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1. INTRODUCTION

In statistics we are faced with data, which could be measurements in an experiment, responses
in a survey etc. There will be some randomness, which may be inherent in the problem or due
to errors in measurement etc. The problem in statistics is to make various kinds of inferences
about the underlying distribution, from realizations of the random variables. We shall consider
a few basic types of problems encountered in statistics. We shall mostly deal with examples, but
sufficiently many that the general ideas should become clear too. It may be remarked that we stay
with the simplest “textbook type problems” but we shall also see some real data. Unfortunately
we shall not touch upon the problems of current interest, which typically involve very huge data
sets etc. Here are the kinds of problems we study.

General setting: We shall have data (measurements perhaps), usually of the form X1, . . . , Xn

which are realizations of independent random variables from a common distribution. The under-
lying distribution is not known. In the problems we consider, typically the distribution is known,
except for the values of a few parameters. Thus, we may write the data as X1, . . . , Xn i.i.d. fθ(x)

where fθ(x) is a pdf or pmf for each value of the parameter(s) θ. For example, the density could

be of N(µ, σ2) (two unknown parameters µ and σ2) or of Pois(λ) (one unknown parameter λ).

(1) Estimation: Here, the question is to guess the value of the unknown θ from the sample
X1, . . . , Xn. For example, if Xi are i.i.d. from Ber(p) distribution (p is unknown), then a rea-

sonable guess for θ would be the sample mean X̄n (an estimator). Is this the only one? Is it the
“best” one? Such questions are addressed in estimation.

(2) Confidence intervals: Here again the problem is of estimating the value of a parameter, but
instead of giving one value as a guess, we instead give an interval and quantify how sure we
are that the interval will contain the unknown parameter. For example, a coin with unknown
probability p of turning up head, is tossed n times. Then, a confidence interval for p could be of
the form [

X̄n −
3√
n

√
X̄n(1− X̄n), X̄n +

3√
n

√
X̄n(1− X̄n)

]
where X̄n is the proportion of heads in n tosses. The reason for such an interval will come later. It
turns out that if n is large, one can say that with probability 0.99 (“confidence level”), this interval
will contain the true value of the parameter.

(3) Hypothesis testing: In this type of problem we are required to decide between two competing
choices (“hypotheses”). For example, it is claimed that one batch of students is better than a second
batch of students in mathematics. One way to check this is to give the same exam to students in
both exams and record the scores. Based on the scores, we have to decide whether the first batch is
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better than the second (one hypothesis) or whether there is not much difference between the two
(the other hypothesis). One can imagine that this can be done by comparing the sample means
etc., but that will come later.

A good analogy for testing problems is from law, where the judge has to decide whether an
accused is guilty or not guilty. Evidence presented by lawyers take the role of data (but of course
one does not really compute any probabilities quantitatively here!).

(4) Regression: Consider two measurements, such as height and weight. It is reasonable to say
that weight and height are positively correlated (if the height is larger, the weight tends to be larger
too), but is there a more quantitative relationship? Can we predict the weight (roughly) from the
height? One could try to see if a linear function fits: wt. = a ht. + b for some a, b. Or perhaps a

more complicated fit such as wt. = a ht. + b ht.2 + c, etc. To see if this is a good fit, and to know
what values of a, b, c to take, we need data. Thus, the problem is that we have some data (Hi,Wi),
i = 1, 2, . . . , n, and based on this data we try to find the best linear fit (or the best quadratic fit) etc.

As another example, consider the approximate law that the resistivity of a material is propor-
tional to the temperature. What is the constant of proportionality (for a given material). Here we
have a law that says R = aT where a is not known. By taking many measurements at various
temperatures we get data (Ti, Ri), i = 1, 2, . . . , n. From this we must find the best possible a (if all
the data points were to lie on a line y = ax, there would be no problem. In reality they never will,
and that is why the choice is an issue!).

2. ESTIMATION PROBLEMS

Consider the following examples.

(1) A coin has an unknown probability p of turning up head. We wish to determine the value
of p. For this, we toss the coin 100 times and observe the outcomes. How to give a guess
for the value of p based on the data?

(2) A factory manufacture light bulbs whose lifetimes may be assumed to be exponential ran-
dom variables with a mean life-time µ. We take a sample of 50 bulbs at random and mea-
sure their life-timesX1, . . . , X50. Based on this data, how can we present a reasonable guess
for µ? We may want to do this so that the specifications can be printed on the product when
sold.

(3) Can we guess the average height µ of all people in India by taking a random sample of 100

people and measuring their heights?

In such questions, there is an unknown parameter µ (there could be more than one unknown
parameter too) whose value we are trying to guess based on the data. The data consists of i.i.d.
random variables from a family of distributions. We assume that the family of distributions is
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known and the only unknown is (are) the value of the parameter(s). Rather than present the ideas
in abstract let us see a few examples.

Example 1. Let X1, . . . , Xn be i.i.d. random variables with Exponential density fµ(x) = 1
µe
−x/µ

(fro x > 0) where the value of µ > 0 is unknown. How to estimate it using the data X =

(X1, . . . , Xn)?
This is the framework in which we would study the second example above, namely the lie-

time distribution of light bulbs. Observe that we have parameterized the exponential family of

distributions differently from usual. We could equivalently have considered gλ(x) = λe−λx but
the interest is then in estimating 1/λ (which is the expected value) rather than λ. Here are two
methods.

Method of moments: We observe that µ = Eµ[X1], the mean of the distribution (also called

population mean). Hence it seems reasonable to take the sample mean X̄n as an estimate. On

second thought, we realize that Eµ[X2
1 ] = 2µ2 and hence µ =

√
1
2Eµ[X2

1 ]. Therefore it also seems

reasonable to take the corresponding sample quantity, Tn :=
√

1
2n(X2

1 + . . .+X2
n) as an estimate

for µ. One can go further and write µ in various ways as µ =
√

Varµ(X1), µ = 3

√
1
6Eµ[X3

1 ] etc.

Each such expression motivates an estimate, just by substituting sample moments for population
moments.

This is called estimating by the method of moments because we are equating the sample moments
to population moments to obtain the estimate.

We can also use other features of the distribution, such as quantiles (we may call this the
“method of quantiles”). In other words, obtain estimates by equating the sample quantiles to
population quantiles. For example, the median of X1 is µ log 2, hence a reasonable estimate for µ
is Mn/ log 2, where Mn is a sample median. Alternately, the 25% quantile of Exponential(1/µ) dis-
tribution is µ log(4/3) and hence another estimate for µ is Qn/ log(4/3) where Qn is a 25% sample
quantile.

Maximum likelihood method: The joint density of X1, . . . , Xn is

gµ(x1, . . . , xn) = µ−ne−µ(x1+...+xn) if all xi > 0

(since Xi are independent, the joint density is a product). We evaluate the joint density at the
observed data values. This is called the likelihood function. In other words, define,

LX(µ) := µ−ne
− 1
µ

∑n
i=1Xi .

Two points: This is the joint density of X1, . . . , Xn, evaluated at the observed data. Further, we
like to think of it as a function of µ with X := (X1, . . . , Xn) being fixed.
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When µ is the actual value, then LX(µ) is the “likelihood” of seeing the data that we have
actually observed. The maximum likelihood estimate is that value of µ that maximizes the likelihood
function. In our case, by differentiating and setting equal to zero we get,

0 =
d

dµ
LX(µ) = −nµ−n−1e

− 1
µ

∑n
i=1Xi + µ−n

(
1

µ2

n∑
i=1

Xi

)
e
− 1
µ

∑n
i=1Xi

which is satisfied when µ = 1
n

∑n
i=1Xi = X̄n. To distinguish this from the true value of µ which

is unknown, it is customary to put a hat on the leter µ. We write µ̂MLE = X̄n. We should really
verify whether L(µ) is maximized or minimized (or neither) at this point, but we leave it to you to
do the checking (eg., by looking at the second derivative).

Let us see the same methods at work in two more examples.

Example 2. Let X1, . . . , Xn be i.i.d. Ber(p) random variables where the value of p is unknown.
How to estimate it using the data X = (X1, . . . , Xn)?

Method of moments: We observe that p = Ep[X1], the mean of the distribution (also called popu-

lation mean). Hence, a method of moments estimator would be the sample mean X̄n. In this case,

Ep[X
2
1 ] = p again but we don’t get any new estimate because X2

k = Xk (as Xk is 0 or 1)

Maximum likelihood method: Now we have a probability mass function instead of density. The

joint pmf of of X1, . . . , Xn is fp(x1, . . . , xn = p
∑n
i=1 xi(1 − p)n−

∑n
i=1 xi when each xi is 0 or 1. The

likelihood function is

LX(p) := p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi = pnX̄n(1− p)n(1−X̄n).

We need to find the value of p that maximizes LX(p). Here is a trick that almost always simplifies
calculations (try it in the previous example too!). Instead of maximizing LX(p), maximize `X(p) =

logLX(p) (called the log-likelihood function). Since “log” is an increasing function, the maximizer
will remain the same. In our case,

`X(p) = X̄n log p+ n(1− X̄n) log(1− p).

Differentiating and setting equal to 0, we get p̂MLE = X̄n. Again the sample mean is the maximum
likelihood estimate.

A last example.

Example 3. Consider the two-parameter Laplace-density fθ,α(x) = 1
2αe
− |x−θ|

α for all x ∈ R. Check

that fθ,α is indeed a density for all θ ∈ R and α > 0.
Now suppose we have data X1, . . . , Xn i.i.d. from fθ,α where we do not know the values of θ

and α. How to estimate the parameters?
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Method of moments: We compute

Eθ,α[X1] =
1

2α

+∞∫
−∞

te−
|t−θ|
α dt =

1

2

+∞∫
−∞

(αs+ θ)e−|s|ds = θ.

Eθ,α[X2
1 ] =

1

2α

+∞∫
−∞

t2e−
|t−θ|
α dt =

1

2

+∞∫
−∞

(αs+ θ)2e−|s|ds = 2α2 + θ2.

