable additivity property turns out to be violated! However, the sets which

do violate them rarely arise in practice and hence we ignore them for the present.

Exercise 71. Let X be a random variable with distribution F . Use the working rules to find the following

probabilities.

(1) Write P{a < X < b}, P{a ≤ X < b}, P{a ≤ X ≤ b} in terms of F .

(2) Show that P{X = a} = F (a)− F (a−). In particular, this probability is zero unless F has a jump at

a.

We now illustrate how to calculate the probabilities of rather non-trivial sets in a special case. It is not

always possible to get an explicit answer as here.
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Example 72. Let F be the CDF defined in example 64. We calculate P{X ∈ A} for two sets A.

1. A = Q ∩ [0, 1]. Since A is countable, we may write A = ∪n{rn} and hence A ⊆ ∪nIn where In =

(rn, rn + δ2−n] for any fixed δ > 0. Hence P{X ∈ A} ≤
∑
n F (rn + δ2−n) − F (rn) ≤ 2δ. Since this is

true for every δ > 0, we must have P{X ∈ A} = 0. (We stuck to the letter of the recipe described earlier.

It would have been simpler to say that any countable set is a countable union of singletons, and by the

countable additivity of probability, must have probability zero. Here we used the fact that singletons have

zero probability since F is continuous).

2. A = Cantor’s set10 How to find P{X ∈ A}? Let An be the set of all x ∈ [0, 1] which do not have 1 in the

first n digits of their ternary expansion. ThenA ⊆ An. Further, it is not hard to see thatAn = I1∪I2∪. . .∪I2n
where each of the intervals Ij has length equal to 3−n. Therefore, P{X ∈ A} ≤ P{X ∈ An} = 2n3−n which

goes to 0 as n→∞. Hence, P{X ∈ A} = 0.

14. EXAMPLES OF CONTINUOUS DISTRIBUTIONS

Cumulative distributions will also be referred to as simply distribution functions or distribu-
tions. We start by giving two large classes of CDFs. There are CDFs that do not belong to either of
these classes, but for practical purposes they may be ignored (for now).

(1) (CDFs with pmf). Let f be a pmf, i.e., let t1, t2, . . . be a countable subset of reals and let
f(ti) be non-negative numbers such that

∑
i f(ti) = 1. Then, define F : R→ R by

F (t) :=
∑
i:ti≤t

f(ti).

Then, F is a CDF. Indeed, we have seen that it is the CDF of a discrete random variable. A
special feature of this CDF is that it increases only in jumps (in more precise language, if F
is continuous on an interval [s, t], then F (s) = F (t)).

(2) (CDFs with pdf). Let f : R → R+ be a function (convenient to assume that it is a piece-

wise continuous function) such that
∫ +∞
−∞ f(u)du = 1. Such a function is called a probability

density function or pdf for short. Then, define F : R→ R by

F (t) :=

∫ t

−∞
f(u)du.

10To define the Cantor set, recall that any x ∈ [0, 1] may be written in ternary expansion as x = 0.u1u2 . . . :=∑∞
n=1 un3−n where un ∈ {0, 1, 2}. This expansion is unique except if x is a rational number of the form p/3m for

some integers p,m (these are called triadic rationals). For triadic rationals, there are two possible ternary expansions,

a terminating one and a non-terminating one (for example, x = 1/3 can be written as 0.100 . . . or as 0.0222 . . .). For

definiteness, for triadic rationals we shall always take the non-terminating ternary expansion. With this preparation,

the Cantor set is defined as the set of all x which do not have the digit 1 in their ternary expansion.
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Again, F is a CDF. Indeed, it is clear that F has the increasing property (if t > s, then

F (t) − F (s) =
∫ t
s f(u)du which is non-negative because f(u) is non-negative for all u),

and its limits at ±∞ are as they should be (why?). As for right-continuity, F is in-fact
continuous. Actually F is differentiable except at points where f is discontinuous and

F ′(t) = f(t).

Remark 73. We understand the pmf. For example if X has pmf f , then f(ti) is just the probability
that X takes the value ti. How to interpret the pdf? If X has pdf f , then as we already remarked,
the CDF is continuous and hence P{X = t} = 0. Therefore f(t) cannot be interpreted as P{X = t}
(in fact, pdf can take values greater than 1, so it cannot be a probability!).

To interpret f(a), take a small positive number δ and look at

F (a+ δ)− F (a) =

a+δ∫
a

f(u)du ≈ δf(a).

In other words, f(a) measures the chance of the random variable taking values near a. Higher the
pdf, greater the chance of taking values near that point.

Among distributions with pmf, we have seen the Binomial, Poisson, Geometric and Hypergeo-
metric families of distributions. Now we give many important examples of distributions (CDFs)
with densities.

Example 74. Uniform distribution on the interval [a, b]:, denoted Unif([a, b]) where a < b is the
distribution with density and distribution given by

PDF: f(t) =

 1
b−a if t ∈ (a, b)

0 otherwise
CDF: F (t) =


0 if t ≤ a
t−a
b−a if t ∈ (a, b)

1 if t ≥ b.

Example 75. Exponential distribution with parameter λ:, denoted Exp(λ) where λ > 0 is the
distribution with density and distribution given by

PDF: f(t) =

λe−λt if t > 0

0 otherwise
CDF: F (t) =

0 if t ≤ 0

1− e−λt if t > 0.
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FIGURE 7. Exponential densities and CDFs with λ = 1, 2, 3 (which is which?)
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FIGURE 8. Normal densities and CDFs with µ = 0 and σ2 = 1, 2, 1
2 (which is which?)

Example 76. Normal distribution with parameters µ, σ2:, denoted N(µ, σ2) where µ ∈ R and

σ2 > 0 is the distribution with density and distribution given by

PDF: ϕµ,σ2(t) =
1√
2π
e−

1
2σ2 (t−µ)2

CDF: Φµ,σ2(t) =

t∫
−∞

ϕµ,σ2(u)du.

There is no closed form expression for the CDF. It is standard notation to write ϕ and Φ to denote

the normal density and CDF when µ = 0 and σ2 = 1. N(0, 1) is called the standard normal

distribution. By a change of variable one can check that Φµ,σ2(t) = Φ( t−µσ ).

We said that the normal CDF has no simple expression, but is it even clear that it is a CDF?! In

other words, is the proposed density a true pdf? Clearly ϕ(t) = 1√
2π
e−t

2/2 is non-negative. We

need to check that its integral is 1.

Lemma 77. Fix µ ∈ R and σ > 0 and let ϕ(t) = 1√
2π
e−

1
2σ2 (t−µ)2

. Then,
∞∫
−∞

ϕ(t)dt = 1.

Proof. It suffices to check the case µ = 0 and σ2 = 1 (why?). To find its integral is quite non-trivial.

Let I =
∫∞
−∞ ϕ(t)dt. We introduce the two-variable function h(t, s) := ϕ(t)ϕ(s) = (2π)−1e−(t2+s2)/2.

On the one hand, ∫ ∞
−∞

∫ ∞
−∞

h(t, s)dtds =

(∫ +∞

−∞
ϕ(t)dt

)(∫ +∞

−∞
ϕ(s)ds

)
= I2.
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FIGURE 9. Gamma densities and CDFs with λ = 1 and ν = 1, 2, 3 (which is which?)

On the other hand, using polar co-ordinates t = r cos θ, s = r sin θ, we see that∫ ∞
−∞

∫ ∞
−∞

h(t, s)dtds =

∫ ∞
0

∫ 2π

0
(2π)−1e−r

2/2rdθdr =

∫ ∞
0

re−r
2/2dr = 1

since d
dre
−r2/2 = −re−r2/2. Thus I2 = 1 and hence I = 1. �

Example 78. Gamma distribution with shape parameter ν and scaler parameter λ:, where ν > 0

and λ > 0, denoted Gamma(ν, λ) is the distribution with density and distribution given by -

PDF: f(t) =

 1
Γ(ν)λ

νtν−1e−λt if t > 0

0 otherwise
CDF: F (t) =

0 if t ≤ 0∫ t
0 f(u)du if t > 0.

Here Γ(ν) :=
∫∞

0 tν−1e−tdt. Firstly, f is a density, that is, that it integrates to 1. To see this, make

the change of variable λt = u to see that∫ ∞
0

λνe−λttν−1dt =

∫ ∞
0

e−uuν−1dν = Γ(ν).

Thus,
∫∞

0 f(t)dt = 1.

When ν = 1, we get back the exponential distribution. Thus, the Gamma family subsumes the
exponential distributions. For positive integer values of ν, one can actually write an expression
for the CDF of Gamma(ν, λ) as (this is a homework problem)

Fν,λ(t) = 1− e−λt
ν−1∑
k=0

(λt)k

k!
.

Once the expression is given, it is easy to check it by induction (and integration by parts). A
curious observation is that the right hand side is exactly P(N ≥ ν) where N ∼ Pois(λt). This is
in fact indicating a deep connection between Poisson distribution and the Gamma distributions.
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The function Γ(ν), also known as Euler’s Gamma function, is an interesting and important one

and occurs all over mathematics. 11

Example 79. Beta distributions: Let α, β > 0. The Beta distribution with parameters α, β, denoted
Beta(α, β), is the distribution with density and distribution given by -

PDF: f(t) =

 1
B(α,β) t

α−1(1− t)β−1 if t ∈ (0, 1)

0 otherwise
CDF: F (t) =


0 if t ≤ 0∫ t

0 f(u)du if t ∈ (0, 1)

0 if t ≥ 1.

11The Gamma function: The function Γ : (0,∞)→ R defined by Γ(ν) =
∫∞

0
e−ttν−1dt is a very important function

that often occurs in mathematics and physics. There is no simpler expression for it, although one can find it explicitly

for special values of ν. One of its most important properties is that Γ(ν + 1) = νΓ(ν). To see this, consider

Γ(ν + 1) =

∫ ∞
0

e−ttνdt = −e−ttν
∣∣∣∞
0

+ ν

∫ ∞
0

e−ttν−1dt = νΓ(ν).

Starting with Γ(1) = 1 (direct computation) and using the above relationship repeatedly one sees that Γ(ν) = (ν − 1)!

for positive integer values of ν. Thus, the Gamma function interpolates the factorial function (which is defined only for

positive integers). Can we compute it for any other ν? The answer is yes, but only for special values of ν. For example,

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx =
√

2

∫ ∞
0

e−y
2/2dy

by substituting x = y2/2. The last integral was computed above in the context of the normal distribution and equal to√
π/2. Hence we get Γ(1/2) =

√
π. From this, using again the relation Γ(ν + 1) = νΓ(ν), we can compute Γ(3/2) =

1
2

√
π, Γ(5/2) = 3

4

√
π, etc. Yet another useful fact about the Gamma function is its asymptotics as ν →∞.

Stirling’s approximation: Γ(ν+1)

ν
ν+1

2 e−ν
√

2π
→ 1 as ν →∞.

A small digression: It was Euler’s idea to observe that n! =
∫∞

0
xne−xdx and that on the right side n could be replaced

by any real number greater than −1. But this was his second approach to defining the Gamma function. His first

approach was as follows. Fix a positive integer n. Then for any ` ≥ 1 (also a positive integer), we may write

n! =
(n+ `)!

(n+ 1)(n+ 2) . . . (n+ `)
=
`!(`+ 1) . . . (`+ n)

(n+ 1) . . . (n+ `)
=

`! `n

(n+ 1) . . . (n+ `)
· (`+ 1) . . . (`+ n)

`n

The second factor approaches 1 as `→∞. Hence,

n! = lim
`→∞

`! `n

(n+ 1) . . . (n+ `)
.

Euler then showed (by a rather simple argument that we skip) that the limit on the right exists if we replace n by any

complex number other than {−1,−2,−3, . . .} (negative integers are a problem as they make the denominator zero).

Thus, he extended the factorial function to all complex numbers except negative integers! It is a fun exercise to check

that this agrees with the definition by the integral given earlier. In other words, for ν > −1, we have

lim
`→∞

`! `ν

(ν + 1) . . . (ν + `)
=

∫ ∞
0

xνe−xdx.
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Here B(α, β) :=
∫ 1

0 t
α−1(1 − t)β−1dt. Again, for special values of α, β (eg., positive integers), one

can find the value of B(α, β), but in general there is no simple expression. However, it can be
expressed in terms of the Gamma function!

Proposition 80. For any α, β > 0, we have B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

Proof. For β = 1 we see that B(α, 1) =
∫ 1

0 t
α−1 = 1

α which is also equal to Γ(α)Γ(1)
Γ(α+1) as required.

