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1 . R i n g s a n d I d e a l s

Submit a solutions of ∗ - E x e r c i s e s ONLY. Due Date : Tuesday, 28-01-2020
Recommended to solve the violet colored R E x e r c i s e s

All rings considered are commutative with identity element (unity) 1. When necessary we write 1A
for the identity element of the ring A. The zero ring A = {0} is the only ring such that 1A = 0. For
a ring A, the subsets A× and A∗ denote the set of all units and non-zero divisors in A, respectively.
Note that A× is a (multiplicative) subgroup and A∗ is a (multiplicative) monoid of the multiplicative
monoid (A, ·) of the ring A with A× ⊆ A∗. Further, the subset Z(R) := ArA∗ denote the set of all
zero divisors in A. Let I(A) (resp. SpecA, Spm A ) denote the set of all ideals (resp. prime ideals,
maximal ideals) in a ring A.

1.1 ( M i n i m a l r i n g s a n d C h a r a c t e r i s t i c o f a r i n g ) Let A be a ring.

(a) The multiples of the unit element 1A form the smallest subring Z1A := {n1A | n ∈Z}
of A and is called the m i n i m a l r i n g o f A. A ring which coincides with its minimal
ring is called a m i n i m a l r i n g .1

(b) There is a unique ring homomorphism χ = Aχ : Z−→ A which is called the c h a r -
a c t e r i s t i c h o m o m o r p h i s m o f A. Its image is the minimal ring Z1A of A and
its kernel is ZOrd1A =ZCharA (by definition Ord1A = CharA). In particular, χ induces
an isomorphism χ : Z/ZCharA ∼−→ Z1A of rings. ( Remark : The order Ord1A ∈N is the
order of 1A in the additive group (A,+) is called the c h a r a c t e r i s t i c of A and is denoted by
CharA. — Recall that : Let G be a (multiplicative) group with neutral (identity) element eG, a∈G and
H(a) := {an | n∈Z} be the cyclic subgroup of G generated by a. Then the map ϕa : (Z,+)−→H(a),
n 7−→ an is a surjective homomorphism of groups with the kernel Kerϕa = {n ∈Z | an = eG} ⊆Z.
Therefore there exists a unique natural number m ∈N such that Kerϕa =Zm. This natural number
m is called the o r d e r of a and is denoted by Orda. Therefore Kerϕa =ZOrda and an = eG, for
n ∈Z, if and only if n is a multiple of Orda. If m = Orda = 0 then ϕa is injective and hence bijective,
i. e. all powers an, n ∈Z, of a are pairwise distinct and ϕa is an isomorphism of groups from (Z,+)

onto H(a).2 )

(c) Char A = Exp(A,+) := the e x p o n e n t of the additive group (A,+). ( Remark :
Recall that : Let G be a (multiplicative) group with neutral element eG. For n ∈Z, let χn : G−→G be
the power-map x 7−→ xn. Then the map χ : (Z, ·)−→ (GG,◦), n 7→ χn, is a monoid homomorphism
from the multiplicative monoid (Z, ·) into the monoid (GG,◦) of maps (with the composition ◦
as the binary operation). The subset {k ∈Z | xk = eG for all x ∈ G} is a subgroup of the additive
group (Z,+). The unique generator ≥ 0 of this subgroup is called the e x p o n e n t of G and is
denoted by ExpG. Now, assume that G is an (additive) abelian group. Then for each n ∈ Z, the
power-map χn : G−→G is an endomorphism of G, i. e. χn ∈ EndG for all n∈Z. Altogether, the map
χ :Z−→ EndG is a ring homomorphism with Ker χ =ZExpG. Moreover, χ induces an injective
ring homomorphism χ :Z/ZExpG−→ EndG.

1 Minimal rings are also called p r i m e r i n g s.
2 In this case, often one also (and some authors) say that the order of a is ∞, since H(a) has infinitely many

elements.
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Now, let G = H(a) = Zm be the cyclic group with m = ExpG. Then χ is also surjective and hence a
canonical isomorphism of rings Z/Zm ∼−→ End Zm, [n]m 7→ (χn : x 7→ nx). If, namely f : Zm→ Zm
is an endomorphism with f (a) = na, then f = χn.
In particular, χ induces an isomorphism of groups (Z/Zm , ·)× ∼−→ (Aut Zm, ◦). If G is finite,
i. e. if m > 0, then the order of the unit-group (Z/Zm)× is ϕ(m) and hence by the Fermat’s Little
Theorem, we have ( E u l e r ’ s F o r m u l a ) : nϕ(m) ≡ 1 mod m , if gcd(n,m) = 1.)