Thus the variance is Varθ,α(X1) = 2α2. Based on this, we can take the method of moments estimate

to be θ̂n = X̄n (sample mean) and α̂n = 1√
2
sn where s2

n = 1
n−1

∑n
i=1(Xi − X̄n)2. At the moment

the ideas of defining sample variance as s2
n may look strange and it might be more natural to take

Vn := 1
n

∑n
i=1(Xi − X̄n)2 as an estimate for the population variance. As we shall see later, s2

n has

some desirable properties that Vn lacks. Whenever we say sample variance, we mean s2
n, unless

stated otherwise.

Maximum likelihood method: The likelihood function of the data is

LX(θ, α) =
n∏
k=1

1

2α
exp

{
−|Xk − θ|

α

}
= 2−nα−n exp

{
−

n∑
k=1

|Xk − θ|
α

}
.

The log-likelihood function is

`X(θ, α) = logL(θ, α) = −n log 2− n logα− 1

α

n∑
k=1

|Xk − θ|.

We know that1 for fixed X1, . . . , Xn, the value of
∑n

k=1 |Xk − θ| is minimized when θ = Mn,
the median of X1, . . . , Xn (strictly speaking the median may have several choices, all of them are

equally good). Thus we fix θ̂ = Mn and then we maximize `(θ̂, α) over α by differentiating. We

get α̂ = 1
n

∑n
k=1 |Xk − θ| (the sample mean-absolute deviation about the median). Thus the MLE

of (θ, α) is (θ̂, α̂).

In homeworks and tutorials you will see several other estimation problems which we list in the
exercise below.

1If you do not know here is an argument. Let x1 < x2 < . . . < xn be n distinct real numbers and let a ∈ R. Rewrite∑n
k=1 |xk − a| as (|x1 − a|+ |xn − a|) + (|x2 − a|+ |xn−1 − a|) + . . .. By triangle inequality, we see that

|x1 − a|+ |xn − a| ≥ xn − x1, |x2 − a|+ |xn−1 − a| ≥ xn−1 − x2, |x3 − a|+ |xn−2 − a| ≥ xn−2 − x3 . . . .

Further the first inequality is an equality if and only if x1 ≤ a ≤ xn, the second inequality is an equality if and only if

x2 ≤ a ≤ xn−1 etc. In particular, if a is a median, then all these inequalities become equalities and shows that a median

minimizes the given sum.
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Exercise 4. Find an estimate for the unknown parameters by the method of moments and the
maximum likelihood method.

(1) X1, . . . , Xn are i.i.d. N(µ, 1). Estimate µ. How do your estimates change if the distribution
is N(µ, 2)?

(2) X1, . . . , Xn are i.i.d. N(0, σ2). Estimate σ2. How do your estimates change if the distribu-

tion is N(7, σ2)?

(3) X1, . . . , Xn are i.i.d. N(µ, σ2). Estimate µ and σ2.

[Note: The first case is when σ2 is known and µ is unknown. Then the known value of σ2 may be

used to estimate µ. In the second case it is similar, now µ is known and σ2 is not known. In the
third case, both are unknown].

Exercise 5. X1, . . . , Xn are i.i.d. Geo(p) Estimate µ = 1/p.

Exercise 6. X1, . . . , Xn are i.i.d. Pois(λ) Estimate λ.

Exercise 7. X1, . . . , Xn are i.i.d. Beta(a, b) Estimate a, b.

The following exercise is approachable by the same methods but requires you to think a little.

Exercise 8. X1, . . . , Xn are i.i.d. Uniform[a, b] Estimate a, b.

3. PROPERTIES OF ESTIMATES

We have seen that there may be several competing estimates that can be used to estimate a pa-
rameter. How can one choose between these estimates? In this section we present some properties
that may be considered desirable in an estimator. However, having these properties does not lead
to an unambiguous choice of one estimate as the best for a problem.

The setting: Let X1, . . . , Xn be i.i.d random variables with a common density fθ(x). The parame-
ter θ is unknown and the goal is to estimate it. Let Tn be an estimator for θ, this just means that Tn
is a function of X1, . . . , Xn (in words, if we have the data at hand, we should be able to compute
the value of Tn).

Bias: Define the bias of the estimator as biasTn(θ) := Eθ[Tn] − θ. If BiasTn(θ) = 0 for all values of
the parameter θ then we say that Tn is unbiased for θ. Here we write θ in the subscript of Eθ to
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remind ourself that in computing the expectation we use the density fθ. However we shall often
omit the subscript for simplicity.

Mean-squared error: The mean squared error of Tn is defined as m.s.e.Tn(θ) = Eθ[(Tn− θ)2]. This is
a function of θ. Smaller it is, better our estimate.

In computing mean squared error, it is useful to observe the formula

m.s.e.Tn(θ) = VarTn(θ) + (BiasTn(θ))2 .

To prove this, consider and random variable Y with mean µ and observe that for any real number
a we have

E[(Y − a)2] = E[(Y − µ+ µ− a)2] = E[(Y − µ)2] + (µ− a)2 + 2(µ− a)E[Y − µ]

= E[(Y − µ)2] + (µ− a)2 = Var(Y ) + (µ− a)2.

Use this identity with Tn in place of Y and θ in place of a.

Remark 9. An analogy. Consider shooting with a rifle having a telescopic sight. A given target
can be missed for two reasons. One, the marksman may be unskilled and shoot all over the place,
sometimes a meter to the right of the target, sometimes a meter to the left, etc. In this case, the
shots have a large variance. Another person may consistently hit a point 20 cm. to the right of the
target. Perhaps the telescopic sight is not set right, and this caused the systematic error. This is the
bias. Both bias and variance contribute to missing the target.

Example 10. Let X1, . . . , Xn be i.i.d. N(µ, σ2). Let Vn = 1
n

∑n
k=1(Xk − X̄n)2 be an estimate for σ2.

By expanding the squares we get

Vn = X̄2
n +

1

n

n∑
k=1

X2
k −

2

n
X̄n

n∑
k=1

Xk =

(
1

n

n∑
k=1

X2
k

)
− X̄2

n.

It is given that E[Xk] = µ and Var(Xk) = σ2. Hence E[X2
k ] = µ2 + σ2. We have seen before that

Var(X̄n) = σ2 and E[X̄n] = µ. Hence E[X̄2
n] = µ2 + σ2

n . Putting all this together, we get

E [Vn] =

(
1

n

n∑
k=1

µ2 + σ2

)
−
(
µ2 +

σ2

n

)
=
n− 1

n
σ2.

Thus, the bias of Vn is n−1
n σ2 − σ2 = − 1

nσ
2.

Example 11. For the same setting as the previous example, supposeWn = 1
n

∑n
k=1(Xk−µ)2. Then

it is easy to see that E[Wn] = σ2. Can we say that Wn is an unbiased estimate for σ2? There is a
hitch!
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If the value of µ is unknown, then Wn is not an estimate (cannot compute it using X1, . . . , Xn!).
However if µ is known, then it is an unbiased estimate. For example, if we knew that µ = 0, then

Wn = 1
n

∑n
k=1X

2
k is an unbiased estimate for σ2.

When µ is unknown, we define s2
n = 1

n−1

∑n
k=1(Xk − X̄n)2. Clearly s2

n = n
n−1Vn and hence

E[s2
n] = n

n−1E[Vn] = σ2. Thus, s2
n is an unbiased estimate for σ2. Note that s2

n depends only on the

data and hence it is an estimate, whether µ is known or unknown.

All the remarks in the above two examples apply for any distribution, i.e.,

(1) The sample mean is unbiased for the population mean.

(2) The sample variance s2
n = 1

n−1

∑n
k=1(Xk − X̄n)2 is unbiased for the population variance.

But Vn = 1
n

∑n
k=1(Xk − X̄n)2 is not, in fact E[Vn] = n−1

n σ2.

It appears that s2
n is better, but the following remark says that one should be cautious in making

such a statement.

Remark 12. In case of N(µ, σ2) data, it turns out that although s2
n is unbiased and Vn is biased,

the mean squared error of Vn is smaller! Further Vn is the maximum likelihood estimate of σ2!
Overall, unbiasedness is not so important as having smaller mean squared error, but for estimating

variance (when the mean is not known), we always use s2
n. The computation of the m.s.e is a bit

tedious, so we skip it here.

Example 13. Let X1, . . . , Xn be i.i.d. Ber(p). Then X̄n is an estimate for p. It is unbiased since

E[X̄n] = p. Hence, the m.s.e of X̄n is just the variance which is equal to p(1− p)/n.

A puzzle: A coin C1 has probability p of turning up head and a coin C2 has probability 2p of

turning up head. All we know is that 0 < p < 1
2 . You are given 20 tosses. You can choose all

tosses from C1 or all tosses from C2 or some tosses from each (the total is 20). If the objective is to
estimate p, what do you do?

Solution: If we choose to have all n = 20 tosses from C1, then we get X1, . . . , Xn that are i.i.d.

Ber(p). An estimate for p is X̄n which is unbiased and hence MSEX̄n(p) = Var(X̄n) = p(1 − p)/n.

On the other hand if we choose to have all 20 tosses from C2, then we get Y1, . . . , Yn that are i.i.d.

Ber(2p). The estimate for p is now Ȳn/2 which is also unbiased and has MSEȲn/2(p) = Var(Ȳn) =

2p(1 − 2p)/4 = p(1 − 2p)/2. It is not hard to see that for all p < 1/2, MSEȲn/2(p) < MSEX̄n(p)

and hence choosing C2 is better, at least by mean-squared criterion! It can be checked that if we
choose to have k tosses from C1 and the rest from C2, the MSE of the corresponding estimate will

be between the two MSEs found above and hence not better than Ȳn/2.
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Another puzzle: A factory produces light bulbs having an exponential distribution with mean µ.
Another factory produces light bulbs having an exponential distribution with mean 2µ. Your goal
is to estimate µ. You are allowed to choose a total of 50 light bulbs (all from the first or all from the
second or some from each factory). What do you do?