Similarly (or by the symmetry relation B(α, β) = B(β, α)), we see that B(1, β) also has the desired
expression.

Now for any other positive integer value of α and real β > 0 we can integrate by parts and get

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt

= − 1

β
tα−1(1− t)β

∣∣∣1
0

+
α− 1

β

∫ 1

0
tα−2(1− t)βdt

=
α− 1

β
B(α− 1, β + 1).

Note that the first term vanishes because α > 1 and β > 0. When α is an integer, we repeat this for
α times and get

B(α, β) =
(α− 1)(α− 2) . . . 1

β(β + 1) . . . (β + α− 2)
B(1, β + α− 1).

But we already checked that B(1, β + α− 1) = Γ(1)Γ(α+β−1)
Γ(α+β) from which we get

B(α, β) =
(α− 1)(α− 2) . . . 1

β(β + 1) . . . (β + α− 2)

Γ(1)Γ(α+ β − 1)

Γ(α+ β)
=

Γ(α)Γ(β)

Γ(α+ β)

by the recursion property of the Gamma function. Thus we have proved the proposition when α
is a positive integer. By symmetry the same is true when β is a positive integer (and α can take
any value). We do not bother to prove the proposition for general α, β > 0 here. �

Example 81. The standard Cauchy distribution: is the distribution with density and distribution
given by

PDF: f(t) =
1

π(1 + t2)
CDF: F (t) =

1

2
+

1

π
tan−1 t.

One can also make a parametric family of Cauchy distributions with parameters λ > 0 and a ∈ R
denoted Cauchy(a, λ) and having density and CDF

f(t) =
λ

π(λ2 + (t− a)2)
F (t) =

1

2
+

1

π
tan−1

(
t− a
λ

)
.
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Remark 82. Does every CDF come from a pdf? Not necessarily. For example any CDF that is
not continuous (for example, CDFs of discrete distributions such as Binomial, Poisson, Geometric
etc.). In fact even continuous CDFs may not have densities (there is a good example manufactured
out of the 1/3-Cantor set, but that would take us out of the topic now). However, suppose F
is a continuous CDF and suppose F is differentiable except at finitely many points and that the

derivative is a continuous function. Then f(t) := F ′(t) defines a pdf which by the fundamental

theorm of Calculus satisfies F (t) =
∫ t
−∞ f(u)du.

15. SIMULATION

As we have emphasized, probability is applicable to many situations in the real world. As such
one may conduct experiments to verify the extent to which theorems are actually valid. For this
we need to be able to draw numbers at random from any given distribution.

For example, take the case of Bernoulli(1/2) distribution. One experiment that can give this is
that of physically tossing a coin. This is not entirely satisfactory for several reasons. Firstly, are
real coins fair? Secondly, what if we change slightly and want to generate from Ber(0.45)? In this
section, we describe how to draw random numbers from various distributions on a computer. We
do not fully answer this question. Instead what we shall show is
If one can generate random numbers from Unif([0, 1]) distribution, then one can draw random numbers
from any other distribution. More precisely, suppose U is a random variable with Unif([0, 1]) distribution.
We want to simulate random numbers from a given distribution F . Then, we shall find a function ψ :

[0, 1]→ R so that the random variable X := ψ(U) has the given distribution F .
The question of how to draw random numbers from Unif([0, 1]) distribution is a very difficult

one and we shall just make a few superficial remarks about that.

Drawing random numbers from a discrete pmf: First start with an example.

Example 83. Suppose we want to draw random numbers from Ber(0.4) distribution. Let ψ :

[0, 1] → R be defined as ψ(t) = 1t≤0.4. Let X = ψ(U), i.e., X = 1 if U ≤ 0.4 and X = 0 oth-
erwise. Then

P{X = 1} = P{U ≤ 0.4} = 0.4, P{X = 0} = P{U > 0.4} = 0.6.

Thus, X has Ber(0.4) distribution.

It is clear how to generalize this.

General rule: Suppose we are given a pmf f(
t1 t2 t3 . . .

f(t1) f(t2) f(t3) . . .

)
.
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Then, define ψ : [0, 1]→ R as

ψ(u) =



t1 if u ∈ [0, f(t1)]

t2 if u ∈ (f(t1), f(t1) + f(t2)]

t3 if u ∈ (f(t1) + f(t2), f(t1) + f(t2) + f(t3)]
...

...

.

Then define X = f(U). Clearly X takes the values t1, t2, . . . and

P{X = tk} = P


k−1∑
j=1

f(tj) < U ≤
k∑
j=1

f(tj)

 = f(tk).

Thus X has pmf f .

Exercise 84. Draw 100 random numbers from each of the following distributions and draw the
histograms. Compare with the pmf.

(1) Bin(n, p) for n = 10, 20, 40 and p = 0.5, 0.3, 0.9.

(2) Geo(p) for p = 0.9, 0.5, 0.3.

(3) Pois(λ) with λ = 1, 4, 10.

(4) Hypergeo(N1, N2,m) with N1 = 100, N2 = 50,m = 20, N1 = 1000, N2 = 1000,m = 40.

Drawing random numbers from a pdf: Clearly the procedure used for generating from a pmf is
inapplicable here. First start with two examples. As before U is a Unif([0, 1]) random variable.

Example 85. Suppose we want to draw from the Unif([3, 7]) distribution. Set X = 4U + 3. Clearly

P{X ≤ t} = P{U ≤ t− 3

4
} =


0 if t < 0

(t− 3)/4 if 3 ≤ t ≤ 7

1 if t > 7

.

This is precisely the CDF of Unif([3, 7]) distribution.

Example 86. Here let us do the opposite, just take some function of a uniform variable and see

what CDF we get. Let ψ(t) = t3 and let X = ϕ(U) = U3. Then,

F (t) := P{X ≤ t} = P{U ≤ t1/3} =


0 if t < 0

t1/3 if 0 ≤ t ≤ 1

1 if t > 1

.
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Differentiating the CDF, we get the density

f(t) = F ′(t) =

1
3 t
−2/3 if 0 < t < 1

0 otherwise.

The derivative does not exist at 0 and 1, but as remarked earlier, it does not matter if we change
the value of the density at finitely many points (as the integral over any interval will remain the
same). Anyway, we notice that the density is that of Beta(1/3, 1). Hence X ∼ Beta(1/3, 1).

This gives us the idea that to generate random number from a CDF F , we should find a function
ψ : [0, 1]→ R such that X := ψ(U) has the distribution F . How to find the distribution of X?

Lemma 87. Let ψ : (0, 1) → R be a strictly increasing function with a = ψ(0+) and b = ψ(1−). Let
X = ψ(U). Then X has CDF

F (t) =


0 if t ≤ a

ψ−1(t) if a < t < b

1 if t ≥ b.

If is ψ also differentiable and the derivative does not vanish anywhere (or vanishes at finitely many points
only), then X has pdf

f(t) =


(
ψ−1

)′
(t) if a < t < b

0 if t 6∈ (a, b).

Proof. Since ψ is strictly increasing, ψ(u) ≤ t if and only if u ≤ ψ−1(t). Hence,

F (t) = P{X ≤ t} = P{U ≤ ψ−1(t)} =


0 if t ≤ a

ψ−1(t) if a < t < b

1 if t ≥ b.

If ψ is differentiable at and ψ(u) 6= 0, then ψ−1 is differentiable at t = ψ(u) (and indeed, (ψ−1)′(t) =
1

ψ′(u) ). Thus we get the formula for the density. �

From this lemma, we immediately get the following rule for generating random numbers from
a density.

How to simulate from a CDF: Let F be a CDF that is strictly increasing on an interval [A,B]

where F (A) = 0 and F (B) = 1 (it is allowed to take A = −∞ and/or B = +∞). Then define

ψ : (0, 1) → (A,B) as ψ(u) = F−1(u). Let U ∼ Unif([0, 1]) and let X = ψ(U). Then X has CDF
equal to F .
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This follows from the lemma because ψ is define as the inverse of F and hence F (restricted to
(A,B)) is the inverse of ψ. Further, as the inverse of a strictly increasing function, the function ψ
is also strictly increasing.

Example 88. Consider the Exponential distribution with parameter λ whose CDF is

F (t) =

0 if t ≤ 0

1− e−λt if t > 0

Take A = 0 and B = +∞. Then F is increasing on (0,∞) and its inverse is the function ψ(u) =

− 1
λ log(1−u). Thus to simulate a random number from Exp(λ) distribution, we setX = − 1

λ log(1−
U).

When the CDF is not explicitly available as a function we can still adopt the above procedure
but only numerically. Consider an example.

Example 89. Suppose F = Φ, the CDF of N(0, 1) distribution. Then we do not have an explicit

form for either Φ or for its inverse Φ−1. With a computer we can do the following. Pick a large
number of closely placed points, for example divide the interval [−5, 5] into 1000 equal intervals
of length 0.01 each. Let the endpoints of these intervals be labelled t0 < t1 < . . . < t1000. For each

i, calculate Φ(ti) =
∫ ti
−∞

1√
2π
e−x

2/2dx using numerical methods for integration, say the numerical

value obtained is wi. This is done only once and create the table of values

t0 t1 t2 . . . . . . t1000

w0 w1 w2 . . . . . . w1000

.

Now draw a uniform random number U . Look up the table and find the value of i for which
wi < U < wi+1. Then set X = ti. If it so happens that U < w0, set X = t0 = −5 and if U > w1000

set X = t1000 = 5. But since Φ(−5) < 0.00001 and Φ(5) > 0.99999, it is highly unlikely that the last
two cases will occur. The random variable X has a distribution close to N(0, 1).

Exercise 90. Give an explicit method to draw random numbers from the following densities.

(1) Cauchy distribution with density 1
π(1+x2)

.

(2) Beta(1
2 ,

1
2 ) density 1

π
1√

x(1−x)
on [0, 1] (and zero elsewhere).

(3) Pareto(α) distribution which by definition has the density

f(t) =

αt−α−1 if t ≥ 1,

0 if t < 1.
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We have described a general principle. When we do more computations with random variables
and understand the relationships between different distributions, better tricks can be found. For
example, we shall see later that we can generate twoN(0, 1) random numbers as follows: Pick two

uniform random numbersU, V and setX =
√
−2 log(1− U) cos(2πV ) and Y =

√
−2 log(1− U) sin(2πV ).

Then it turns out thatX and Y have exactlyN(0, 1) distribution! As another example, suppose we
need to generate from Gamma(3, 1) distribution, we can first generate three uniforms U1, U2, U3

and set ξi = − log(1 − Ui) (so ξi have exponential distribution) and then define X = ξ1 + ξ2 + ξ3.
It turns out that X has Gamma(3, 1) distribution!

Remark 91. We have conveniently skipped the question of how to draw random numbers from
uniform distribution in the first place. This is a difficult topic and various results, proved and
unproved, are used in generating such numbers. For example,

16. JOINT DISTRIBUTIONS

In many situations we study several random variables at once. In such a case, knowing the
individual distributions is not sufficient to answer all relevant questions. This is like saying that
knowing P(A) and P(B) is insufficient to calculate P(A ∩B) or P(A ∪B) etc.

Definition 92 (Joint distribution). LetX1, X2, . . . , Xm be random variables on the same probability
space. We call X = (X1, . . . , Xm) a random vector, as it is just a vector of random variables. The
CDF of X, also called the joint CDF of X1, . . . , Xm is the function F : Rm → R defined as

F (t1, . . . , tm) = P{X1 ≤ t1, . . . , Xm ≤ tm} = P

{
m⋂
i=1

{Xi ≤ ti}

}
.

.

Example 93. Consider two events A and B in the probability space and let X = 1A and Y = 1B

be their indicator random variables. Their joint CDF is given by

F (s, t) =



0 if s < 0 or t < 0

P(Ac ∩Bc) if s ≥ 0, t < 1 or t ≥ 0, s < 1

P(A) if 0 ≤ s < 1 and t ≥ 1

P(B) if 0 ≤ t < 1 and s ≥ 1

P(A ∩B) if s ≥ 1, t ≥ 1

Properties of joint CDFs: The following properties of the joint CDF F : Rm → [0, 1] are analogous
to those of the 1-dimensional CDF and the proofs are similar.

(1) F is increasing in each co-ordinate. That is, if s1 ≤ t1, . . . , sm ≤ tm, then F (s1, . . . , sm) ≤
F (t1, . . . , tm).
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(2) limF (t1, . . . , tm) = 0 if max{t1, . . . , tm} → −∞ (i.e., one of the ti goes to −∞).

(3) limF (t1, . . . , tm) = 1 if min{t1, . . . , tm} → +∞ (i.e., all of the ti goes to +∞).