(d) Every minimal ring A of characteristic m ∈N is isomorphic to the residue-class ring
Z/Zm and there is exactly one isomorphism Z/Zm ∼−→ A. ( Remark : The residue-class
rings Z/Zm, m ∈N, upto unqiue isomorphism, represents all minimal rings. We use

Am := (Z/Zm,+, ·) , m ∈N∗, resp. A0 := (Z,+, ·)

as standard models for a minimal ring of the characteristic m ∈N∗ resp. for a minimal ring of the
characteristic 0, but we shall also denote every other minimal ring of the characteristic m by Am.
Then the identification of cyclic groups with Z/Zm is unique. In particular, Am =Z1A ⊆ A is the
minimal ring for every ring A of the characteristic m. The additive group of the ring Am is the cyclic
group Zm = (Am,+). The unit-group A×m = (Am, ·)× contains precisely the elements a ·1Am with
a ∈Z, gcd(a,m) =1. If m>0, then its order is ϕ(m). In particular, Am is an integral domain if and
only if m ∈P :=P]{0}3 and is a field if and only if m ∈P is a prime number. For a positive integer
m>0, the unit-group A×m is called the p r i m e r e s i d u e - c l a s s g r o u p m o d u l o m.)

1.2 The additive group (K,+) and the multiplicative group (K×, ·) of a field K are never
isomorphic.
1.3 (a) A ring A is a minimal ring if and only if its additive group is cyclic. If A is finite

with square-free cardinal number, then A is a minimal ring.

(b) If A is a finite ring, then |A| and CharA have the same prime factors. In particular, the
cardinality of a finite field is a prime-power. ( Remark : The additive group of K is even an
elementary abelian p-group, p := CharK. — For a prime number p, an (additive) abelian group H is
called an e l e m e n t a r y a b e l a i n p - g r o u p if px = 0 for all x ∈ H, i. e. if every element of H
is of order 1 or p.)

1.4 Give an example of a ring B with a subring A⊆B such that A×(B×∩ A and A∗)B∗∩ A.
(The inclusions A×⊆ B×∩ A and A∗⊇ B∗∩ A are trivial.)

1.5 Let A be a ring. The operations sum, intersection and product on I(A) are commutative
and associative. Moreover, for all a, b, c ∈ I(A), we have :

(a) ( D i s t r i b u t i v e l a w ) a(b+ c) = ab+ac.

(b) ( M o d u l a r l a w ) If a⊇ b or a⊇ c, then a∩ (b+ c) = a∩b+a∩ c.

(c) (a+b)(a∩b)⊆ ab. (Remark : In the ring Z the equality (a+b)(a∩b) = ab holds.)

(d) ab⊆ a∩b and the equality a∩b= ab holds if a and b are comaximal, i.e. a+b= A.
(Remark : For a ring A, the set I(A) is a (multiplicative and additive) monoid (with binary operations
product and sum of ideals, respectively) and also an o r d e r e d s e t 4 (with respect to the natural in-
clusion) which is compatible with the multiplication. Therefore I(A) is an ordered monoid. Moreover,
it is a l a t t i c e, i.e. for any two elements a,b ∈ I(A), both Sup{a,b} and Inf{a,b} exist.)

3 P is the set of all prime elements of (N, ·).
4 An o r d e r e d s e t (X ,≤) is a set with the o r d e r ≤ which is a reflexive, transitive, antisymmetric relation

on X .
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1.6 ( I d e a l q u o t i e n t ) For a, b ∈ I(A), the i d e a l q u o t i e n t of a by b is the
ideal (a : b) := {a∈A | ab⊆ a}. In particular, (0 : b) is {a ∈ A | ab = 0} is the a n n i -
h i l a t o r AnnA(b) := {a ∈ A | ab = 0} of b. If b = Ab, then we simply write (a : b)
for (a : b). (In the ring A=Z, let a=Zm, b=Zn. Then (a : b)=Zq, where q=∏p prime prp ,
rp :=max(vp(m)− vp(n),0) = vp(m)−min(vp(m)− vp(n)). Therefore q = m/gcd(m,n).)