Solution: If we pick all n = 50 bulbs from the first factory, we see X1, . . . , Xn i.i.d. Exp(1/µ). The

estimate for µ is X̄n which has MSEX̄n(µ) = Var(X̄n) = µ2/n. If we choose all bulbs from factory

2 we get Y1, . . . , Yn i.i.d. Exp(1/2µ). The estimate for µ is Ȳn/2. But MSEȲn/2(µ) = Var(Ȳn/2) =

(2µ)2/4n = µ2/n. The two mean-squared errors are exactly the same!

Probabilistic thinking: Is there any calculation-free explanation why the answers to the two puz-
zles are as above? Yes, and it is illustrative of what may be called probabilistic thinking. Take the
second puzzle. Why are the two estimates same by mean-squared error? Is one better by some
other criterion?

Recall that if X ∼ Exp(1/µ) then X/2 ∼ Exp(1/2µ) and vice versa. Therefore, if we have data
from Exp(1/µ) distribution, then we can divided all the numbers by 2 and convert it into data
from Exp(1/2µ) distribution. Conversely if we have data from Exp(1/2µ) distribution, then we
can convert it into data from Exp(1/µ) distribution by multiplying each number by 2. Hence there
should be no advantage in choosing either factory. We leave it for you to think in analogous ways
why in the first puzzle C2 is better than C1.

4. CONFIDENCE INTERVALS

So far, in estimating of an unknown parameter, we give a single number as our guess for the
known parameter. It would be better to give an interval and say with what confidence we expect
the true parameter to lie within it. As a very simple example, suppose we have one random
variable X with N(µ, 1) distribution. How do we estimate µ? Suppose the observed value of X is
2.7. Going by any method, the guess for µ would be 2.7 itself. But of course µ is not equal to X , so
we would like to give an interval in which µ lies. How about [X−1, X+1]? Or [X−2, X+2]? Using
normal tables, we see that P(X−1 < µ < X+1) = P(−1 < (X−µ) < 1) = P(−1 < Z < 1) ≈ 0.68

and similarly P(X − 2 < µ < X + 2) ≈ 0.95. Thus, by making the interval longer we can be more
confident that the true parameter lies within. But the accuracy of our statement goes down (if
you want to know the average height of people in India, and the answer you give is “between
100cm and 200cm”, it is very probably correct, but of little use!). The probability with which our
CI contains the unknown parameter is called the level of confidence. Usually we fix the level of
confidence, say as 0.90 and find an interval as short as possible but subject to the condition that it
should have a confidence level of 0.90.

In this section we consider the problem of confidence intervals in Normal population. In the
next we see a few other examples.
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The setting: Let X1, . . . , Xn be i.i.d. N(µ, σ2) random variables. We consider four situations.

(1) Confidence interval for µ when σ2 is known.

(2) Confidence interval for σ2 when µ is known.

(3) Confidence interval for µ when σ2 is unknown.

(4) Confidence interval for σ2 when µ is unknown.

A starting point in finding a confidence interval for a parameter is to first start with an estimate

for the parameter. For example, in finding a CI for µ, we may start with X̄n and enlarge it to an

interval [X̄n− a, X̄n + a]. Similarly, in finding a CI for σ2 we use the estimate s2
n = 1

n−1

∑n
i=1(Xi−

X̄n)2 if µ is unknown and Wn = 1
n

∑n
i=1(Xi − µ)2 if the value of µ is known.

4.1. Estimating µ when σ2 is known. We look for a confidence interval of the form In = [X̄n −
a, X̄n + a]. Then,

P (In 3 µ) = P
(
−a ≤ X̄n − µ ≤ a

)
= P

(
−a
√
n

σ
≤
√
n(X̄n − µ)

σ
≤ a
√
n

σ

)
Now we use two facts about normal distribution that we have seen before.

(1) If Y ∼ N(µ, σ2) then aX + b ∼ N(aµ+ b, a2σ2).

(2) If Y1 ∼ N(µ, σ2) and Y2 ∼ N(ν, τ2) and they are independent, then X + Y ∼ N(µ+ ν, σ2 +

τ2).

Consequently, X̄n ∼ N(0, σ2/n) and
√
n(X̄n−µ)

σ ∼ N(0, 1). Therefore,

P (In 3 µ) = P(−a
√
n

σ
≤ Z ≤ −a

√
n

σ
)

where Z ∼ N(0, 1). Fix any 0 < α < 1 and denote by zα the number such that P(Z > zα) = α

(in other words, zα is the (1−α)-quantile of the standard normal distribution). For example, from
normal tables we find that z0.05 ≈ 1.65 and z0.005 ≈ 2.58 etc.

If we set a = zα/2σ/
√
n, we get

P

([
X̄n −

σ√
n
zα/2, X̄n +

σ√
n
zα/2

]
3 µ
)

= 1− α.

This is our confidence interval.

4.2. Estimating σ2 when µ is known. Since µ is known, we useWn = 1
n

∑n
i=1(Xi−µ)2 to estimate

σ2. Here is an exercise.

Exercise 14. LetZ1, . . . , Zn be i.i.d. N(0, 1) random variables. Then,Z2
1+. . .+Z2

n ∼ Gamma(n/2, 1/2).
14



Solution: For t > 0 we have

P{Z2
1 ≤ t} = P{−

√
t ≤ Z1 ≤

√
t} = 2

√
t∫

0

1√
2π
e−u

2/2du =
1√
2π

t∫
0

e−s/2s−1/2ds.

Differentiate w.r.t t to see that the density of Z2
1 is h(t) = 1√

π
e−t/2t−1/2

√
(1/2), which is just the

Gamma(1
2 ,

1
2) density.

Now, each Z2
k has the same Gamma(1

2 ,
1
2) density, and they are independent. Earlier we have

seen that when we add independent Gamma random variables with the same scale parameter, the
sum has a Gamma distribution with the same scale but whose shape parameter is the sum of the

shape parameters of the individual summands. Therefore, Z2
1 + . . . + Z2

n has Gamma(n/2, 1/2)

distribution. This completes the solution to the exercise.

In statistics, the distribution Gamma(1/2, 1/2) is usually called the chi-squared distribution with

n degrees of freedom. Let χ2
n (α) denote the 1 − α quantile of this distribution. Similarly, χ2

n (1− α)

is the α quantile (i.e., the probability for the chi-squared random variable to fall below χ2
n (1− α)

is exactly α).

When Xi are i.i.d. N(µ, σ2), we know that (Xi − µ)/σ are i.i.d. N(0, 1). Hence, by the above
fact, we see that

nWn

σ2
=

n∑
i=1

(
Xi − µ
σ

)2

has chi-squared distribution with n degrees of freedom. Hence

P

{
nWn

χ2
n

(
α
2

) ≤ σ2 ≤ nWn

χ2
n

(
1− α

2

)} = P

{
χ2
n

(
1− α

2

)
≤ nWn

σ2
≤ χ2

n

(α
2

)}
= 1− α.

Thus,
[

ns2n
χ2
n−1(

α
2 )
, ns2n
χ2
n−1(1−α

2 )

]
is a (1− α)-confidence interval for σ2.

An important result: Before going to the next two confidence interval problems, let us try to
understand the two examples already covered. In both cases, we came up with a random variable

(
√
n(X̄n − µ)/σ and Wn/σ

2, respectively) which involved the data and the unknown parameter

whose distributions we knew (standard normal and χ2
n, respectively) and these distributions do

not depend on any parameters. This is generally the key step in any confidence interval problem.
For the next two problems, we cannot use the same two random variables as above as they depend

on the other unknown parameter too (i.e.,
√
n(X̄n−µ)/σ uses σ which will be unknown andWn/σ

2

uses µ which will be unknown). Hence, we need a new result that we state without proof.

15



Theorem 15. Let Z1, . . . , Zn be i.i.d. N(µ, σ2) random variables. Let Z̄n and s2
n be the sample mean and

the sample variance, respectively. Then,

Z̄n ∼ N(µ,
σ2

n
),

(n− 1)s2
n

σ2
∼ χ2

n−1,

and the two are independent.

This is not too hard to prove (a muscle-flexing exercise in change of variable formula) but we
skip the proof. Note two important features. First, the surprising independence of the sample

mean and the sample variance. Second, the sample variance (appropriately scaled) has χ2 distri-
bution, just like Wn in the previous example, but the degree of freedom is reduced by 1. Now we
use this theorem in computing confidence intervals.

4.3. Estimating σ2 when µ is unknown. The estimate s2
n must be used asWn depends on µwhich

is unknown. Theorem thm:indepofsamplemeanandvar tells us that (n−1)s2n
σ2 ∼ χ2

n−1. Hence, by the

same logic as before we get

P

{
(n− 1)s2

n

χ2
n−1

(
α
2

) ≤ σ2 ≤ (n− 1)s2
n

χ2
n−1

(
1− α

2

)} = P

{
χ2
n−1

(
1− α

2

)
≤ (n− 1)s2

n

σ2
≤ χ2

n−1

(α
2

)}
= 1− α.

Thus,
[

(n−1)s2n
χ2
n−1(

α
2 )
, (n−1)s2n
χ2
n−1(1−α

2 )

]
is a (1− α)-confidence interval for σ2.

If µ is known, we could use the earlier confidence interval using Wn, or simply ignore the

knowledge of µ and use the above confidence interval using s2
n. What is the difference? The

cost of ignoring the knowledge of µ is that the second confidence interval will be typically larger,
although for large n the difference is slight. On the other hand, if our knowledge of µ was inaccu-
rate, then the first confidence interval is invalid (we have no idea what its level of confidence is!)
which is more serious. In realistic situations it is unlikely that we will know one of the parameters

but not the other - hence, most often one just uses the confidence interval based on s2
n.

4.4. Estimating µ when σ2 is unknown. The earlier confidence interval We look for a confidence

interval [X̄n − σ√
n
zα/2, X̄n + σ√

n
zα/2] cannot be used as we do not know the value of σ.