(4) F is right continuous in each co-ordinate. That is F (t1 + h1, . . . , tm + hm) → F (t1, . . . , tm)

as hi → 0+.

Conversely any function having these four properties is the joint CDF of some random variables.
From the joint CDF, it is easy to recover the individual CDFs. Indeed, if F : Rm → R is

the CDF of X = (X1, . . . , Xm), then the CDF of X1 is given by F1(t) := F (t,+∞, . . . ,+∞) :=

limF (t, s2, . . . , sm) as si → +∞ for each i = 2, . . . ,m. This is true because if An := {X1 ≤
t}∩ {X2 ≤ n}∩ . . .∩{Xm ≤ n}, then as n→∞, the events An increase to the event A = {X1 ≤ t}.
Hence P(An) → P(A). But P(An) = F (t, n, n, . . . , n) and P(A) = F1(t). Thus we see that
F1(t) := F (t,+∞, . . . ,+∞).

More generally, we can recover the joint CDF of any subset of X1, . . . , Xn, for example, the joint
CDF of X1, . . . , Xk is just F (t1, . . . , tk,+∞, . . . ,+∞).

Joint pmf and pdf: Just like in the case of one random variable, we can consider the following
two classes of random variables.

(1) Distributions with a pmf. These are CDFs for which there exist points t1, t2, . . . in Rm and
non-negative numbers wi such that

∑
iwi = 1 (often we write f(ti) in place of wi) and such

that for every t ∈ Rm we have

F (t) =
∑

i : ti≤t
wi

where s ≤ t means that each co-ordinate of s is less than or equal to the corresponding
co-ordinate of t.

(2) Distributions with a pdf. These are CDFs for which there is a non-negative function (may
assume piecewise continuous for convenience) f : Rm → R+ such that for every t ∈ Rm

we have

F (t) =

t1∫
−∞

. . .

tm∫
−∞

f(u1, . . . , um)du1 . . . dum.

We give two examples, one of each kind.

Example 94. (Multinomial distribution). Fix parameters r,m (two positive integers) and p1, . . . , pm

(positive numbers that add to 1). The multinomial pmf with these parameters is given by

f(k1, . . . , km−1) =
r!

k1!k2! . . . km−1!(r −
∑m−1

i=1 ki)!
pk1

1 . . . p
km−1

m−1 p
r−

∑m−1
i=1 ki

m ,
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if ki ≥ 0 are integers such that k1 + . . .+ km−1 ≤ r. One situation where this distribution arises is
when r balls are randomly placed in m bins, with each ball going into the jth bin with probability
pj , and we look at the random vector (X1, . . . , Xm−1) whereXk is the number of balls that fell into

the kth bin. This random vector has the multinomial pmf12

In this case, the marginal distribution ofXk is Bin(r, pk). More generally, (X1, . . . , X`) has multi-
nomial distribution with parameters r, `, p1, . . . , p`, p0 where p0 = 1 − (p1 + . . . + p`). This is easy
to prove, but even easier to see from the balls in bins interpretation (just think of the last n− ` bins
as one).

Example 95. (Bivariate normal distribution). This is the density on R2 given by

f(x, y) =

√
ab− c2

2π
e−

1
2 [a(x−µ)2+b(y−ν)2+2c(x−µ)(y−ν)],

where µ, ν, a, b, c are real parameters. We shall impose the conditions that a > 0, b > 0 and

ab− c2 > 0 (otherwise the above does not give a density, as we shall see).
The first thing is to check that this is indeed a density. We recall the one-dimensional Gaussian

integral

(1)

+∞∫
−∞

e−
τ
2

(x−a)2
dx =

√
2π

1√
τ

for any τ > 0 and any a ∈ R.

We shall take µ = ν = 0 (how do you compute the integral if they are not?). Then, the exponent in
the density has the form

ax2 + by2 + 2cxy = b
(
y +

c

b

)2
+

(
a− c2

b

)
x2.

Therefore,

∞∫
−∞

e−
1
2 [ax2+by2+2cxy]dy = e−

1
2

(a− c
2

b
)x2

∞∫
−∞

e−
b
2

(y+ c
b
)2

= e−
1
2

(a− c
2

b
)x2

√
2π√
b

12In some books, the distribution of (X1, . . . , Xm) is called the multinomial distribution. This has the pmf

g(k1, . . . , km)
r!

k1!k2! . . . km−1!km!
pk11 . . . p

km−1
m−1 p

km
m

where ki are non-negative integers such that k1 + . . . + km = r. We have chosen our convention so that the binomial

distribution is a special case of the multinomial. . .
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by (1) but ony if b > 0. Now we integrate over x and use (1) again (and the fact that a− c2

b > 0) to
get

∞∫
−∞

∞∫
−∞

e−
1
2 [a(x−µ)2+b(y−ν)2+2c(x−µ)(y−ν)]dydx =

√
2π√
b

∞∫
−∞

e−
1
2

(a− c
2

b
)x2
dx

=

√
2π√
b

√
2π√

a− c2

b

=
2π

ab− c2
.

This completes the proof that f(x, y) is indeed a density. Note that b > 0 and ab − c2 > 0 also
implies that a > 0.

Matrix form of writing the density: Let Σ−1 =

[
a c

c b

]
. Then, det(Σ) = 1

det(Σ−1)
= 1

ab−c2 . Hence,

we may re-write the density above as (let u be the column vector with co-ordinates x, y)

f(x, y) =
1

2π
√

det(Σ)
e−

1
2
utΣ−1u.

This is precisely in the form in which we wrote for general n in the example earlier. The conditions

a > 0, b > 0, ab− c2 > 0 translate precisely to what is called positive-definiteness. One way to say
it is that Σ is a symmetric matrix and all its eigenvalues are strictly positive.

Final form: We can now introduce an extra pair of parameters µ1, µ2 and define a density

f(x, y) =
1

2π
√

det(Σ)
e−

1
2

(u−µ)tΣ−1(u−µ).

where µ is a column vector with co-ordinates µ1, µ2. This is the full bi-variate normal density.

Example 96. (A class of examples). Let f1, f2, . . . , fm be one-variable densities. In other words,

fi : R → R+ and
∫∞
−∞ fi(x)dx = 1. Then, we can make a multivariate density as follows. Define

f : Rm → Rm+ by f(x1, . . . , xm) = f1(x1) . . . fm(xm). Then f is a density.

IfXi are random variables on a common probability space and the joint density of (X1, . . . , Xm)

if f(x1, . . . , xm), then we say that Xi are independent random variables. It is easy to see that the
marginal density of Xi if fi. It is also the case that the joint CDF factors as FX(x1, . . . , xm) =

FX1(x1) . . . FXm(xm).

17. CHANGE OF VARIABLE FORMULA

Let X = (X1, . . . , Xm) be a random vector with density f(t1, . . . , tm). Let T : Rm → Rm be a
one-one function which is continuously differentiable (many exceptions can be made as remarked
later).

54



Let Y = T (X). In co-ordinates we may write Y = (Y1, . . . , Ym) and Y1 = T1(X1, . . . , Xm). . .Ym =

Tm(X1, . . . , Xm) where Ti : Rm → R are the components of T .

Question: What is the joint density of Y1, . . . , Ym?

The change of variable formula: In the setting described above, the joint density of Y1, . . . , Ym is
given by

g(y) = f
(
T−1y

) ∣∣∣∣∣∣ J [T−1](y)
∣∣∣∣∣∣

where J [T−1](y) is the Jacobian determinant of the function T−1 at the point y = (y1, . . . , ym).

Justification: We shall not prove this formula, but give a imprecise but convincing justification

that can be made into a proof. There are two factors on the right. The first one, f(T−1y) is easy to

understand - if Y is to be close to y, then X must be close to T−1y. The second factor involving
the Jacobian determinant comes from the volume change. Let us explain with analogy with mass
density which is a more familiar quantity.

Consider a solid cube with non-uniform density. If you rotate it, the density at any point now
is the same as the original density, but at a different point (the one which came to the current
position). Instead of rotating, suppose we uniformly expand the cube so that the center stays
where it is and the side of the cube becomes twice what it is. What happens to the density at the
center? It goes down by a factor of 8. This is simply because of volume change - the same mass
spreads over a larger volume. More generally, we can have non-uniform expansion, we may cool
some parts of the cube, heat some parts and to varying degrees. What happens to the density? At
each point, the density changes by a factor given by the Jacobian determinant.

Now for a slightly more mathematical justification. We use the language for two variables
(m = 2) but the same reasoning works for any m. Fix twp point x = (x1, x2) and y = (y1, y2) such

that y = T (x) (and hence x = T−1(y)). The density of Y at y is given by

g(y) ≈ 1

area(N )
P{Y ∈ N}

whereN is a small neighbourhood of the point y (for example a disk of small radius δ centered at
y). By the one-one nature of T and the relationship Y = T (X), we see that

P{Y ∈ N} = P{X ∈ T−1(N )}

where T−1(N ) is the image of N after mapping by T−1. Now, T−1(N ) is a small neighbourhood

of x (if N is a disk, then T−1(N ) would be an approximate ellipse) and hence, by the same inter-
pretation of density we see that

P{X ∈ T−1(N )} ≈ area(T−1(N ))f(x)
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Putting the three displayed equations together, we arrive at the formula

g(y) ≈ f(x)
area(T−1(N ))

area(N )

Thus the problem boils down to how areas change under transformations. A linear map S(y) =

Ay where A is a 2× 2 matrix changes area of any region by a factor of | det(A)|, i.e., area(S(R)) =

|det(A)|area(R).

The differentiability of T means that in a small neighbourhood of y, the mapping T−1 looks

like a linear map, T−1(y + h) ≈ x + DT−1(y)h. Therefore, the areas of small neighbourhoods of

y change by a factor equal to | det(DT−1(y))| which is the Jacobian determinant. In other words,

area(T−1(N )) ≈ |JT−1(y)|area(N ). Consequently g(y) = f(T−1y)|JT−1(y)|.

Enlarging the applicability of the change of variable formula: The change of variable formula is
applicable in greater generality than we stated above.

(1) Firstly, T does not have to be defined on all of Rm. It is sufficient if it is defined on the range
of X (i.e., if f(t1, . . . , tm) = 0 for (t1, . . . , tm) = Rm \ A, then it is enough if T is defined on
A.

(2) Even within the range of X, we can allow T to be undefined, but X must have zero prob-
ability to fall in the set where it is undefined. For example, it can happen at finitely many
points, or on a line (if m ≥ 2) or on a plane (if m ≥ 3) etc.

(3) Similarly, the differentiability of T is required only on a subset outside of which X has
probability 0 of falling.

(4) One-one property of T is important, but there are special cases which can be dealt with by

a slight modification. For example, if T (x) = x2 or T (x1, x2) = (x2
1, x

2
2) where we can split

the space into parts on each of which T is one-one.

Example 97. LetX1, X2 be independent Exp(λ) random variables. Let T (x1, x2) = (x1+x2,
x1

x1+x2
).

This is well-defined on R2
+ (and note that P{(X1, X2) ∈ R2

+} = 1) and its range is R+ × (0, 1). The

inverse function is T−1(y1, y2) = (y1y2, y1(1− y2)). Its Jacobian determinant is

J [T−1](y1, y2) = det

[
y2 y1

1− y2 −y1

]
= −y1.

(X1, X2) has density f(x1, x2) = λ2e−λ(x1+x2) for x1, x2 > 0 (henceforth it will be a convention that
the density is zero except where we specify it). Hence, the random variables Y1 = X1 + X2 and

Y2 = X1
X1+X2

have joint density

g(y1, y2) = f(y1y2, y1(1− y2))|J [T−1](y1, y2)| = λ2e−λ(y1y2+y1(1−y2))y1 = λ2y1e
−λy1
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for y1 > 0 and y2 ∈ (0, 1).

In particular, we see that Y1 = X1 + X2 has density h1(t) =
∫ 1

0 λ
2te−λtds = λ2te−λt (for t > 0)

which means that Y1 ∼ Gamma(2, λ). Similarly, Y2 = X1
X1+X2

has density h2(s) =
∫∞

0 λ2te−λtdt = 1

(for s ∈ (0, 1)) which means that Y2 has Unif(0, 1) distribution. In fact, Y1 and Y2 are also indepen-
dent since g(u, v) = h1(u)h2(v).

Exercise 98. Let X1 ∼ Gamma(ν1, λ) and X2 ∼ Gamma(ν2, λ) (note that the shape parameter is

the same) and assume that they are independent. Find the joint distribution ofX1+X2 and X1
X1+X2

.

Example 99. Suppose we are given that X1 and X2 are independent and each has Exp(λ) distri-
bution. What is the distribution of the random variable X1 +X2?

The change of variable formula works for transformations from Rm to Rm whereas here we
have two random variables X1, X2 and our interest is in one random variable X1 + X2. To use
the change of variable formula, we must introduce an auxiliary variable. For example, we take
Y1 = X1 + X2 and Y2 = X1/(X1 + X2). Then as in the first example, we find the joint density of
(Y1, Y2) using the change of variable formula and then integrate out the second variable to get the
density of Y1.

Let us emphasize the point that if our interest is only in Y1, then we have a lot of freedom in
choosing the auxiliary variable. The only condition is that from Y1 and Y2 we should be able to
recover X1 and X2. Let us repeat the same using Y1 = X1 + X2 and Y2 = X2. Then, T (x1, x2) =

(x1 +x2, x2) maps R2
+ ontoQ := {(y1, y2) : y1 > y2 > 0} in a one-one manner. The inverse function

is T−1(y1, y2) = (y1 − y2, y2). It is easy to see that JT−1(y1, y2) = 1 (check!). Hence, by the change
of variable formula, the density of (Y1, Y2) is given by

g(y1, y2) = f(y1 − y2, y2) · 1

= λ2e−λ(y1−y2)e−λy2 (if y1 > y2 > 0)

= λ2e−λy11y1>y2>0.

To get the density of Y1, we integrate out the second variable. The density of Y1 is

h(u) =

∞∫
−∞

λ2e−λy11y1>y2>0dy2

= λ2e−λy1

y1∫
0

dy2

= λ2y1e
−λy1

which agrees with what we found before.
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Example 100. Suppose R ∼ Exp(λ) and Θ ∼ Unif(0, 2π) and the two are independent. Define

X =
√
R cos(Θ) and Y =

√
R sin(Θ). We want to find the distribution of (X,Y ). For this, we first

write the joint density of (R,Θ) which is given by

f(r, θ) =
1

2π
λe−λr for r > 0, θ ∈ (0, 2π).

Define the transformation T : R+ × (0, 2π) → R2 by T (r, θ) = (
√
r cos θ,

√
r sin θ). The image of

T consists of all (x, y) ∈ R2 with y 6= 0. The inverse is T−1(x, y) = (x2 + y2, arctan(y/x)) where
arctan(y/x) is defined so as to take values in (0, π) when y > 0 and to take values in (π, 2π) when
y < 0. Thus

JT−1(x, y) = det

[
2x 2y
−y

x2+y2
x

x2+y2

]
= 2.

Therefore, (X,Y ) has joint density

g(x, y) = 2f(x2 + y2, arctan(y/x)) =
λ

π
e−λ(x2+y2).

This is for (x, y) ∈ R2 with y 6= 0, but as we have remarked earlier, the value of a pdf in R2 on a
line does not matter, we may define g(x, y) as above for all (x, y) (main point is that the CDF does
not change). Since g(x, y) separates into a function of x and a function of y, X,Y are independent

N(0, 1
2λ).

Remark 101. Relationships between random variables derived by the change of variable formulas
can be used for simulation too. For instance, the CDF of N(0, 1) is not explicit and hence simu-
lating from that distribution is difficult (must resort to numerical methods). However, we can
easily simulate it as follows. Simulate an Exp(1/2) random variable R (easy, as the distribution
function can be inverted) and simulate an independent Unif(0, 2π) random variable Θ. Then set

X =
√
R cos(Θ) and Y =

√
R sin(Θ). These are two independentN(0, 1) random numbers. Here it

should be noted that the random numbers in (0, 1) given by a random number generator are sup-
posed to be independent uniform random numbers (otherwise, it is not acceptable as a random
number generator).

18. INDEPENDENCE AND CONDITIONING OF RANDOM VARIABLES

Definition 102. Let X = (X1, . . . , Xm) be a random vector (this means that Xi are random vari-
ables on a common probability space). We say thatXi are independent ifFX(t1, . . . , tm) = F1(t1) . . . Fm(tm)

for all t1, . . . , tm.

Remark 103. Recalling the definition of independence of events, the equality FX(t1, . . . , tm) =

F1(t1) . . . Fm(tm) is just saying that the events {X1 ≤ t1}, . . . {Xm ≤ tm} are independent. More
generally, it is true that X1, . . . , Xm are independent if and only if {X1 ∈ A1}, . . . , {Xm ∈ Am} are
independent events for any A1, . . . , Am ⊆ R.
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Remark 104. In caseX1, . . . , Xm have a joint pmf or a joint pdf (which we denote by f(t1, . . . , tm)),
the condition for independence is equivalent to

f(t1, . . . , tm) = f1(t1)f2(t2) . . . fm(tm)

where fi is the marginal density (or pmf) of Xi. This fact can be derived from the definition easily.
For example, in the case of densities, observe that

f(t1, . . . , tm) =
∂m

∂t1 . . . ∂tm
F (t1, . . . , tm) (true for any joint density)

=
∂m

∂t1 . . . ∂tm
F1(t1) . . . Fm(tm) (by independence)

= F ′1(t1) . . . F ′m(tm)

= f1(t1) . . . fm(tm).

When we turn it around, this gives us a quicker way to check independence.

Fact: Let X1, . . . , Xm be random variables with joint pdf f(t1, . . . , tm). Suppose we can write this
pdf as f(t1, . . . , tm) = cg1(t1)g2(t2) . . . gm(tm) where c is a constant and gi are some functions of
one-variable. Then, X1, . . . , Xm are independent. Further, the marginal density of Xk is ckgk(t)

where ck = 1∫ +∞
−∞ gk(s)ds

. An analogous statement holds when X1, . . . , Xm have a joint pmf instead

of pdf.

Example 105. Let Ω = {0, 1}n with pω = p
∑
ωkqn−

∑
ωk . Define Xk : Ω → R by Xk(ω) = ωk. In

words, we are considering the probability space corresponding to n tosses of a fair coin and Xk

is the result of the kth toss. We claim that X1, . . . , Xn are independent. Indeed, the joint pmf of
X1, . . . , Xn is

f(t1, . . . , tn) = p
∑
tkqn−

∑
tk where ti = 0 or 1 for each i ≤ n.

Clearly f(t1, . . . , tm) = g(t1)g(t2) . . . g(tn) where g(s) = psq1−s for s = 0 or 1 (this is just a terse
way of saying that g(s) = p if s = 1 and g(s) = q if s = 0). Hence X1, . . . , Xn are independent and
Xk has pmf g (i.e., Xk ∼ Ber(p)).

Example 106. Let (X,Y ) have the bivariate normal density

f(x, y) =

√
ab− c2

√
2π

e−
1
2

(a(x−µ1)2+b(y−µ2)2+2c(x−µ1)(y−µ2)).

If c = 0, we observe that

f(x, y) = C0e
−a(x−µ1)2

2 e−
b(y−µ2)2

2 (C0 is a constant, exact value unimportant)

from which we deduce that X and Y are independent and X ∼ N(µ1,
1
a) while Y ∼ N(µ2,

1
b ).

Can you argue that if c 6= 0, then X and Y are not independent?
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Example 107. Let (X,Y ) be a random vector with density f(x, y) = 1
π1x2+y2≤1 (i.e., it equals 1 if

x2 + y2 ≤ 1 and equals 0 otherwise). This corresponds to picking a point at random from the disk
of radius 1 centered at (0, 0). We claim that X and Y are not independent. A quick way to see this
is that if I = [0.8, 1], then P{(X,Y ) ∈ [0.8, 1]×[0.8, 1]} = 0 whereas P{(X,Y ) ∈ [0.8, 1]}P{(X,Y ) ∈
[0.8, 1]} 6= 0 (If X,Y were independent, we must have had P{(X,Y ) ∈ [a, b] × [c, d]} = P{X ∈
[a, b]}P{Y ∈ [c, d]} for any a < b and c < d).

A very useful (and intuitively acceptable!) fact about independence is as follows.

Fact: Suppose X1, . . . , Xn are independent random variables. Let k1 < k2 < . . . < km = n. Let
Y1 = h1(X1, . . . , Xk1), Y2 = h2(Xk1+1, . . . , Xk2), . . . Ym = hm(Xkm−1 , . . . , Xkm). Then, Y1, . . . , Ym

are also independent.

Remark 108. In the previous section we defined independence of events and now we have defined
independence of random variables. How are they related? We leave it to you to check that events
A1, . . . , An are independent (according the definition of the previous section) if and only if the
random variables 1A1 , . . . ,1Am are independent (according the definition of this section)

Conditioning on random variables:13 Let X1, . . . , Xk+` be random variables on a common prob-
ability space. Let f(t1, . . . , tk+`) be the pmf of (X1, . . . , Xk+`) and let g(t1, . . . , t`) be the pmf of
(Xk+1, . . . , Xk+`) (of course we can compute g from f by summing over the first k indices). Then,
for any s1, . . . , s` such that P{Xk+1 = s1, . . . Xm = s`} > 0, we can define
(2)

hs1,...,s`(t1, . . . , tk) = P{X1 = t1, . . . , Xk = tk

∣∣∣Xk+1 = s1, . . . Xm = s`} =
f(t1, . . . , tk, s1, . . . , s`)

g(s1, . . . , s`)
.

It is easy to see that hs1,...,s`(·) is a pmf on Rk. It is called the conditional pmf of (X1, . . . , Xk) given
that Xk+1 = s1, . . . Xm = s`.

Its interpretation is as follows. Originally we had random observables X1, . . . , Xk which had a
certain joint pmf. Then we observe the values of the random variables Xk+1, . . . , Xk+`, say they
turn out to be s1, . . . , s`, respectively. Then we update the distribution (or pmf) of X1, . . . , Xk

according to the above recipe. The conditional pmf is the new function hs1,...,s`(·).

Exercise 109. Let (X1, . . . , Xn−1) be a random vector with multinomial distribution with param-
eters r, n, p1, . . . , pn. Let k < n − 1. Given that Xk+1 = s1, . . . , Xn−1 = sn−k+1, show that
the conditional distribution of (X1, . . . , Xk) is multinomial with parameters r′, n′, q1, . . . , qk+1

where r′ = r − (s1 + . . . + sn−k+1), n′ = k + 1, qj = pj/(p1 + . . . + pk + pn) for j ≤ k and

qk+1 = pn/(p1 + . . .+ pk + pn).

13This part was not covered in class and may be safely omitted .
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This looks complicated, but is utterly obvious if you think in terms of assigning r balls into
n urns by putting each ball into the urns with probabilities p1, . . . , pn and letting Xj denote the

number of balls that end up in the jth urn.

Conditional densities Now supposeX1, . . . , Xk+` have joint density f(t1, . . . , tk+`) and let g(s1, . . . , s`)

by the density of (Xk+1, . . . , Xk+`). Then, we define the conditional density of (X1, . . . , Xk) given
Xk+1 = s1, . . . , Xk+` = s` as

(3) hs1,...,s`(t1, . . . , tk) =
f(t1, . . . , tk, s1, . . . , s`)

g(s1, . . . , s`)
.

This is well-defined whenever g(s1, . . . , s`) > 0.

Remark 110. Note the difference between (2) and (3). In the latter we have left out the middle
term because P{Xk+1 = s1, . . . , Xk+` = s`} = 0. In (2) the definition of pmf comes from the defi-
nition of conditional probability of events but in (3) this is not so. We simply define the conditional
density by analogy with the case of conditional pmf. This is similar to the difference between in-
terpretation of pmf (f(t) is actually the probability of an event) and pdf (f(t) is not the probability
of an event but the density of probability near t).

Example 111. Let (X,Y ) have bivariate normal density f(x, y) =
√
ab−c2
2π e−

1
2

(ax2+by2+2cxy) (so we

assume a > 0, b > 0, ab − c2 > 0). In the mid-term you showed that the marginal distribution of

Y is N(0, a
ab−c2 ), that is it has density g(y) =

√
ab−c2√
2πa

e−
ab−c2

2a
y2

. Hence, the conditional density of X

given Y = y is

hy(x) =
f(x, y)

g(y)
=

√
a√

2π
e−

a
2

(x+ c
a
y)2
.

Thus the conditional distribution of X given Y = y is N(− cy
a ,

1
a). Compare this with marginal

(unconditional) distribution of X which is N(0, b
ab−c2 ).

In the special case when c = 0, we see that for any value of y, the conditional distribution of
X given Y = y is the same as the unconditional distribution of X . What does this mean? It is
just another way of saying that X and Y are independent! Indeed, when c = 0, the joint density
f(x, y) splits into a product of two functions, one of x alone and one of y alone.