A natural idea would be to use the estimate s2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 in place of σ2. However,

recall that the earlier confidence interval (in particular, the cut-off values zα/2 in the CI) was an

outcome of the fact that
√
n(X̄n − µ)

σ
∼ N(0, 1).

Is it true if σ is replaced by sn? Actually no, but we have a different distribution called Student’s
t-distribution.
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Exercise 16. Let Z ∼ N(0, 1) and S2 ∼ χ2
n be independent. Then, the density of Z

S/
√
n

is given by

1√
n− 1Beta(1

2 ,
n−1

2 )

1(
1 + t2

n−1

)n
2

for all t ∈ R. This is known as Student’s t-distribution.

The exact density of t-distribution is not important to remember, so the above exercise is op-
tional. The point is that it can be computed from the change of variable formula and that by
numerical integration its CDF can be tabulated.

How does this help us? From Theorem 15 we know that
√
n(X̄n−µ)

σ ∼ N(0, 1), (n−1)s2n
σ2 ∼ χ2

n−1,

and the two are independent. Take these random variables in the above exercise to conclude that
√
n(X̄n−µ)
sn

has tn−1 distribution.

The t-distribution is symmetric about zero (the density at t and at −t are the same). Further,
as the number of degrees of freedom goes to infinity, the t-density converges to the standard
normal density. What we need to know is that there are tables from which we can read off specific
quantiles of the distribution. In particular, by tn(α) we mean the 1−α quantile of the t-distribution
with n degrees of freedom. Then of course, the α quantile is −tn(α).

Returning to the problem of the confidence interval, from the fact stated above, we see that (use
Tn to indicate a random variable having t-distribution with n degrees of freedom).

P

(
X̄n −

sn√
n
tn−1

(α
2

)
≤ µ ≤ X̄n +

sn√
n
tn−1

(α
2

))

= P

(
−tn−1

(α
2

)
≤
√
n(X̄n − µ)

sn
≤ tn−1

(α
2

))
= P

(
−tn−1

(α
2

)
≤ Tn−1 ≤ tn−1

(α
2

))
= 1− α.

Hence, our (1− α)-confidence interval is
[
X̄n − sn√

n
tn−1

(
α
2

)
, X̄n + sn√

n
tn−1

(
α
2

)]
.

Remark 17. We remarked earlier that as n→∞, the tn−1 density approaches the standard normal
density. Hence, tn−1(α) approaches zα for any α (this can be seen by looking at the t-table for large
degree of freedom). Therefore, when n is large, we may as well use[

X̄n −
sn√
n
zα/2, X̄n +

sn√
n
zα/2

]
.

Strictly speaking the level of confidence is smaller than for the one with tn−1(α/2). However for
n large the level of confidence is quite close to 1− α.
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5. REMARKS ON THE PROBABILTY CALCULATIONS INVOLVED IN THE PREVIOUS SECTION

There were a few facts used in this section. We summarize them here. Let X1, . . . , Xn be i.i.d.
N(µ, σ2). Then

(1) X̄n ∼ N(µ, σ
2

n ).

(2) nWn
σ2 ∼ χ2

n where Wn = 1
n

∑n−1
k=1(Xk − µ)2.

(3) (n−1)s2n
σ2 ∼ χ2

n−1 where s2
n == 1

n−1

∑n−1
k=1(Xk − X̄n)2.

(4) X̄n and s2
n are independent.

We have used the first one many times. The second is also familiar, since Zi = (Xi − µ)/σ are

i.i.d. N(0, 1) variables and we have seen that sum of squares of n i.i.d. N(0, 1) variables has |chi2n
distribution. It remains to show the last two facts. They can be done together as follows.

Firstly, we use the standardized variables Zi = (Xi − µ)/σ which are i.i.d. N(0, 1). The goal is

to show that Z̄n and
∑n

k=1(Zk − Z̄n)2 are independent and the latter has χ2
n−1 distribution. Define

Y1

Y2

...
Yn

 =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
... . . .

...
an,1 an,2 . . . an,n



Z1

Z2

...
Zn


where the matrix is chosen as follows: Let the entries in the first row be 1/

√
n. Then the first row is

a unit vector. It can be extended to an orthonormal basis of Rn. The other vectors in this basis will
be the second, third,... rows of the matrix. There is a lot of choice, but it does not matter how we
pick the orthonormal basis. With this, the matrix A = (ai,j)i,j≤n becomes an orthogonal matrix,

i.e., AAt = I . Because of this, Y1, . . . , Yn are also i.i.d. N(0, 1) random variables (check!).

Further, Y1 =
√
nZ1. From the orthogonality of A, it follows that Y 2

1 + . . .+ Y 2
n = Z2

1 + . . .+ Z2
n

(because ‖AZ‖2 = ZtAtAZ = ZtZ). Consequently,

Y 2
2 + . . .+ Y 2

n = Z2
1 + . . .+ Z2

n − nZ̄2
n

= (Z1 − Z̄n)2 + . . .+ (Zn − Z̄n)2.

This shows that (Z1−Z̄n)2 + . . .+(Zn−Z̄n)2 depends only on Y2, . . . , Yn and hence is independent

of Z̄n which depends on Y1 alone. Further, Y 2
2 + . . . + Y 2

n has χ2
n−1 distribution, being a sum of

squares of (n− 1) i.i.d. N(0, 1) variables. This completes the proof. �

6. CONFIDENCE INTERVAL FOR THE MEAN

Now suppose X1, . . . , Xn are i.i.d. random variables from some distribution with mean µ and

variance σ2, both unknown. How can we construct a confidence interval for µ?
18



In case of normal distribution, recall that the (1− α)-CI that we gave was[
X̄n −

sn√
n
tn−1

(α
2

)
, X̄n +

sn√
n
tn−1

(α
2

)]
or

[
X̄n −

sn√
n
zα/2, X̄n +

sn√
n
zα/2

]
Is this a valid confidence interval in general? The answer is “No” for both. If Xi are from some

general distribution then the distributions of
√
n(X̄n − µ)/sn and

√
n(X̄n − µ)/σ are very com-

plicated to find. Even if Xi come from binomial or exponential family, these distributions will
depend on the parameters in a complex way (in particular, the distributions are not free from the
parameters, which is important in constructing confidence intervals).

But suppose n is large. Then the sample variance is close to population variance and hence

sn ≈ σ. Further, by CLT, we know that
√
n(X̄n − µ)/σ has approximately N(0, 1) distribution.

Hence, we see that

P

{
−zα/2 ≤

√
n(X̄n − µ)

sn
≤ zα/2

}
≈ Φ(zα/2)− Φ(−zα/2) = 1− α.

Consequently, we may say that

P

{
X̄n −

sn√
n
zα/2 ≤ µ ≤ X̄n +

sn√
n
zα/2

}
≈ 1− α.

Thus,
[
X̄n − sn√

n
zα/2, X̄n + sn√

n
zα/2

]
is an approximate (1 − α)-confidence interval. Further, when

n is large, the difference between Vn = 1
n−1

∑n
i=1(Xi − X̄n)2 and Vn := 1

n

∑n
i=1(Xi − X̄n)2 is small

(indeed, s2
n = (n/(n − 1))Vn). Hence it is also okay to use

[
X̄n −

√
Vn√
n
zα/2, X̄n +

√
Vn√
n
zα/2

]
as an

approximate (1− α)-confidence interval.

Example 18. Let X1, . . . , Xn be i.i.d. Ber(p). Consider the problem of finding a confidence interval
for p. Since each Xi is 0 or 1, observe that

ŝ2
n =

1

n

n∑
i=1

X2
i − X̄2

n = X̄n − (X̄n)2 = X̄n(1− X̄n).

Hence, an approximate (1− α)-CI for p is given by[
X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
.

7. A DIGRESSION - THE BAYESIAN FRAMEWORK

For the sake of coherence, we have given one framework of statistics, but there are others. In our
framework, the unknown is not equated with random. Like the laws of physics, some of which
are unknown (and those known today were unknown some centuries ago) but not random, we
treat the parameters as unknown but fixed. In the Beysian framework, one treats the unknown
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parameters as random. We shall give a brief introduction to this, in the context of a problem of
confidence interval.

7.1. Beyesian approach to estimating the success probability of a coin. Let X1, . . . , Xn be tosses
from a coin of unknown probability p of success. If we have no inkling of where p is, we as-
sume that it is anywhere in [0, 1], distributed uniformly at random. To write it out explicitly, the
assumptions are

(1) p ∼ unif[0, 1]. This unif[0, 1] is called the prior distribution of p.

(2) Conditional on p, the tosses X1, . . . , Xn are i.i.d. Ber(p).

It may be noted that in this setting Xis are not independent unconditionally (if 9 out of 10 tosses
are heads, we guess that perhaps the p had come out high, hence our guess is that the next toss is
very likely to be a head).

Then, the conditional distribution of p given the data X1, . . . , Xn is computed. This is basically
Bayes rule, except that there are uncountably many possible values of p (the different values of p

are like A1, A2, . . . and the data is like the event B, then we compute P(Ai
∣∣∣∣∣∣ B) using Bayes’ rule

as the ratio of P(Ai)P(B
∣∣∣∣∣∣ Ai) to the sum of such quantities over i). In our setting this gives the

conditional density of p given X1, . . . , Xn as(
n
k

)
pk(1− p)n−k∫ 1

0

(
n
k

)
xk(1− x)n−kdx

where k = X1 + . . . + Xn is the number of heads. This is called the posterior density of p. Writing

k = nX̄n, we see that the posterior distribution is just Beta(1 + nX̄n, 1 + n(1− X̄n)).

0.2 0.4 0.6 0.8 1.0

1

2

3

4

0.2 0.4 0.6 0.8 1.0

1
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3

4

FIGURE 1. Tosses are made a fair coin. The posterior distributions (assuming uni-
form prior) for p with n = 8, 16, 24, 32 are plotted. The narrower distributions
correspond to higher n. The second figure is the same, for a different set of data.