Exercise 112. Let (X,Y ) have joint density f(x, y). Let the marginal densities of X and Y be g(x)

and h(y) respectively. Let hx(y) be the conditional density of Y given X = x.

(1) If X and Y are independent, show that for any x, we have hx(y) = h(y) for all y.

(2) If hx(y) = h(y) for all y and for all x, show that X and Y are independent.

Analogous statements hold for the case of pmf.
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19. MEAN AND VARIANCE

LetX be a random variable with distribution F . We shall assume that it has pmf or pdf denoted
by f .

Definition 113. The expected value (also called mean) of X is defined as the quantity E[X] =∑
t tf(t) if f is a pmf and E[X] =

∫ +∞
−∞ tf(t)dt if f is a pdf (provided the sum or the integral

converges absolutely).

Note that this agrees with the definition we gave earlier for random variables with pmf. it is
possible to define expect value for distributions without pmf or pdf, but we shall not do it here.

Properties of expectation: Let X,Y be random variables both having pmf f, g or pdf f, g, respec-
tively.

(1) Then, E[aX + bY ] = aE[X] + bE[Y ] for any a, b ∈ R. In particular, for a constant random
variable (i.e., X = a with probability 1 for some a, E[X] = a). This is called linearity of
expectation.

(2) If X ≥ Y (meaning, X(ω) ≥ Y (ω) for all ω), then E[X] ≥ E[Y ]

(3) If ϕ : R→ R, then

E[ϕ(X)] =


∑
t
ϕ(t)f(t) if f is a pmf.∫ +∞
−∞ ϕ(t)f(t)dt if f is a pdf.

(4) More generally, if (X1, . . . , Xn) has joint pdf f(t1, . . . , tn) and V = T (X1, . . . , Xn) (here

T : Rn → R), then E[V ] =
∫∞
−∞ . . .

∫∞
−∞ T (x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn.

For random variables on a discrete probability space (then they have pmf), we have essentially
proved all these properties (or you can easily do so). For random variables with pmf, a proper
proof require a bit of work. So we shall just take these for granted. We state one more property of
expectations, its relationship to independence.

Lemma 114. Let X,Y be random variables on a common probability space. If X and Y are indepen-
dent, then E[H1(X)H2(Y )] = E[H1(X)]E[H2(Y )] for any functions H1, H2 : R → R (for which the
expectations make sense). In particular, E[XY ] = E[X]E[Y ].

Proof. Independence means that the joint density (analogous statements for pmf omitted) of (X,Y )

is f the form f(t, s) = g(t)h(s) where g(t) is the density of X and h(s) is the density of Y . Hence,

E[H1(X)H2(Y )] =

∫∫
H1(t)H2(s)f(t, s)dtds =

 ∞∫
−∞

H1(t)g(t)dt

 ∞∫
−∞

H2(s)g(s)ds


which is precisely E[H1(X)]E[H2(Y )]. �
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Expectation is a very important quantity. Using it, we can define several other quantities of
interest.

Discussion: For simplicity let us take random variables to have densities in this discussion. You
may adapt the remarks to the case of pmf easily. The density has all the information we need about
a random variable. However, it is a function, which means that we have to know f(t) for every
t. In real life often we have random variables whose pdf is unknown or impossible to determine.
It would be better to summarize the main features of the distribution (i.e., the density) in a few
numbers. That is what the quantities defined below try to do.

Mean: Mean is another term for expected value.

Quantiles: Let us assume that the CDF F of X is strictly increasing and continuous. Then F−1(t)

is well defined for every t ∈ (0, 1). For each t ∈ (0, 1), the number Qt = F−1(t) is called the

t-quantile. For example, the 1/2-quantile, also called median is the number x such that F (x) = 1
2

(unique when the CDF is strictly increasing and continuous). Similarly one defines 1/4-quantile

and 3/4-quantile and these are sometimes called quartiles.14

Moments: The quantity E[Xk] (if it exists) is called the kth moment of X .

Variance: Let µ = E[X] and define σ2 := E
[
(X − µ)2

]
. This is called the variance of X , also

denoted by Var(X). It can be written in other forms. For example,

σ2 = E[X2 + µ2 − 2µX] (by expanding the square)

= E[X2] + µ2 − 2µE[X] (by property (1) above)

= E[X2]− µ2.

That is Var(X) = E[X2]− (E[X])2.

Standard deviation: The standard deviation of X is defined as s.d.(X) :=
√

Var(X).

Mean absolute deviation: The mean absolute deviation of X is defined as the E[|X −med(X)|].

Coefficient of variation: The coefficient of variation of X is defined as c.v.(X) = s.d.(X)
|E[X]| .

14Another familiar quantity is the percentile, frequently used in reporting performance in competitive exams. For

each x, the x-percentile is nothing but F (x). For exam scores, it tells the proportion of exam-takers who scored less

than or equal to x.
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Covariance: Let X,Y be random variables on a common probability space. The covariance of X
and Y is defined as Cov(X,Y ) = E[(X −E[X])(Y −E[Y ])]. It can also be written as Cov(X,Y ) =

E[XY ]−E[X]E[Y ].

Correlation: Let X,Y be random variables on a common probability space. Their correlation is

defined as Corr(X,Y ) = Cov(X,Y )√
Var(X)

√
Var(Y )

.

Entropy: The entropy of a random variable X is defined as

Ent(X) =

−
∑

i f(t) log(f(ti)) if X has pmf f.

−
∫
f(t) log(f(t)) if X has pdff.

If X = (X1, . . . , Xn) is a random vector, we can define its entropy exactly by the same expressions,
except that we use the joint pmf or pdf of X and the sum or integral is over points in Rn.

Discussion: What do these quantities mean?

Measures of central tendency Mean and median try to summarize the distribution of X by a
single number. Of course one number cannot capture the whole distribution, so there are many
densities and mass functions that have the same mean or median. Which is better - mean or
median? This question has no unambiguous answer. Mean has excellent mathematical properties
(mainly linearity) which the median lacks (med(X+Y ) bears no general relationship to med(X)+

med(Y )). In contrast, mean is sensitive to outliers, while the median is far less so. For example,
if the average income in a village of 50 people is 1000 Rs. per month, the immigration of multi-
millionaire to the village will change the mean drastically but the median remains about the same.
This is good, if by giving one number we are hoping to express the state of a typical individual in
the population.

Measures of dispersion: Suppose the average height of people in a city is 160 cm. This could be
because everyone is 160 cm exactly or because half the people are 100 cm. while the other half are
220 cm., or alternately the heights could be uniformly spread over 150-170 cm., etc. How widely
the distribution is spread is measured by standard deviation and mean absolute deviation. Since
we want deviation from mean, E[X −E[X]] looks natural, but this is zero because of cancellation
of positive and negative deviations. To prevent cancellation, we may put absolute values (getting
to the m.a.d, but that is usually taken around the median) or we may square the deviations before
taking expectation (giving the variance, and then the standard deviation). Variance and standard
deviation have much better mathematical properties (as we shall see) and hence are usually pre-
ferred.
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The standard deviation has the same units as the quantity. Fo example, if mean height is 160cm
measured in centimeters with a standard deviation of 10cm, and the mean weight is 55kg with a
standard deviation of 5kg, then we cannot say which of the two is less variable. To make such a
comparison we need a dimension free quantity (a pure number). Coefficient of variation is such
a quantity, as it measure the standard deviation per mean. For the height and weight data just
described, the coefficients of variation are 1/16 and 1/11, respectively. Hence we may say that
height is less variable than weight in this example.

Measures of association: The marginal distributions do not determine the joint distribution. For
example, if (X,Y ) is a point chosen at random from the unit square (with vertices (0, 0), (1, 0), (0, 1), (1, 1))
then X,Y both have marginal distribution that is uniform on [0, 1]. If (U, V ) is a point picked at
random from the diagonal line (the line segment from (0, 0) to (1, 1), then again U and V have
marginals that are uniform on [0, 1]. But the two joint distributions are completely different. In
particular, giving the means and standard deviations of X and Y does not tell anything about
possible relationships between the two.

Covariance is the quantity that is used to measure the “association” of Y and X . Correlation
is a dimension free quantity that measures the same. For example, we shall see that if Y = X ,
then Corr(X,Y ) = +1, if Y = −X then Corr(X,Y ) = −1. Further, if X and Y are independent,
then Corr(X,Y ) = 0. In general, if an increase in X is likely to mean an increase in Y , then the
correlation is positive and if an increase in X is likely to mean a decrease in Y then the correlation
is negative.

Example 115. Let X ∼ N(µ, σ2). Recall that its density is 1
σ
√

2π
e−

(x−µ)2

2σ2 . We can compute

E[X] =
1

σ
√

2π

+∞∫
−∞

xe−
(x−µ)2

2σ2 dx = µ.

On the other hand

Var(X) =
1

σ
√

2π

+∞∫
−∞

(x− µ)2e−
(x−µ)2

2σ2 dx = σ2 1√
2π

+∞∫
−∞

u2e−
u2

2 du (substitute x = µ+ σu)

= σ2 2√
2π

+∞∫
0

u2e−
u2

2 du = σ2 2
√

2√
2π

+∞∫
0

√
te−tdt (substitute t = u2/2)

= σ2 2
√

2√
2π

Γ(3/2) = σ2.

To get the last line, observe that Γ(3/2) = 1
2Γ(1/2) and Γ(1/2) =

√
π. Thus we now have a

meaning for the parameters µ and σ2 - they are the mean and variance of theN(µ, σ2) distribution.
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Again note that the mean is the same for all N(0, σ2) distributions but the variances are different,
capturing the spread of the distribution.

Exercise 116. Let X ∼ N(0, 1). Show that E[Xn] = 0 if n is odd and if n is even then E[Xn] =

(n− 1)(n− 3) . . . (3)(1) (product of all odd numbers up to and including n− 1). What happens if

X ∼ N(0, σ2)?

Exercise 117. Calculate the mean and variance for the following distributions.

(1) X ∼ Geo(p). E[X] = 1
p and Var(X) = q

p2 .

(2) X ∼ Bin(n, p). E[X] = np and Var(X) = npq.

(3) X ∼ Pois(λ). E[X] = λ and Var(X) = λ.

(4) X ∼ Hypergeo(N1, N2,m). E[X] = mN1
N1+N2

and Var(X) =??.

Exercise 118. Calculate the mean and variance for the following distributions.

(1) X ∼ Exp(λ). E[X] = 1
λ and Var(X) = 1

λ2 .

(2) X ∼ Gamma(ν, λ). E[X] = ν
λ and Var(X) = ν

λ2 .

(3) X ∼ Unif[0, 1]. E[X] = 1
2 and Var(X) = 1

12 .

(4) X ∼ Beta(p, q). E[X] = p
p+q and Var(X) = pq

(p+q)2(p+q+1)
.

Properties of covariance and variance: Let X,Y,Xi, Yi be random variables on a common proba-
bility space. Small letters a, b, c etc will denote scalars.

(1) (Bilinearity): Cov(aX1 + bX2, Y ) = aCov(X1, Y ) + bCov(X2, Y ) and Cov(Y, aX1 + bX2) =

aCov(Y,X1) + bCov(Y,X2)

(2) (Symmetry): Cov(X,Y ) = Cov(Y,X).

(3) (Positivity): Cov(X,X) ≥ 0 with equality if and only if X is a constant random variable.
Indeed, Cov(X,X) = Var(X).

Exercise 119. Show that Var(cX) = c2Var(X) (hence sd(cX) = |c|sd(X)). Further, if X and Y are
independent, then Var(X + Y ) = Var(X) + Var(Y ).
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Note that the properties of covariance are very much like properties of inner-products in vector
spaces. In particular, we have the following analogue of the well-known inequality for vectors

(u · v)2 ≤ (u · u)(v · v).

Cauchy-Schwarz inequality: IfX and Y are random variables with finite variances, then (Cov(X,Y ))2 ≤
Var(X)Var(Y ) with equality if and only if Y = aX + b for some scalars a, b.

If not convinced, follow the proof of Cauchy-Schwarz inequality that you have seen for vectors.
This just means that Var(X + tY ) ≥ 0 for any scalar t and choose an appropriate t to get the
Cauchy-Schwarz’s inequality.

20. MAKOV’S AND CHEBYSHEV’S INEQUALITIES

Let X be a non-negative integer valued random variable with pmf f(k), k = 0, 1, 2, . . .. Fix any
number m, say m = 10. Then

E[X] =
∞∑
k=1

kf(k) ≥
∞∑

k=10

kf(k) ≥
∞∑

k=10

10f(k) = 10P{X ≥ 10}.

More generally mP{X ≥ m} ≤ E[X]. This shows that if the expected value is finite This idea is
captured in general by the following inequality.