How is this useful? If our goal is to give an estimate for p, we just give the expected value of
the posterior distribution. In the case at hand (since the expected value of Beta(p, q) distribution

is p/(p + q)) this give p̂ = 1+nX̄n
n+1 . This is almost the same as X̄n for large n, but for small n, the
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prior assumption that p could be anywhere makes it a bit different. In general, the estimates in
this framework depend on the data and also on the prior. As the data size increases, the effect of
the prior fades away.

If we need a confidence interval for p, we find numbers a < b such that the posterior distribu-
tion puts mass α/2 below a and mass α/2 above b. Then declare [a, b] to be the confidence interval.
In the case at hand, we shall require the quantiles of the Beta distributions, which can be found
on a computer. With α = 0.1 (and giving up α/2 equally on both sides), the confidence inter-
vals for the four graphs shown in Figure 7.1 turn out to be [0.16875, 0.655059], [0.31083, 0.68917],
[0.378622, 0.69487] and [0.418562, 0.69509]. The confidence intervals become narrower with larger
samples.

8. ACTUAL CONFIDENCE BY SIMULATION

Suppose we have a candidate confidence interval whose confidence we do not know. For ex-
ample, let us take the confidence interval[

X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
.

for the parameter p of i.i.d. Ber(p) samples. We saw that for large n this has approximately (1−α)

confidence. But how large is large? One way to check this is by simulation. We explain how.
Take p = 0.3 and n = 10. Simulate n = 10 independent Ber(p) random variables and compute

the confidence interval given above. Check whether it contains the true value of p (i.e., 0.3) or not.
Repeat this exercise 10000 times and see what proportion of times it contains 0.3. That proportion
is the true confidence, as opposed to 1−α (which is valid only for large n). Repeat this experiment
with n = 20, n = 30 etc. See how close the actual confidence is to 1 − α. Repeat this experiment
with different value of p. The n you need to get close to 1 − α will depend on p (in particular, on
how close p is to 1/2).

This was about checking the validity of a confidence interval that was specified. In a real situ-
ation, it may be that we can only get n = 20 samples. Then what can we do? If we have an idea
of the approximate value of p, we can first simulate Ber(p) random numbers on a computer. We
compute the sample mean each time, and repeat 10000 times to get so many values of the sample
mean. Note that the histogram of these 10000 values tells us (approximately) the actual distribu-

tion of X̄n. Then we can find t (numerically) such that [X̄n − t, X̄n + t] contains the true value of p

in (1 − α)-proportion of the 10000 trials. Then, [X̄n − t, X̄n + t] is a (1 − α)-CI for p. Alternately,
we may try a CI of the form[

X̄n − t
√
X̄n(1− X̄n)

n
, X̄n + t

√
X̄n(1− X̄n)

n

]
.

where we choose t numerically to get (1− α) confidence.
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Summary: The gist of this discussion is this. In the neatly worked out examples of the previous
sections, we got explicit confidence intervals. But we assumed that we knew the data came from

N(µ, σ2) distribution. What if that is not quite right? What if it is not any of the nicely studied dis-
tributions? The results also become invalid in such cases. For large n, using law of large numbers
and CLT we could overcome this issue. But for small n? The point is that using simulations we
can calculate probabilities, distributions, etc, numerically and approximately. That is often better,
since it is more robust to assumptions.

9. HYPOTHESIS TESTING - FIRST EXAMPLES

Earlier in the course we discussed the problem of how to test whether a “psychic” can make
predictions better than a random guesser. This is a prototype of what are called testing problems.
We start with this simple example and introduce various general terms and notions in the context
of this problem.

Question 19. A “psychic” claims to guess the order of cards in a deck. We shuffle a deck of cards,
ask her to guess and count the number of correct guesses, say X .

One hypotheses (we call it the null hypothesis and denote it byH0) is that the psychic is guessing
randomly. The alternate hypothesis (denoted H1) is that his/her guesses are better than random
guessing (in itself this does not imply existence of psychic powers. It could be that he/she has
managed to see some of the cards etc.). Can we decide between the two hypotheses based on X?

What we need is a rule for deciding which hypothesis is true. A rule for deciding between the
hypotheses is called a test. For example, the following are examples of rules (the only condition is
that the rule must depend only on the data at hand).

Example 20. We present three possible rules.

(1) If X is an even number declare that H1 is true. Else declare that H1 is false.

(2) If X ≥ 5, then accept H1, else reject H1.

(3) If X ≥ 8, then accept H1, else reject H1.

The first rule does not make much sense as the parity (evenness or oddness) has little to do with
either hypothesis. On the other hand, the other two rules make some sense. They rely on the fact
that if H1 is true then we expect X to be larger than if H0 is true. But the question still remains,
should we draw the line at 5 or at 8 or somewhere else?

In testing problems there is only one objective, to avoid the following two possible types of
mistakes.

Type-I error: H0 is true but our rule concludes H1.

Type-II error: H1 is true but our rule concludes H0.
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The probability of type-I error is called the significance level of the test and usually denote by
α. That is, α = PH0{the test accepts H1} where we write PH0 to mean that the probability is
calculated under the assumption that H0 is true. Similarly one define the power of the test as
β = PH1{the test accepts H1}. Note that β is the probability of not making type-II error, and
hence we would like it to be close to 1. Given two tests with the same level of significance, the
one with higher power is better. Ideally we would like both to be small, but that is not always
achievable.

We fix the desired level of significance, usually α = 0.05 or 0.1 and only consider tests whose
probability of type-I error is at most α. It may seem surprising that we take α to be so small.
Indeed the two hypotheses are not treated equally. Usually H0 is the default option, representing
traditional belief and H1 is a claim that must prove itself. As such, the burden of proof is on H1.

To use analogy with law, when a person is convicted, there are two hypotheses, one that he is
guilty and the other that he is not guilty. According to the maxim “innocent till proved guilty”,
one is not required to prove his/her innocence. On the other hand guilt must be proved. Thus the
null hypothesis is “not guilty” and the alternative hypothesis is “guilty”.

In our example of card-guessing, assuming random guessing, we have calculated the distribu-
tion of X long ago. Let pk = P{X = k} for k = 0, 1, . . . , 52. Now consider a test of the form
“Accept H1 if X ≥ k0 and reject otherwise”. Its level of significance is

PH0{accept H1} = PH0{X ≥ k0} =

52∑
i=k0

pi.

For k0 = 0, the right side is 1 while for k0 = 52 it is 1/52! which is tiny. As we increase k0 there is a
first time where it becomes less than or equal to α. We take that k0 to be the threshold for cut-off.

In the same example of card-guessing, let α = 0.01. Let us also assume that Poisson approxi-

mation holds. This means that pj ≈ e−1/j! for each j. Then, we are looking for the smallest k0

such that
∑∞

j=k0
e−1/j! ≤ 0.01. For k0 = 4, this sum is about 0.019 while for k0 = 5 this sum is

0.004. Hence, we take k0 = 5. In other words, accept H1 if X ≥ 5 and reject if X < 5. If we took
α = 0.0001 we would get k0 = 7 and so on.

Strength of evidence: Rather than merely say that we accepted H1 or rejected it would be better
to say how strong the evidence is in favour of the alternative hypothesis. This is captured by the
p-value, a central concept of decision making. It is defined as the probability that data drawn from the
null hypothesis would show closer agreement with the alternative hypothesis than the data we have at hand
(read it five times!).

Before we compute it in our example, let us return to the analogy with law. Suppose a man is
convicted for murder. Recall that H0 is that he is not guilty and H1 is that he is guilty. Suppose
his fingerprints were found in the house of the murdered person. Does it prove his guilt? It is
some evidence in favour of it, but not necessarily strong. For example, if the convict was a friend
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of the murdered person, then he might be innocent but have left his fingerprints on his visits to
his friend. However if the convict is a total stranger, then one wonders why, if he was innocent,
his finger prints were found there. The evidence is stronger for guilt. If bloodstains are found on
his shirt, the evidence would be even stronger! In saying this, we are asking ourselves questions
like “if he was innocent, how likely is it that his shirt is blood-stained?”. That is p-value. Smaller
the p-value, stronger the evidence for the alternate hypothesis.

Now we return to our example. Suppose the observed value is Xobs = 4. Then the p-value is
P{X ≥ 4} = p4 + . . . + p52 ≈ 0.019. If the observed value was Xobs = 6, then the p-value would
be p6 + . . .+ p52 ≈ 0.00059. Note that the computation of p-value does not depend on the level of
significance. It just depends on the given hypotheses and the chosen test.

10. TESTING FOR THE MEAN OF A NORMAL POPULATION

Let X1, . . . , Xn be i.i.d. N(µ, σ2). We shall consider the following hypothesis testing problems.

(1) One sided test for the mean. H0 : µ = µ0 versus H1 : µ > µ0.

(2) Two sided test for the mean. H0 : µ = µ0 versus H1 : µ 6= µ0.

This kind of problem arises in many situations in comparing the effect of a treatment as follows.

Example 21. Consider a drug claimed to reduce blood pressure. How do we check if it actually
does? We take a random sample of n patients, measure their blood pressures Y1, . . . , Yn. We ad-

minister the drug to each of them and again measure the blood pressures Y ′1 , . . . , Y
′
n, respectively.

Then, the question is whether the mean blood pressure decreases upon giving the treatment. To

this effect, we define Xi = Yi − Y ′i and wish to test the hypothesis that the mean of Xis is strictly
positive. If Xi are indeed normally distributed, this is exactly the one-sided test above.

Example 22. The same applies to test the efficacy of a fertilizer to increase yield, a proposed drug
to decrease weight, a particular educational method to improve a skill, or a particular course such
as the current probability and statistics course in increasing subject knowledge. To make a policy
decision on such matters, we can conduct an experiment as in the above example.