Markov’s inequality: Let X be a non-negative random variable with finite expectation. Then, for

any t > 0, we have P{X ≥ t} ≤ 1
tE[X].

Proof. Fix t > 0 and let Y = X1X<t and Z = X1X≥t so that X = Y + Z. Both Y and Z are non-
negative random variable and hence E[X] = E[Y ] + E[Z] ≥ E[Z]. On the other hand, Z ≥ t1X≥t

(why?). Therefore E[Z] ≥ tE[1X≥t] = tP{X ≥ t}. Putting these together we get E[X] ≥ tP{X ≥
t} as desired to show. �

Markov’s inequality is simple but surprisingly useful. Firstly, one can apply it to functions of
our random variable and get many inequalities. Here are some.

Variants of Markov’s inequality:

(1) If X is a non-negative random variable with finite pth moment, then P{X ≥ t} ≤ t−pE[Xp]

for any t > 0.

(2) If X is a random variable with finite second moment, then E[|X − µ| ≥ t] ≤ 1
t2

Var(X).

[Chebyshev’s inequality]

(3) IF X is a random variable with finite exponential moments, then P(X > t) ≤ e−λtE[eλX ]

for any λ > 0.
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Thus, if we only know that X has finite mean, the tail probability P(X > t) must decay at least as
fast as 1/t. But if we knew that the second moment was finite we could assert that the decay must

be at least as fast as 1/t2, which is better. If E[eλX ] <∞, then we get much faster decay of the tail,

like e−λt.
Chebyshev’s inequality captures again the intuitive notion that variance measures the spread

of the distribution about the mean. The smaller the variance, lesser the spread. An alternate way
to write Chebyshev’s inequality is

P(|X − µ| > rσ) ≤ 1

r2

where σ = s.d.(X). This measures the deviations in multiples of the standard deviation. This is

a very general inequality. In specific cases we can get better bounds than 1/r2 (just like Markov
inequality can be improved using higher moments, when they exist).

One more useful inequality we have already seen is the Cauchy-Schwarz inequality: (E[XY ])2 ≤
E[X2]E[Y 2] or (Cov(X,Y ))2 ≤ Var(X)Var(Y ).

21. WEAK LAW OF LARGE NUMBERS

Let X1, X2, . . . be i.i.d random variables (independent random variables each having the same
marginal distribution). Assume that the second moment of X1 is finite. Then, µ = E[X1] and

σ2 = Var(X1) are well-defined.

Let Sn = X1 + . . . + Xn (partial sums) and X̄n = Sn
n = X1+...+Xn

n (sample mean). Then, by the

properties of expectation and variance, we have

E[Sn] = nµ, Var(Sn) = nσ2
1, E[X̄n] = µ, Var(X̄n) =

σ2

n
.

In particular, s.d.(X̄n) = σ/
√
n decreases with n. If we apply Chebyshev’s inequality to X̄n, we

get for any δ > 0 that

P{|X̄n − µ| ≥ δ} ≤
σ2

δ2n
.

This goes to zero as n→∞ (with δ > 0 being fixed). This means that for large n the sample mean
is unlikely to be far from µ (sometimes called “population mean”). This is consistent with our
intuitive idea that if we toss a p-coin many times, we can get a better guess of what the value of p
is.

Weak law of large numbers (Jacob Bernoulli): With the above notations, for any δ > 0, we have

P{|X̄n − µ| ≥ δ} ≤
σ2

δ2n
→ 0 as n→∞.

68



This is very general, in that we only assume the existence of variance. If Xk are assumed to
have more moments, one can get better bounds. For example, when Xk are i.i.d. Ber(p), we have
the following theorem.

Hoeffding’s inequality: Let X1, . . . , Xn be i.i.d. Ber(p). Then

P{|X̄n − p| ≥ δ} ≤ 2e−nδ
2/2.

22. MONTE-CARLO METHODS

Consider the following problems of practical interest that one often encounters.

(1) Find the probability of an event. For example, it could be thatX,Y are independentN(0, 1)

random variables and we need an approximate numerical value of the probability that

X cos(Y +X2)− tan(X) > 1.

(2) Find the integral of a function. For example, we may want to find a numerical approxima-

tion for
∫ 1

0
cosx
1+x4dx.

In this section, we describe how we can solve these questions provided we know how to simulate
random numbers (which is why we spent time learninghow to do that!). The justification for the
method comes from the law of large numbers, which will show that if take simulate our random
numbers infinitely many times, then we can get the exact answer. A better justification is from
Chebyshev’s inequality, which will show us the extent and probability of our error if we sample a
large but finitely many random numbers.

The problem of integration: Let ϕ : [0, 1] → R be a continuous function. We would like to com-

pute I =
∫ 1

0 ϕ(x)dx. Most often we cannot compute the integral explicitly and for an approximate

value we resort to numerical methods. Here is an idea to use random numbers.
Let U1, U2, . . . , Un be i.i.d. Unif[0, 1] random variables and let X1 = ϕ(U1), . . . , Xn = ϕ(Un).

Then, Xk are i.i.d. random variables with common mean and variance

µ =

1∫
0

ϕ(x)dx = I, σ2 = Var(X1) =

1∫
0

(ϕ(x)− I)2dx.

This gives the following method of finding I . Fix a large number N appropriately and pick N

uniform random numbers Uk, 1 ≤ k ≤ N . Then define ÎN := 1
N

∑N
k=1 ϕ(Uk). Present ÎN as an

approximate value of I .

In what sense is this an approximation of I and why? Indeed, by WLLN P{|În − I| ≥ δ} → 0

and hence we expect În to be close to I . How large should n be? For this, we fix two numbers
ε = 0.01 and δ = 0.001 (you may change the numbers). By Chebyshev’s inequality, observe that

P{|În − I| ≥ δ} → σ2/Nδ2.
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First find N so that σ2/Nδ2 < ε, i.e., N = dσ2

δ2 e. Then, the random variable ÎN is within δ of I

with probability greater than 1 − ε. This is a probabilistic method, hence there is a possibility of
large error, but with a small probability. Observe that N grows proportional to square of 1/δ. To
increase the accuracy by 10, you must increase the number of samples by a factor of 100.

One last point. To find N we need σ2 which involves computing another integral involving ϕ
which we do not know how to compute! Here we do not need the exact value of the integral. For
example, if our functions satisfies −M ≤ ϕ(x) ≤ M for all x ∈ [0, 1], then also −M ≤ I ≤ M and

hence (ϕ(x) − 12
) ≤ 4M2. This means that σ2 ≤ 4M2. Therefore, if we take N = d4M2

δ2 e then the

value of N is larger than required for the desired accuracy. We can work with this N . Note that
the dependence of of N on δ does not change.

Exercise 120. We know that
∫ 1

0
1

1+x2dx = π
4 . Based on this, devise a method to find an approximate

value of π. Use any software you like to implement your method and see how many sample you
need to get an approximation to 1, 2 and 3 decimal places consistently (consistently means with a
large enough probability, say 0.9).

Exercise 121. Devise a method to approximate e and π (there are many possible integrals).

This method can be used to evaluate integrals over any interval. For instance, how would

you find
∫ b
a ϕ(t)dt or

∫∞
0 ϕ(t)e−tdt or

∫∞
−∞ ϕ(t)e−t

2
dt where ϕ is a function on the appropriate

interval? It can also be used to evaluate multiple integrals (and consequently to find the areas and
volumes of sets). The only condition is that it should be possible to evaluate the given function
ϕ at a point x on the computer. To illustrate, consider the problem of finding the area of a region

{(x, y) : 0 ≤ x, y,≤ 1, 2x3y2 ≥ 1, x2 + 2y2 ≤ 2.3}. It is complicated to work with such regions
analytically, but given a point (x, y), it is easy to check on a computer whether all the constraints
given are satisfied.

As a last remark, how do Monte-Carlo methods compare with the usual numerical methods?
In the latter, usually a number N and a set of points x1, . . . , xN are fixed along with some weights

w1, . . . , wN that sum to 1. Then one presents Ĩ :=
∑N

k=1wkϕ(xk) as the approximate value of I .
Lagrange’s method, Gauss quadrature etc are of this type. Under certain assumptions on ϕ, the

accuracy of these integrals can be like 1/N as opposed to 1/
√
N in Monte-Carlo. But when those

assumptions are not satisfied, Ĩ can be way off I . One may regard this as a game of strategy as
follows.

I present a function ϕ (say bounded between−1 and 1) and you are expected to give an approx-
imation to ϕ. Quadrature methods do a good job generically, but if I knew the procedure you use,
then I can give a function for which your result is entirely wrong (for example, I pick a function ϕ
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which vanishes at each of the quadrature points!). However, with Monte-Carlo methods, even if
I know the procedure, there is no way to prevent you from getting an approximation of accuracy

1/
√
N . This is because neither of us know where the points Uk will fall!

Estimating probabilities: We now turn to the problem of estimating probabilities. Let us take the
same example that was given earlier, of estimating the probability of the event E that X cos(Y +

X2)− tan(X) > 1 where X,Y are i.i.d. N(0, 1) random variables.

In principle, this can be done by finding the distribution of X cos(Y + X2) − tan(X) (using
change of variables etc.), but in practise that is difficult to execute (the required integrals are hard
to calculate explicitly). A versatile method is to use the idea that P(E) is the proportion of times
the event E occurs in a long series of independent trials (in other words, the law of large num-
bers!). This is how we do that.

Sample X1, Y1, X2, Y2, . . . , Xn, Yn independently on a computer using some random number

generator. For each k ≤ n, calculate the value of Zk := Xk cos(Yk +X2
k)− tan(Xk) and set ξk = 1 if

Zk > 1 and ξk = 0 if Zk ≤ 1. Then, ξk are i.i.d. Ber(p) random variables with p = P{E}. Therefore,

by the law of large numbers, p̂n := 1
n(ξ1 + . . . + ξn) is close to p for large n. Hence, we present p̂n

as an approximation to p.

To make a quantitative statement, observe that E[p̂n] = p and Var(p̂) = 1
nVar(ξ1) = p(1−p)

n . Since

p(1− p) ≤ 1
4 (true for all 0 < p < 1), using Chebyshev’s inequality, we see that

P
{∣∣p̂n − p∣∣ ≥ δ} ≤ 1

4nδ2
.

What n to choose? We first decide the accuracy δ that we want. Since our estimate is based on
random numbers, there is always a chance of making a mistake, for example, if all ξks turn out to
be 0, then our estimate p̂n = 0. In other words, there is no guarantee in this method that we will
get p̂n within δ of p. Hence we also fix a probability of error, say ε. Then, what we want is

1

4δ2n
≤ ε or equivalently n ≥ 1

4δ2ε
.

For example, if we set δ = 0.05 and ε = 0.01, then we get n > 10000. Observe the dependence
of n on δ and ε. If we halve δ, then n must increase 4 times, while if we halve ε, we only need an
increase in n by a factor of 2.

The versatility of the method is that any and every probability one cares about can be estimated
this way. The only thing needed is that we should be able to simulate the event in reasonable time.
The situations where one can explicitly calculate probabilities by analytical methods are far and

few15.

15Most times, a probabilist is trying to show that some event has probability 0, and not being successful too often!
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FIGURE 10. Birthday problem with 23 people. To estimate the probability of co-
incidence of two birthdays, on the left we have a histogram of 100 estimates, each
based on 50 simulations. On the right we have a histogram of 100 estimates, each
based on 200 simulations. Clearly the answers are more reliable in the latter.

Example 122. Let us return to the birthday paradox. Analytical calculation shows that the proba-
bility of the event of having at least two people with the same birthday in a group of 23 people is
0.5073. Here are the estimates got from simulations.

A single simulation consists of drawing 23 random numbers from 1, 2, . . . , 365, and checking to
see if there are two equal numbers among them. We did this 50 times and took the proportion of
times we had a coincident birthday. The proportion turned out to be 0.52.

Then we repeated the whole procedure 10 times. Each time we get a different estimate. They
turned out to be 0.50, 0.52, 0.52, 0.46, 0.52, 0.50, 0.48, 0.44, 0.46, 0.56.

Exercise 123. For n = 20, 40, . . . , 100, find the probability that a random group of n people will

have three coincident birthdays. Can you find a value of n such that this probability is close to 1
2?

23. CENTRAL LIMIT THEOREM

Let X1, X2, . . . be i.i.d. random variables with expectation µ and variance σ2. We saw that X̄n

has mean µ and standard deviation σ/
√
n.

This roughly means that X̄n is close to µ, within a few multiples of σ/
√
n (as shown by Cheby-

shev’s inequality). Now we look at X̄n with a finer microscope. In other words, we ask for the

probability that X̄n is within the tiny interval [µ+ a√
n
, µ+ b√

n
] for any a < b. The answer turns out

to be surprising and remarkable!

Central limit theorem: Let X1, X2, . . . be i.i.d. random variables with expectation µ and variance

σ2. We assume that 0 < σ2 <∞. Then, for any a < b, we have

P

{
µ+ a

σ√
n
≤ X̄n ≤ µ+ b

σ√
n

}
→ Φ(b)− Φ(a) =

1√
2π

b∫
a

e−t
2/2dt.
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What is remarkable about this? The end result does not depend on the distribution of Xis at all!
Only the mean and variance of the distribution were used! As this is one of the most important
theorems in all of probability theory, we restate it in several forms, all equivalent to the above.

Restatements of central limit theorem: Let Xk be as above. Let Sn = X1 + . . . + Xn. Let Z be a
N(0, 1) random variable. Then of course P{a < Z < b} = Φ(b)− Φ(a).

(1) P{a <
√
n
σ (X̄n − µ) ≤ b} → Φ(b) − Φ(a) = P{a < Z < b}. Put another way, this says

that for large n, the random variable
√
n(X̄n−µ)

σ has N(0, 1) distribution, approximately.

Equivalently,
√
n(X̄n − µ) has N(0, σ2) distribution, approximately.

(2) Yet another way to say the same is that Sn has approximately normal distribution with

mean nµ and variance nσ2. That is,

P

{
a ≤ Sn − nµ

σ
√
n
≤ b
}
→ P{a < Z < b}.

The central limit theorem so deep and surprising and useful. The following example gives a
hint as to why.

Example 124. Let U1, . . . , Un be i.i.d. Uniform([−1, 1]) random variables. Let Sn = U1+. . .+Un, let

Ūn = Sn/n (sample mean) and let Yn = Sn/
√
n. Consider the problem of finding the distribution

of any of these. Since they are got from each other by scaling, finding the distribution of one is the

same as finding that of any other. For uniform [−1, 1], we know that µ = 0 and σ2 = 1/3. Hence,
CLT tells us that

P

{
a√
3
< Yn <

b√
3

}
→ Φ(b)− Φ(a).

or equivalently, P{a < Yn < b} → Φ(b
√

3) − Φ(a
√

3). For large n (practically, n = 50 is large
enough) we may use this limit as a good aproximation to the probability we want.

Why is this surprising? The way to find the distribution of Yn would be this. Using the convo-
lution formula n times successively, one can find the density of Sn = U1 + . . . + Un (in principle!
the actual integration may be intractable!). Then we can find the density of Yn by another change
of variable (in one dimension). Having got the density of Yn, we integrate it from a to b to get
P{a < Yn < b}. This is clearly a daunting task (if you don’t feel so, just try it for n = 5).

The CLT cuts short all this and directly gives an approximate answer! And what is even more
surprising is that the original distribution does not matter - we only need to know the mean and
variance of the original distribution!

24. POISSON LIMIT FOR RARE EVENTS

Let Xk ∼ Ber(p) be independent random variables. Central limit theorem says that if p is fixed

and n is large, the distribution of (Xn − np)/
√
np(1− p) is close to the N(0, 1) distribution.
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Now we consider a slightly different situation. Let X1, . . . , Xn have Ber(n, pn) distribution

where pn = λ
n , where λ > 0 is fixed. Then, we shall show that the distribution of X1 + . . . + Xn

is close to that of Pois(λ). Note that the distribution of X1 changes with n and hence it would be
more correct to write Xn,1, . . . , Xn,n.

Theorem 125. Let λ > 0 be fixed and let Xn,1, . . . , Xn,n be i.i.d. Ber(λ/n). Let Sn = Xn,1 + . . .+Xn,n.
Then, for every k ≥ 0

P{Sn = k} → e−λ
λk

k!
.

Proof. Fix k and observe that

P{Sn = k} =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=
n(n− 1) . . . (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k
.

Note that n(n−1)...(n−k+1)
nk

→ 1 as n→∞ (since k is fixed). Also, (1− λ
n)n−k → e−λ (if not clear, note

that (1 − λ
n)n → e−λ and (1 − λ

n)−k → 1). Hence, the right hand side above converges to e−λ λ
k

k!

which is what we wanted to show. �

What is the meaning of this? Bernoulli random variables may be thought of as indicators of
events, i.e., think of Xn,1 as 1A1 etc. The theorem considers n events which are independent

and each of them is “rare” (since the probability of it occurring is λ/n which becomes small as n
increases). The number of events increases but the chance of each events decreases in such a way
that the expected number of events that occur stays constant. Then, the total number of events
that actually occur has an approximately Poisson distribution.

Example 126. (A physical example). A large amount of custard is made in the hostel mess to serve
100 students. The cook adds 300 raisins and mixes the custard so that on an average they get 3

raisins per student. But the number of raisins that a given student gets is random and the above
theorem says that it has approximately Pois(3) distribution. How so? Let Xk be the indicator of
the event that the kth raisin ends up in your cup. Since there are 100 cups, the chance of this
happening is 1/100. The number of raisins in your cup is precisely X1 + X2 + . . . + X300. Appy
the theorem (take n = 100 and λ = 3).

Example 127. Place r balls in m bins at random. If m = 1000 and r = 500, then the number of
balls in the first bin has approximately Pois(1/2) distribution. Work out how this comes from the
theorem.

The Poisson limit is a much more general phenomenon than what the theorem above captures.
For example, consider the problem of a psychic guessing a deck of cards. If X is the number
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of correct guesses, we saw (by direct calculation and approximation) that P{X = k} is close to

e−1/k!. In other wordsX has approximately Pois(1) distribution. Does it follows from the theorem
above. Let us try.

Set Xk to be the indicator of the event that the kth guess is correct. Then Xk ∼ Ber(1/52) and
X = X1 + . . .+X52. It looks like the theorem tells us that X should have Pois(1) distribution (by
taking n = 52 and λ = 1). But note that Xi are not independent random variables and hence the
theorem does not strictly apply. The theorem should be thought of as one of many theorems that
capture the theme “in a large collection of rare events that are nearly independent, the actual number of
events that occur is approximately Poisson”.

25. ENTROPY, GIBBS DISTRIBUTION

In this section we talk about entropy, a concept of fundamental importance in physics, mathematics and

information theory.16

Definition 128. LetX be a random variable that takes values inA = {a1, . . . , ak} such that P(X = ai) = pi.

The entropy of X is defined as

H(X) := −
k∑
i=1

pi log pi.

If X is a real-valued random variable with density f , its entropy is defined

H(X) := −
∫
f(t) log f(t)dt.

Example 129. Let X ∼ Ber(p). Then H(X) = p log(1/p) + (1− p) log(1/(1− p)).

Example 130. Let X ∼ Geo(p). Then H(X) = −
∞∑
k=0

(log p+ k log q)pqk = − log p− q2 log q.

Example 131. Let X ∼ Exp(λ). Then H(X) =
∫∞
0

(log λ− t)λe−λtdt = log λ− 1
λ .

Example 132. Let X ∼ N(µ, σ2)

Entropy is a measure of the randomness. For example, among the Ber(p) distributions, the entropy is

maximized at p = 1/2 and minimized at p = 0 or 1. It quantifies the intuitive feeling that Ber(1/2) is more

random than Ber(1/4).

Lemma 133. (1) If |A| = k, then 0 ≤ H(X) ≤ log k. H(X) = 0 if and only if X is degenerate and H(X) =

log k if and only if X ∼ Unif(A).

(2) Let f : A → B and let Y = f(X). Then H(Y ) ≤ H(X).

(3) Let X take values in A and Y take values in B and let Z = (X,Y ). Then H(Z) ≤ H(X) + H(Y ) with
equality if and only if X and Y are independent.

16This section was not covered in class and may be safely omitted
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Gibbs measures: Let A be a countable set and let H : A → R be a given function. For any E ∈ R, consider

the set of PE of all probability mass functions on Ω under whichH has expected value E. In other words,

PE := {p = (pi)i∈A :
∑
i∈A

p(i)H(i) = E}.

PE is non-empty if and only ifHmin ≤ E ≤ Hmax.

Lemma 134. Assume that Hmin ≤ E ≤ Hmax. Then, there is a unique pmf in PE with maximal entropy and it is
given by

pβ(i) =
1

Zβ
e−βH(i)

where Zβ =
∑
i∈A

e−βH(i) and the value of β is chosen to satisfy 1
Zβ

∂Zβ
∂β = E.

This minimizing pmf is called the Boltzmann-Gibbs distribution. An analogous theorem holds for densi-

ties.

Example 135. Let A = {1, 2, . . . , n} and H(i) = 1 for all i. Let E = 1 so that PE is the same as all pmfs on

A. Clearly pβ(i) = 1
n for all i ≤ n. Indeed, we know that the maximal entropy is attained by the uniform

distribution.

Example 136. Let A = {0, 1, 2, . . .} and let H(i) = i for all i. Fix any E > 0. The Boltzmann-Gibbs

distribution is given by pβ(i) = 1
Zβ
e−βi. This is just the Geometric distribution with parameter chosen to

have mean E.

Example 137. Let us blindly apply the lemma to densities.

(1) A = R+ andH(x) = λx

(2) A = R andH(x) = x2.

26. THE PSYCHOLOGY OF PROBABILITY
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APPENDIX A. COUNTABLE AND UNCOUNTABLE

Definition 138. An set Ω is said to be finite if there is an n ∈ N and a bijection from Ω onto [n]. An
infinite set Ω is said to be countable if there is a bijection from N onto Ω.

Generally, the word countable also includes finite sets. If Ω is an infinite countable set, then
using any bijection f : N→ Ω, we can list the elements of Ω as a sequence

f(1), f(2), f(3) . . .

so that each element of Ω occurs exactly once in the sequence. Conversely, if you can write the
elements of Ω as a sequence, it defines an injective function from natural numbers onto Ω (send 1

to the first element of the sequence, 2 to the second element etc).

Example 139. The set of integers Z is countable. Define f : N→ Z by

f(n) =

1
2n if n is even.

−1
2(n− 1) if n is odd.

It is clear that f maps N into Z. Check that it is one-one and onto. Thus, we have found a bijection
from N onto Z which shows that Z is countable. This function is a formal way of saying the we
can list the elements of Z as

0,+1,−1,+2,−2,+3,−3, . . . .

It is obvious, but good to realize there are wrong ways to try writing such a list. For example, if
you list all the negative integers first, as −1,−2,−3, . . ., then you will never arrive at 0 or 1, and
hence the list is incomplete!

Example 140. The set N×N is countable. Rather than give a formula, we list the elements of Z×Z
as follows.

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1), . . .

The pattern should be clear. Use this list to define a bijection from N onto N × N and hence show
that N× N is countable.

Example 141. The set Z × Z is countable. This follows from the first two examples. Indeed, we
have a bijection f : N→ Z and a bijection g : N×N→ N. Define a bijection F : N×N→ Z× Z by
composing them, i.e., F (n,m) = f(g(n)). Then, F is one-one and onto. This shows that Z × Z is
indeed countable.

Example 142. The set of rational numbers Q is countable. Recall that rational numbers other than
0 can be written uniquely in the form p/q where p is a non-zero integer and q is a strictly positive
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integer, and there are no common factors of p and q (this is called the lowest form of the rational
number r). Consider the map f : Q→ Z× Z defined by

f(r) =

(0, 1) if r = 0

(p, q) if r = p
q in the lowest form.

Clearly, f is injective and hence, it appears that Z × Z is a “bigger set” than Q. Next define the
function g : Z → Q by setting g(n) = n. This is also injective and hence we may say that “Q is a
bigger set than N.

But we have already seen that N and Z × Z are in bijection with each other, in that sense, they
are of equal size. Since Q is sandwiched between the two it ought to be true that Q has the same
size as N, and thus countable.

This reasoning is not incorrect, but an argument is needed to make it an honest proof. This
is indicated in the Schröder-Bernstein theorem stated later. Use that to fill the gap in the above
argument, or alternately, try to directly find a bijection between Q and N.

Example 143. The set of real numbers R is not countable. The extraordinarily proof of this fact is
due to Cantor, and the core idea, called the diagonalization trick is one that can be used in many
other contexts.

Consider any function f : N → [0, 1]. We show that it is not onto, and hence not a bijec-
tion. Indeed, use the decimal expansion to write a number x ∈ [0, 1] as 0.x1x2x3 . . . where
xi ∈ {0, 1, . . . , 9}. Write the decimal expansion for each of the numbers f(1), f(2), f(3), . . . . as
follows.

f(1) = 0.X1,1X1,2X1,3 . . .

f(2) = 0.X2,1X2,2X2,3 . . .

f(3) = 0.X3,1X3,2X3,3 . . .