For example, a bunch of students are tested on probability and statistics and their scores are
noted. Then they are subjected to the course for a semester. They are tested again after the course
(for the same marks, and at the same level of difficulty) and the scores are again noted. Take
differences of the scores before and after, and test whether the mean of these differences is positive
(or negative, depending on how you take the difference). This is a one-sided tests for the mean.
Note that in these examples, we are taking the null hypothesis to be that there is no effect. In other
words, the burden of proof is on the new drug or fertilizer or the instructor of the course.

The test: Now we present the test. We shall use the statistic T :=
√
n(X̄−µ0)

s where X̄ and s are the

sample mean and sample standard deviation.
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(1) In the one-sided test, we accept the alternative hypothesis if T > tn−1(α).

(2) In the two sided-test, accept the alternative hypothesis if T > tn−1(α/2) or T < −tn−1(α/2).

The rationale behind the tests: If X̄ is much larger than µ0 then the greater is the evidence that
the true mean µ is greater than µ0. However, the magnitude depends on the standard deviation
and hence we divide by s (if we knew σ we would divide by that). Another way to see that this
is reasonable is that T does not depend on the units in which you measure Xis (whether Xi are
measured in meters or centimeters, the value of T does not change).

The significance level is α: The question is where to draw the threshold. We have seen before that
under the null hypothesis T has a tn−1 distribution. Recall that this is because, if the null hypothesis

is true, then
√
n(X̄−µ0)

σ ∼ N(0, 1), (n − 1)s2/σ2 ∼ χ2
n−1 and the two are independent. Thus, the

given tests have significance level α for the two problems.

Remark 23. Earlier we considered the problem of constructing a (1 − α)-CI for µ when σ2 is
unknown. The two sided test abovecan be simply stated as follows: Accept the alternative at
level α if the corresponding (1 − α)-CI does not contain µ0. Conversely, if we had dealt with
testing problems first, we could define a confidence interval as the set of all those µ0 for which the
corresponding test rejects the alternative.

Thus, confidence intervals and testing are closely related. This is true in some greater generality.
For example, we did not construct confidence interval for µ, but you should do so and check that
it is closely related to the one-sided tests above.

11. TESTING FOR THE DIFFERENCE BETWEEN MEANS OF TWO NORMAL POPULATIONS

Let X1, . . . , Xn be i.i.d. N(µ1, σ
2
1) and let Y1, . . . , Ym be i.i.d. N(µ2, σ

2
2). We shall consider the

following hypothesis testing problems.

(1) One sided test for the difference in means. H0 : µ1 = µ2 versus H1 : µ1 > µ2.

(2) Two sided test for the mean. H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

This kind of problem arises in many situations in comparing two different populations or the
effect of two different treatments etc. Actual data sets of such questions can be found in the
homework.

Example 24. Suppose a new drug to reduce blood pressure is introduced by a pharmaceutical
company. There is already an existing drug in the market which is working reasonably alright.
But it is claimed by the company that the new drug is better. How to test this claim?

We take a random sample of n + m patients and break them into two groups of n and of m
patients. The first group is administered the new drug while the second group is administered the
old drug. Let X1, . . . , Xn be the decrease in blood pressures in the first group. Let Y1, . . . , Ym be the
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decrease in blood pressures in the second group. The claim is that one average Xis are larger than
Yis.

Note that it does not make sense to subtract Xi − Yi and reduce to a one sample test as in
the previous section (here Xi is a measurement on one person and Yi is a measurement on a
completely different person! Even the number of persons in the two groups may differ). This is
an example of a two-sample test as formulated above.

Example 25. The same applies to many studies of comparision. If someone claims that Americans
are taller than Indians on average, or if it is claimed that cycling a lot leads to increase in height,
or if it is claimed that Chinese have higher IQ than Europeans, or if it is claimed that Honda Activa
gives better mileage than Suzuki Access, etc., etc., the claims can be reduced to the two-sample
testing problem as introduced above.

BIG ASSUMPTION: We shall assume that σ2
1 = σ2

2 = σ2 (yet unknown). This assumption is not
made because it is natural or because it is often observed, but because it leads to mathematical
simplification. Without this assumption, no exact level-α test has been found!

The test: Let X̄, Ȳ denote the sample means of X and Y and let sX , sY denote the corresponding

sample standard deviations. Since σ2 is the assumed to be the same for both populations, s2
X and

s2
Y can be combined to define

S2 :=
(n− 1)s2

X + (m− 1)s2
Y

m+ n− 2

which is a better estimate for σ2 than just s2
X or s2

Y (this S2 is better than simply taking (s2
X +s2

Y )/2

because it gives greater weight to the larger sample).

Now define T =
√

1
n + 1

m

(
X̄−Ȳ
S

)
. The following tests hav significance level α.

(1) For the one-sided test, accept the alternative if T > tn+m−2(α).

(2) For the one-sided test, accept the alternative if T > tn+m−2(α/2) or T < −tn+m−2(α/2).

The rationale behind the tests: If X̄ is much larger than Ȳ then the greater is the evidence that the
true mean µ1 is greater than µ2. But again we need to standardize by dividing this by an estimate
of σ, namely S. The resulting statistic T has a tm+n−2 distribution as explained below.

26



The significance level is α: The question is where to draw the threshold. From the facts we know,

X̄ ∼ N(µ1, σ
2
1/n),

Ȳ ∼ N(µ2, σ
2
2/m),

(n− 1)

σ2
s2
X ∼ χ2

n−1,

(m− 1)

σ2
s2
Y ∼ χ2

m−1

and the four random variables are independent. From this, it follows that (m + n − 2)S2 has

χ2
n+m−2 distribution. Under the null hypothesis 1

σ

√
1
n + 1

m(X̄ − Ȳ ) has N(0, 1) distribution and is

independent of S. Taking ratios, we see that T has tm+n−2 distribution (under the null hypothesis).

12. TESTING FOR THE MEAN IN ABSENCE OF NORMALITY

Suppose X1, . . . , Xn are i.i.d. Ber(p). Consider the test

H0 : p = p0 versus H1 : p 6= p0.

One can also consider the one-sided test. Just as in the confidence interval problem, we can give
a solution when n is large, using the approximation provided by the central limit theorem. Recall
that an approximate (1− α)-CI is[

X̄n − zα/2

√
X̄n(1− X̄n)

n
, X̄n + zα/2

√
X̄n(1− X̄n)

n

]
.

Inverting this confidence interval, we see that a reasonable test is:
Reject the alternative if p0 belongs to the above CI. That is, accept the alternative if

X̄n − zα/2

√
X̄n(1− X̄n)

n
≤ p0 ≤ X̄n + zα/2

√
X̄n(1− X̄n)

n

This test has (approximately) significance level α.

More generally, if we have data X1, . . . , Xn from a population with mean µ and variance σ2,
then consider the test

H0 : µ = µ0 versus H1 : µ 6= µ0.

A test with approximate significance level α is given by: Reject the alternative if

X̄n − zα/2
sn√
n
≤ µ0 ≤ X̄n + zα/2

sn√
n
.

Just as with confidence intervals, we can find the actual level of significance (if n is not large
enough) by simulating data on a computer.
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13. CHI-SQUARED TEST FOR GOODNESS OF FIT

At various times we have made statements such as “heights follow normal distribution”, “life-
times of bulbs follow exponential distribution” etc. Where do such claims come from? Over years
of analysing data, of course. This leads to an interesting question. Can we test whether lifetimes
of bulbs do follow exponential distribution?

We start with a simple example of testing whether a die is fair. The hypotheses are H0 : the die

is fair, versus H1 : the die is unfair2.
We throw the die n times and record the observations X1, . . . , Xn. For j ≤ 6, let Oj be the

number of times we observe the face j turn up. In symbols Oj =
∑n

i=1 1Xi=j . Let Ej = E[Oj ] = n
6

be the expected number of times we see the face j (under the null hypothesis). Common sense says
that if H0 is true then Oj and Ej must be rather close for each j. How to measure the closeness?
Karl Pearson introduced the test statistic

T :=
6∑
j=1

(Oj − Ej)2

Ej
.

If the desired level of significance is α, then the Pearson χ2-test says “Reject H0 if T ≥ χ2
5(α)”. The

number of degrees of freedom is 5 here. In general, it is one less than the number of bins (i.e., how
many terms you are summing to get T ).

Some practical points: The χ2 test is really an asymptotic statement. For large n, the level of
significance is approximately 1− α. There is no assurance for small n. Further, in performing the
test, it is recommended that each bin must have at least 5 observations (i.e., Oj ≥ 5). Otherwise
we club together bins with fewer entries. The number 5 is a rule of thumb, the more the better.

Fitting the Poisson distribution: We consider the famous data collected by Rutherford, Chadwick
and Ellis on the number of radioactive disintegrations. For details see the book of Feller’s book
(section VI.7) or this website.

The data consists of X1, . . . , X2608 (where Xk is the number of particles detected by the counter

in the kth time interval. The hypotheses are

H0 : F is a Poisson distribution. H1 : F is not Poisson.

The physical theories predict that the distribution ought to be Poisson and hence we have taken it

as the null hypothesis3

2You may feel that the null and alternative hypotheses are reversed. Is not independence a special property that

should prove itself. Yes and no. Here we are imagining a situation where we have some reason to think that the die is

fair. For example perhaps the die looks symmetric.
3When a new theory is proposed, it should prove itself and is put in the alterntive hypotheis, but here we take it as

null.
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We define Oj as the number of time intervals in which we see exactly j particles. Thus Oj =∑2608
i=1 1Xi=j . How do we find the expected numbers? If the null hypothesis had said that F

has Poisson(1) distribution, we could use that to find the expected numbers. But H0 only says
Poisson(λ) for an unspecified λ? This brings in a new feature.