· · · · · · · · · · · ·

Let Y1, Y2, Y3, . . . be any numbers in {0, 1, . . . , 9} with the only condition that Yi 6= Xi,i. Clearly it
is possible to choose Yi like this. Now consider the number y = 0.Y1Y2Y3 . . . which is a number
in [0, 1]. However, it does not occur in the above list. Indeed, y disagrees with f(1) in the first
decimal place, disagrees with f(2) in the second decimal place etc. Thus, y 6= f(i) for any i ∈ N
which means that f is not onto [0, 1].

Thus, no function f : N → [0, 1] is onto, and hence there is no bijection from N onto [0, 1] and
hence [0, 1] is not countable. Obviously, if there is no onto function onto [0, 1], there cannot be an
onto function onto R. Thus, R is also uncountable.
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Example 144. Let A1, A2, . . . be subsets of a set Ω. Suppose each Ai is countable (finite is allowed).
Then ∪iAi is also countable. We leave it as an exercise. [Hint: If each Ai is countably infinite and
pairwise disjoint, then ∪Ai can be thought of as N× N].

Lemma 145 (Schröder-Bernstein). Let A,B be two sets and suppose there exist injective functions f :

A→ B and g : B → A. Then, there exists a bijective function h : A→ B.

We omit the proof as it is irrelevant to the rest of the course17.

APPENDIX B. ON INFINITE SUMS

There were some subtleties in the definition of probabilities which we address now. The def-
inition of P(A) for an event A and E[X] for a random variable X involve infinite sums (when
Ω is countably infinite). In fact, in the very definition of probability space, we had the condition
that

∑
ω pω = 1, but what is the meaning of this sum when Ω is infinite? In this section, we make

precise the notion of infinite sums. In fact we shall give two methods of approach, it suffices to
consider only the first.

B.1. First approach. Let Ω be a countable set, and let f : Ω → R be a function. We want to give a
meaning to the infinite sum

∑
ω∈Ω f(ω). First we describe a natural attempt and then address the

issues that it leaves open.

The idea: By definition of countability, there is a bijection ϕ : N → Ω which allows us to list
the elements of Ω as ω1 = ϕ(1), ω2 = ϕ(2), . . .. Consider the partial sums xn = f(ω1) + f(ω2) +

. . . + f(ωn). Since f is non-negative, these numbers are non-decreasing, i.e., x1 ≤ x2 ≤ x3 ≤ . . ..
Hence, they converge to a finite number or to +∞ (which is just another phrase for saying that
the partial sums grow without bound). We would like to simply define the sum

∑
ω∈Ω f(ω) as the

limit L = limn→∞(f(ω1) + . . .+ f(ωn), which may be finite or +∞.
The problem is that this may depend on the bijection Ω chosen. For example, if ψ : N → Ω is

a different bijection, we would write the elements of Ω in a different sequence ω′1 = ψ(1), ω′2 =

17For those interested, we describe the idea of the proof somewhat informally. Consider the two sets A and B

(assumed to have no common elements) and draw a blue arrow from each x ∈ A to f(x) ∈ B and a red arrow from

each y ∈ B to g(y) ∈ A. Start at any x ∈ A or y ∈ B and follow the arrows in the forward and backward directions.

There are only three possibilities

(1) The search closes, and we discover a cycle of alternating blue and red arrows.

(2) The backward search ends after finitely many steps and the forward search continues forever.

(3) Both the backward and forward searches continue forever.

The injectivity of f and g is used in checking that these are the only possibilities. In the first and third case, just use the

blue arrows to define the function h. In the second case, if the first element of the chain is inA, use the blue arrows, and

if the first element is in B use the red arrows (but in reverse direction) to define the function h. Check that the resulting

function is a bijection!
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ψ(2), . . ., the partial sums yn = f(ω′1) + . . . + f(ω′n) and then define
∑

ω∈Ω f(ω) as the limit L′ =

limn→∞(f(ω′1) + . . .+ f(ω′n).
Is it necessarily true that L = L′?

Case I - Non-negative f : We claim that for any two bijections ϕ and ψ as above, the limits are the
same (this means that the limits are +∞ in both cases, or the same finite number in both cases).
Indeed, fix any n and recall that xn = f(ω1)+ . . .+f(ωn). Now, ψ is surjective, hence there is some

m (possibly very large) such that {ω1, . . . , ωn} ⊆ {ω′1, . . . , ω′m}. Now, we use the non-negativity of
f to observe that

f(ω1) + . . .+ f(ωn) ≤ f(ω′1) + . . .+ f(ω′m).

This is the same as xn ≤ ym. Since yk are non-decreasing, it follows that xn ≤ ym ≤ ym+1 ≤
ym+2 . . ., which implies that xn ≤ L′. Now let n → ∞ and conclude that L ≤ L′. Repeat the

argument with the roles of ϕ and ψ reversed to conclude that L′ ≤ L. Hence L = L′, as desired to
show.

In conclusion, for non-negative functions f , we can assign an unambiguous meaning to
∑

ω f(ω)

by setting it equal to limn→∞(f(ϕ(1) + . . .+ f(ϕ(n))), where ϕ : N→ Ω is any bijection (the point
being that the limit does not depend on the bijection chosen), and the limit here may be allowed
to be +∞ (in which case we say that the sum does not converge).

Case II - General f : Ω → R: The above argument fails if f is allowed to take both positive and

negative values (why?). In fact, the answers L and L′ from different bijections may be completely
different. An example is given later to illustrate this point. For now, here is how we deal with this
problem.

For a real number xwe introduce the notations, x+ = x∨0 and x− = (−x)∨0. Then x = x+−x−
while |x| = x+ + x−. Define the non-negative functions f+, f− : Ω→ R+ by f+(ω) = (f(ω))+ and
f−(ω) = (f(ω))−. Observe that f+(ω)− f−(ω) = f(ω) while f+(ω) + f−(ω) = |f(ω)|, for all ω ∈ Ω.

Example 146. Let Ω = {a, b, c, d} and let f(a) = 1, f(b) = −1, f(c) = −3, f(4) = −0.3. Then,
f+(a) = 1 and f+(b) = f+(c) = f+(d) = 0 while f−(1) = 0 and f−(b) = 1, f−(c) = 3, f−(d) = 0.3.

Since f+ and f− are non-negative functions, we know how to define their sums. Let S+ =∑
ω f+(ω) and S− =

∑
ω f−(ω). Recall that one or both of S+, S− could be equal to +∞, in which

case we say that
∑

ω f(ω) does not converge absolutely and do not assign it any value. If both S+ and

S− are finite, then we define
∑

ω f(ω) = S+−S−. In this case we say that
∑
f converges absolutely.

This completes our definition of absolutely convergent sums. A few exercises to show that
when working with absolutely convergent sums, the usual rules of addition remain valid. For
example, we can add the numbers in any order.

80



Exercise 147. Show that
∑

ω f(ω) converges absolutely if and only if
∑

ω |f(ω)| is finite (since

|f(ω)| is a non-negative function, this latter sum is always defined, and may equal +∞).

For non-negative f , we can find the sum by using any particular bijection and then taking limits
of partial sums. What about general f?

Exercise 148. Let f : Ω → R. Suppose
∑

ω∈Ω f(ω) be summable and let the sum be S. Then, for

any bijection ϕ : N→ Ω, we have limn→∞(f(ϕ(1)) + . . .+ f(ϕ(n))) = S.
Conversely, if limn→∞(f(ϕ(1)) + . . . + f(ϕ(n))) exists and is the same finite number for any

bijection ϕ : N→ R, then f must be absolutely summable and
∑

ω∈Ω f(ω) is equal to this common

limit.

The usual properties of summation without which life would not be worth living, are still valid.

Exercise 149. Let f, g : Ω→ R+ and a, b ∈ R. If
∑
f and

∑
g converge absolutely, then

∑
(af +bg)

converges absolutely and
∑

(af + bg) = a
∑
f + b

∑
g. Further, if f(ω) ≤ g(ω) for all ω ∈ Ω, then∑

f ≤
∑
g.

Example 150. This example will illustrate why we refuse to assign a value to
∑

ω f(ω) in some

cases. Let Ω = Z and define f(0) = 0 and f(n) = 1/n for n 6= 0. At first one may like to say
that

∑
n∈Z f(n) = 0, since we can cancel f(n) and f(−n) for each n. However, following our

definitions

f+(n) =

 1
n if n ≥ 1

0 if n ≤ 0,
f−(n) =

 1
n if n ≤ −1

0 if n ≥ 0.

Hence S+ and S− are both +∞ which means our definition does not assign any value to the sum∑
ω f(ω).
Indeed, by ordering the numbers appropriately, we can get any value we like! For example,

here is how to get 10. We know that 1 + 1
2 + . . .+ 1

n grows without bound. Just keep adding these

positive number till the sum exceeds 10 for the first time. Then start adding the negative numbers

−1− 1
2 − . . .−

1
m till the sum comes below 10. Then add the positive numbers 1

n+1 + 1
n+2 + . . .+ 1

n′

till the sum exceeds 10 again, and then negative numbers till the sum falls below 10 again, etc.
Using the fact that the individual terms in the series are going to zero, it is easy to see that the
partial sums then converge to 10. There is nothing special about 10, we can get any number we
want!

One last remark on why we assumed Ω to be countable.

Remark 151. What if Ω is uncountable? Take any f : Ω → R+. Define the sets An = {ω : f(ω) ≥
1/n}. For some n, if An has infinitely many elements, then clearly the only reasonable value that
we can assign to

∑
f(ω) is +∞ (since the sum over elements of An itself is larger than any finite
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FIGURE 11. On the top left we plot the successive partial sums of the series 1− 1
2 +

1
3 −

1
4 + . . .. On the top right we plot the successive partial sums of 1− 1

2 −
1
4 + 1

3 −
1
6 −

1
8 + 1

7 − . . .. Although we are adding the same numbers in a different order,
they converge to different limits! In contrast, as the bottom pictures how, the same
kind of rearrangement for the series 1− 1

22 + 1
32 − 1

42 + . . . does not change the limit.

number). Therefore, for
∑
f(ω) to be a finite number it is essential that An is a finite set for each

set.
Now, a countable union of finite sets is countable (or finite). ThereforeA =

⋃
nAn is a countable

set. But note that A is also the set {ω : f(ω) > 0} (since, if f(ω) > 0 it must belong to some An).
Consequently, even if the underlying set Ω is uncountable, our function will have to be equal to
zero except on a countable subset of Ω. In other words, we are reduced to the case of countable
sums!

B.2. Second approach. In the first approach, we assumed that you are already familiar with the
notion of limits and series and used them to define countable sums. In the second approach, we
start from scratch and define infinite sums. The end result is exactly the same. For the purposes
of this course, you may ignore the rest of the section.

Definition 152. If Ω is a countable set and f : Ω→ R+ is a non-negative function, then we define

∑
ω

f(ω) := sup

{∑
ω∈A

f(ω) : A ⊆ Ω is finite

}

where the supremum takes values in R̄+ = R+ ∪ {+∞}. We say that
∑
f(ω) converges if the

supremum has a finite value.
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Exercise 153. Show that if f, g : Ω→ R+ and a, b ∈ R+, then
∑

(af + bg) = a
∑
f + b

∑
g. Further,

if f(ω) ≤ g(ω) for all ω ∈ Ω, then
∑
f ≤

∑
g.

Next, we would like to remove the condition of non-negativity. For a real number x we write
x+ = x ∨ 0 and x− = (−x) ∨ 0. Then x = x+ − x− while |x| = x+ + x−.

Definition 154. Now suppose f : Ω → R takes both positive and negative values. Then we first
define the non-negative functions f+, f− : Ω→ R+ by f+(ω) = (f(ω))+ and f−(ω) = (f(ω))− and
set S+ =

∑
ω f+(ω) and S− =

∑
ω f−(ω). If both S+ and S− are finite, then we define

∑
ω f(ω) =

S+ − S−.

Remark 155. The condition that S+ and S− are both finite is the same as the condition that∑
ω |f(ω)| is finite. If these happen, we say that the sum

∑
f(ω) converges absolutely.

Remark 156. Sometimes it is convenient to set
∑
f(ω) to +∞ if S+ = ∞ and S− < ∞ and set∑

f(ω) to −∞ if S+ <∞ and S− =∞. But there is no reasonable value to assign if both the sums
are infinite.

Exercise 157. Show that the two approaches give the same answers.
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