First estimate λ, for example λ̂ = X̄n is an MLE as well as method of moments estimate. Then
we use this to calculate Poisson probabilities and the expected numbers. In other words, Ej =

e−λ̂ λ̂
j

j! . For the given data we find that λ̂ = 3.87. The table is as follows.

j 0 1 2 3 4 5 6 7 8 9 ≥ 10

Oj 57 203 383 525 532 408 273 139 45 27 16

Ej 54.4 210.5 407.4 525.4 508.4 393.5 253.8 140.3 67.9 29.2 17.1

Two remarks: The original data would have consisted of several more bins for j = 11, 12 . . .. These

have been clubbed together to perform the χ2 test (instead of a minimum of 5 per bin, they may

have ensured that there are at least 10 per bin). Also, the estimate λ̂ = 3.87 was obtained before
clubbing these bins. Indeed, if the data is merely presented as the above table, there will be some

ambiguity in how to find λ̂ as one of the bins says “≥ 10”.
Then we compute

T =

10∑
j=0

(Oj − Ej)2

Ej
= 14.7.

Where should we look up in the χ2 table? Earlier we said that the degrees of freedom is one less
than the number of bins. Here we give the more general rule.

Degrees of freedom of the χ2 = No. of bins − 1−No. of parameters estimated from data.

In our case we estimated one parameter, λ hence the d.f. of the χ2 is 11 − 1 − 1 = 9. Looking

at χ2
9 table one can see that the p-value is 0.10. This is the probability that a χ2

9 random variable
is greater than 14.7. (Caution: Elsewhere I see that the p-value for this experiment is reported as
0.17, please check my calculations!). This means that at 5% level, we would not reject the null
hypothesis. If the p-value was 0.17, we would not reject the null hypothesis even at 10% level.

Fitting a continuous distribution: Chi-squared test can be used to test goodness of fit for contin-
uous distributions too. We need some modifications. We must make bins of appropriate size, like
[a, a+h], [a+h, a+ 2h], . . . , [a+h(k− 1), a+hk] for a suitable h and k. Then we find the expected
numbers in each bin using the null hypothesis (first estimating some parameters if necessary) and

then proceed to compute T in the same way as before. Then check against the χ2 table with the
appropriate degrees of freedom. We omit details.
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The probability theorem behind the χ2-test for goodness of fit: Let (W1, . . . ,Wk) have multi-
nomial distribution with parameters n,m, (p1, . . . , pk). (In other words, place n balls at random

into m bins, but each ball goes into the ith bin with probability pi and distinct balls are assigned
independently of each other). The following proposition is the mathematics behind Pearson’s test.

Proposition [Pearson]: Fix k, p1, . . . , pk. Let Tn =
∑k

i=1
(Wi−npi)2

npi
. Then Tn converges to a χ2

k−1

distribution in the sense that P{Tn ≤ x} →
∫ x

0 fk−1(u)du where fk−1 is the density of χ2
k−1 distri-

bution.

How does this help? Suppose X1, . . . , Xn are i.i.d. random variables taking k values (does
not matter what the values are, say t1, t2, . . . , tk) with probabilities p1, . . . , pk. Then, let Wi be the
number of Xis whose value is ti. Clearly, (W1, . . . ,Wk) has a multinomial distribution. Therefore,

for large n, the random variable Tn defined above (which is in fact the χ2-statistic of Pearson) has

approximately χ2
k−1 distribution. This explains the test.

Sketch of proof of the proposition: Start with the case k = 2. Then,W1 ∼ Bin(n, p1) andW2 = r−

W1. Thus, Tn = (W1−np1)2

np1p2
(recall that p1+p2 = 1 and check this!). We know that (W1−np1)/

√
np1q1

is approximately a N(0, 1) random variable, where qi = 1 − pi). Its square has (approximatelyχ2
1

distribution. Thus the proposition is proved for k = 2.
When k > 2, what happens is that the random variables ξi := (Wi − npi)/

√
npiqi are ap-

proximately N(0, 1), but not independent. In fact the correlation between ξi and ξj is close to

−
√
pipj/qiqj . The sum of squares of ξis gives the χ2 statistic. On the other hand, one can (with

some clever linear algebra/matrix manipulation) write
∑k

i=1 ξ
2
i as

∑k−1
i=1 η

2
i where ηi are indepen-

dent N(0, 1) random variables. Thus we get χ2
k−1 distribution.

14. TESTS FOR INDEPENDENCE

Suppose we have a bivariate sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d. from a joint density
(or joint pmf) f(x, y). The question is to decide whether Xi is independent of Yi.

Example 26. There are many situations in which such a problem arises. For example, suppose a
bunch of students are given two exams, one testing mathematical skills and another testing verbal
skills. The underlying goal may be to investigate whether the human brain has distinct centers for
verbal and quantitative thinking.

Example 27. As another example, say we want to investigate whether smoking causes lung cancer.
In this case, for each person in the sample, we take two measurements - X (equals 1 if smoker
and 0 if not) and Y (equal 1 if the person has lung cancer, 0 if not). The resulting data may be
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summarized in a two-way table as follows.

X = 0 X = 1

Y = 0 n0,0 n0,1 n0·

Y = 1 n1,0 n1,1 n1·

n·0 n·1 n

Here the total sample is of n persons and ni,j denote the numbers in each of the four boxes. The
numbers n0· etc denote row or column sums. The statistical problem is to check if smoking (X)
and incidence of lung cancer (Y ) are positively correlated.

Testing independence in bivariate normal: We shall not discuss this problem in detail but instead
quickly give some indicators and move on. Here we have (Xi, Yi) i.i.d bivariate normal random

variables with E[X] = µ1, E[Y ] = µ2, Var(X) = σ2
1 , Var(Y ) = σ2

2 and Corr(X,Y ) = ρ. The testing
problem is H0 : ρ = 0 versus H1 : ρ 6= 0. (Remember that if (X,Y ) is bivariate normal, then X
and Y are independent if and only if X and Y are uncorrelated.

The natural statistic to consider is the sample correlation coefficient (Pearson’s r statistic)

rn :=
sX,Y
sX .sY

where s2
X , s

2
Y are the sample variances of X and Y and sX,Y = 1

n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ ) is the

sample covariance. It is clear that the test should reject null hypothesis if rn is away from 0. To
decide the threshold we need the distribution of rn under the null hypothesis.

Fisher: Under the null hypothesis, r2
n has Beta(1

2 ,
n−2

2 ) distribution.

Using this result, we can draw the threshold for rejection using the Beta distribution (of course
the explicit threshold can only be computed numerically). If the assumption of normality of the
data is not satisfied, then this test is invalid. However, for large n as usual we can obtain an
asymptotically level-α test.

Testing for independence in contingency tables: Here the measurements X and Y take values
in {x1, . . . , xk} and {y1, . . . , y`}, respectively. These xi, yj are categories, not numerical values
(such as “smoking” and “non-smoking”). Let the total number of samples be n and let Ni,j be the

number of samples with values (xi, yj). Let Ni· =
∑

j Ni,j and let N·j =
∑

iNi,j .

We want to test

H0 : X and Y are independent

H1 : X and Y are not independent.
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Let µ(i, j) = P{X = xi, Y = yj} be the joint pmf of (X,Y ) and let p(i), q(j) be the marginal pmfs

of X and Y respectively. From the sample, our estimates for these probabilities would be µ̂(i, j) =

Ni,j/n and p̂(i) = Ni·/n and q̂(j) = N·j/n (which are consistent in the sense that
∑

j µ̂(i, j) = p̂(i)

etc).
Under the null hypothesis we must have µ(i, j) = p(i)q(j). We test if these equalities hold

(approximately) for the estimates. That is, define

T =
k∑
i=1

∑̀
j=1

(Ni,j − np̂(i)q̂(j))2

np̂(i)q̂(j)
.

Note that this is in the usual form of a χ2 statistic (sum of (observed− expected)2/expected).
The number of terms is k`. We lose one d.f. as usual but in addition we estimate (k− 1) param-

eters p(i) (the last one p(k) can be got from the others) and (`− 1) parameters q(j). Consequently,
the total degress of freedom is k`− 1− (k − 1)− (`− 1) = (k − 1)(`− 1).

Hence, we reject the null hypothesis if T > χ2
(k−1)(`−1)(α) to get (an approximately) level α test.

15. REGRESSION AND LINEAR REGRESSION

Let (Xi, Yi) be i.i.d random variables. For example, we could pick people at random from a
population and measure their height (X) and weight (Y ). One question of interest is to predict
the value of Y from the value of X . This may be useful if Y is difficult to measure directly. For
instance, X could be the height of a person and Y could be the xxx

In other words, we assume that there is an underlying relationship Y = f(X) for an unknown
function f which we want to find. From a random sample (X1, Y1), . . . , (Xn, Yn) we try to guess
the function f .

If we allow all possible functions, it is easy to find one that fits all the data points, i.e., there
exists a function f : R → R (in fact we may take f to be a polynomials of degree n) such that
f(Xi) = Yi for each i ≤ n (this is true only if we assume that all Xi are distinct which happens if
X has a continuous distribution). This is not a good predictor, because the next data point (U, V )

will fall way off the curve. We have found a function that “predicts” well all the data we have, but
not for a future observation!

Instead, we fix a class of functions, for example the collection of all linear functions y = mx+ c

where m, c ∈ R and within this class, find the best fitting function.

Remark 28. One may wonder if linearity is too restrictive. To some extent, but perhaps not as
much as it sounds at first.

(1) Firstly, many relationships are linear in a reasonable range of the X variable (for example,
resistance of a materiaal versus temperature).
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(2) Secondly, we may sometimes transform the variables so that the relationship becomes lin-

ear. For example, if Y = aebX , then log(Y ) = a′ + b′X where a′ = log(a) and b′ = log(b)

and hence in terms of the new variables X and log(Y ), we have a linear relationship.

(3) Lastly, as a slight extension of linear regression, one can study multiple linear regression,

where one has several independent variables X(1), . . . , X(p) and try to fit a linear function

Y = β1X
(1) + . . . + βpX

(p). Once that is done, it increases the scope of curve fitting even

more. For example, if we have two variable X,Y , then we can take X(1) = 1, X(2) = X ,

X(3) = X2. Then, linear regression of Y against X(1), X(2), X(3) is tantamount to fitting a
quadratic polynomial curve for X,Y .

In short, multiple linear regression along with non-linear transformations of the individual vari-
ables, the class of functions f is greatly extended.

Finding the best linear fit: We need a criterion for deciding the “best”. A basic one is the method of

least squares which recommends finding α, β such that the error sum of squares R2 :=
∑n

k=1(Yk −
α− βXk)

2 is minimized.
For fixed Xi, Yi this is a simple problem in calculus. We get

β̂ =

∑n
k=1(Xk − X̄n)(Yk − Ȳn)∑n

k=1(Xk − X̄n)2
=
sX,Y
s2
X

, α̂ = Ȳn − β̂X̄n

where sX,Y is the sample covariance of X,Y and sX is the sample variance of X .
We leave the derivation of the least squares estimators by calculus to you. Instead we present

another approach.

For a given choice of β, we know that the choice of α which minimizes R2 is the sample mean

of Yi − βXi which is Ȳ − βX̄ . Thus, we only need to find β̂ that minimizes

n∑
k=1

(
(Yk − Ȳ )− β(Xk − X̄)

)2
and then we simply set α̂ = Ȳ − βX̄ . Let4 Zk = Yk−Ȳ

Xk−X̄
and wk = (Xk − X̄)2/s2

X . Then,

n∑
k=1

(
(Yk − Ȳ )− β(Xk − X̄)

)2
= s2

X

n∑
k=1

wk (Zk − β)2 .

Since wk are non-negative numbers that add to 1, we can intepret it as a probability mass function
and hence we see that the minimizing β is given by the expectation with respect to this mass

4We are dividing by Xk − X̄ . What if it is zero for some k? But note that in the expression∑(
(Yk − Ȳ )− β(Xk − X̄)

)2, all such terms do not involve β and hence can be safely left out of the summation. We

leave the details for you to work out (the expressions at the end should involve all Xk, Yk).
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function. In other words,

β̂ =
n∑
k=1

wkZk =
sX,Y
s2
X

.

Another way to write it is β̂ = sY
sX
rX,Y where rX,Y is the sample correlation coefficient.

A motivation for the least squares criterion: Suppose we make more detailed model assumptions
as follows. Let X be a control variable (i.e., not random but we can tune it to any value, like

temperature) and assume that Yi = α + βXi + εi where εi are i.i.d. N(0, σ2) “errors”. Then, the

data is essential Yi that are independent N(α+ βXi, σ
2) random variables. Now we can extimate

α, β by the maximum likelihood method.

Example 29 (Hubble’s 1929 experiment on the recession velocity of nebulae and their distance to
earth). Hubble collected the following data that I took from this website. Here X is the number of

megaparsecs from the nebula to earth and Y is the observed recession velocity in 103km/s.

X 0.032 0.034 0.214 0.263 0.275 0.275 0.45 0.5 0.5 0.63 0.8 2

Y 0.17 0.29 -0.13 -0.07 -0.185 -0.22 0.2 0.29 0.27 0.2 0.3 1.09

X 0.9 0.9 0.9 0.9 1 1.1 1.1 1.4 1.7 2 2 2

Y -0.03 0.65 0.15 0.5 0.92 0.45 0.5 0.5 0.96 0.5 0.85 0.8

We fit two straight lines to this data.

(1) Fit the line Y = α + βX . The least squares estimators (as derived earlier) turn out to be

α̂ = −0.04078 and β̂ = 0.45416. If Zi = α + βXi are the predicted values of Yis, then one

can see that the residual sum of squares is
∑

i(Yi − Zi)2 = 1.1934.

(2) Fit the line Y = bX . In this case we get b̂ by minimizing
∑

i(Yi − bXi)
2. This is slightly

different from before, but the same methods (calculus or the alternate argument we gave)
work to give

b̂ =

∑n
i=1 YiXi∑n
i=1X

2
i

= 0.42394.

The residual sum of squares
∑n

i=1(Yi − bXi)
2 turns out to be 1.2064.

The residual sum of squares is smaller in the first, thus one may naively think that it is a better
fit. However, note that the reduction is due to an extra parameter. Purely statistically, introducing
extra parametrs will always reduce the residual sum of squares for obvious reasons. But the
question is whether the extra parameter is worth the reduction. More precisely, if we fit the data
too closely, then the next data point to be discovered (which may be nebula that is 10 megaparsecs
away) may fall way off the curve.

More importantly, in this example, physics tells us that the line must pass through zero (that
is, there is no recession velocity when two objects are very close). Therefore it is the second line
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that we consider, not the first. This gives the Hubble constant to be 423 km./s./megaparsec (the
currently accepted values appear to be about 70, with data going up to distances of hundreds of
megaparsecs...see this data!).

Example 30. I have taken this example from the wonderful compilation of data sets by A. P. Gore,
S. A. Paranjpe, M. B. Kulkarni. In this example, Y denotes the number of frogs of age X (in some
delimited population).

X 1 2 3 4 5 6 7 8

Y 9093 35 30 28 12 8 5 2

A prediction about life-times says that the survival probability P (t) (which is the chance that an

individual survives up to age t or more) decays as P (t) = Ae−bt for some constants A and b. We
would like to check this agains the given data.

What we need are individuals that survive beyond age t. Taking Z to be the cumulative sums
of Y , this gives us

X 1 2 3 4 5 6 7 8

Z 9213 120 85 55 27 15 7 2

P = Z/n 1.0000 0.0130 0.0092 0.0060 0.0029 0.0016 0.0008 0.0002

W = logP 0 -4.3409 -4.6857 -5.1210 -5.8325 -6.4203 -7.1825 -8.4352

We compute that X̄ = 4.5, W̄ = −5.25, std(X) = 2.45, std(W ) = 2.52 and corr(X,W ) = 0.92.

Hence, in the linear regression W = a+ bX , we see that b̂ = 0.94 and â = −9.49. The residual sum
of squares is 7.0.

How good is the fit? For the same data (X1, Y1), . . . , (Xn, Yn), suppose we have two candidates
(a) Y = f(X) and (b) Y = g(X). How to decide which is better? Or how to say if a fit is good
at all?

By the least-squares criterion, the answer is the one with smaller residual sum of squares SS :=∑n
k=1(Yk − f(Xk))

2. Usually one presents a closely related quantity R2 = 1 − SS
SS0

(where SS0 =∑n
k=1(Yk− Ȳ )2 = (n−1)s2

Y ). Since SS0 is (a multiple of) the total variance in Y , R2 measures how

much of it is “explained” by a particular fit. Note that 0 ≤ R2 ≤ 1. And higher (i.e., closer to 1)

the R2 is, the better the fit.
Thus, the first naive answer to the above question is to compute R2 in the two situations (fit-

ting by f and fitting by g) and see which is higher. But a more nuanced approach is preferable.
Consider the same data and three situations.

(1) Fit a constant function. This means, choose α to minimize
∑n

k=1(Yk − α)2. The solution is

α̂ = Ȳ and the residual sum of squares is SS0 itself. Then, R2
0 = 0.
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(2) Fit a linear function. Then α, β are chosen as discussed earlier and the residual sum of

squares is SS1 =
∑n

k=1(Yk − α̂− β̂Xk)
2. Then, R2

1 = 1− SS1
SS0

.

(3) Fit a quadratic function. The the residual sum of squares is SS2 =
∑n

k=1(Yk − α̂ − β̂Xk −

γ̂X2
k)2 where α̂, β̂, γ̂ are chosen so as to minimize

∑n
k=1(Yk − α − βXk − γX2

k)2. Then

R2
2 = 1− SS2

SS0
.

Obviously we will have R2
2 ≥ R2

1 ≥ R2
0 (since linear functions include constants and quadratic

functions include linear ones). Does that mean that the third is better? If that were the conclusion,
then we can continue to introduce more parameters as that will always reduce the residual sum of
squares! But that comes at the cost of making the model more complicated (and having too many
parameters means that it will fit the current data well, but not future data!). When to stop adding
more parameters?

Qualitatively, a new parameter is desirable if it leads to a significant increase of the R2. The

question is, how big an increase is significant. For this, one introduces the notion of adjusted R2,
which is defined as follows:

If the model has p parameters, then define S̄S = SS/(n− 1− p). In particular, S̄S0 = SS0
n−1 = s2

Y .

Then define the adjusted R2 as R̄2 = 1− S̄S
S̄S0

.

In particular, R̄2
0 = R2

0 as before. But R2
1 = 1 − SS1/(n−2)

SS0/(n−1) . Note that R̄2 does not necessarily

increase upon adding an extra parameter. If we want a polynomial fit, then a rule of thumb is to

keep adding more powers as long as R̄2 continues to increase and stop the moment it decreases.

Example 31. To illustrate the point let us look at a simulated data set. I generated 25 i.i.d N(0, 1)

variables Xi and then generated 25 i.i.d. N(0, 1/4) variables εi. And set Yi = 2Xi + εi. The data set
obtained was as follows.

X -0.87 0.07 -1.22 -1.12 -0.01 1.53 -0.77 0.37 -0.23 1.11 -1.09 0.03 0.55

Y -2.43 -0.56 -2.19 -2.32 -0.12 3.77 -1.4 0.84 0.34 1.83 -1.83 0.48 0.98

X 1.1 1.54 0.08 -1.5 -0.75 -1.07 2.35 -0.62 0.74 -0.2 0.88 -0.77

Y 2.3 2.5 -0.41 -2.94 -1.13 -0.84 4.36 -1.14 1.45 -1.36 1.55 -2.43

To this data set we fit two models (A) Y = βX and (B) Y = a+ bX . The results are as follows.

SS0 = 96.20, R2
0 = 0

SS1 = 6.8651, R2
1 = 0.9286, R̄2

1 = 0.9255

SS2 = 6.8212, R2
2 = 0.9291, R̄2

2 = 0.9227.

Note that the adjusted R2 decreases (slightly) for the the second model. Thus, if we go by that,
then the model with one parameter is chosen (correctly, as we generated from that model!). You
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can try various simulations yourself. Also note the high value of R2
1 (and R2

2) which indicates that
it is not a bad fit at all.
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