For ideals a, ai , i ∈ I ; b, bi , i ∈ I ; c ∈ I(A), verify the following computational rules :

(a) a⊆ (a : b). (b) (a : b)b⊆ a. (c)
(
a : b) : c

)
= (a : bc) =

(
a : c) : b

)
.

(d)
(
∩i∈I ai : b

)
= ∩i∈I(ai : b). (e)

(
a : ∑i∈I bi

)
= ∩i∈I(a : bi).

1.7 ( R a d i c a l o f a n i d e a l ) For a ∈ I(A), the r a d i c a l o f a is the ideal r(a) =√
a := {a ∈ A | an ∈ a for some n ∈N+}.

For ideals a, b ∈ I(A), verify the following computational rules :

(a) a⊆
√
a. (b)

√√
a=
√
a. (c)

√
ab=

√
a∩b) =

√
a∩
√
b.

(d)
√
a+b=

√√
a+
√
b. (e)

√
a= A if and only if a= A.

(f) If p is a prime ideal in A, then
√
pn = p for all n ∈N+.

1.8 ( E x t e n s i o n s a n d C o n t r a c t i o n s o f i d e a l s ) Let ϕ : A −→ B be a ring
homomorphism. We can use ϕ to transport ideals from A to B and also to transport ideals
from B to A. More precisely :

If a is an ideal in A, then the set ϕ(a) need not be an ideal in B. The ideal Bϕ(a) generated
by ϕ(a) is called the e x t e n s i o n or the p u s h f o r w a r d o f a i n B. Similarly, if b
is an ideal in B, then ϕ−1(b) is always an ideal in A which is called the c o n t r a c t i o n or
the p u l l b a c k o f b i n A. Therefore, we have the maps :

ϕ∗ : I(A)→ I(B), a 7→ ϕ∗(a) := Bϕ(a) and ϕ∗ : I(B)→ I(A), b 7→ ϕ∗(b) := ϕ−1(b),
which are obviously homomorphisms of ordered sets.

(a) Suppose that the homomorphism ϕ : A −→ B is surjective. Then ϕ∗(a) = ϕ(a) for
all a ∈ I(A) and the map ϕ∗ is injective with image Imgϕ∗ = {a ∈ I(A) | Kerϕ ⊆ a}.
Moreover, the map ϕ∗ : I(B)−→ Imgϕ∗ is an isomorphism of lattices with inverse ϕ∗ |Imgϕ∗ .
In particular, one can identify the lattice of ideals I(B) of B with the sublattice I(A) of
ideals of A via the map ϕ∗. Moreover :
( P u s h - p u l l f o r m u l a ) ϕ∗ϕ∗a= a+Kerϕ for all a ∈ I(A) and
( P u l l - p u s h f o r m u l a ) ϕ∗ϕ

∗b= b for all b ∈ I(B).
(Remark : These formulas are extremely useful in the study of ring theory. More generally, it
is extremely useful to ask about properties of ϕ∗ and ϕ∗, in particular, when is ϕ∗ is injective or
surjective. Can one identify the composite maps ϕ∗ϕ∗ and ϕ∗ϕ∗? The most satisfying answers will
come for localizations and integral extensions. )

(b) Let a ∈ I(A) , π := πa : A→ A/a be the natural surjective map, ι : A→ A[X ] be the
natural inclusion and let π[X ] : A[X ]→ (A/a) [X ] be the ring homomorphism defined by
∑

n
i=0 aiX i 7−→ ∑

n
i=0 π(ai)X i. Then : Kerπ[X ] = aA[X ] and aA[X ]∩A = a . In particu-

lar, the map ι∗ : I(A[X ]) −→ I(A) is surjective. Further, the map ι∗ : I(A) −→ I(A[X ])
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is compatible with intersections, i. e. for ideals a1, . . . ,ar ∈ I(A), (a1 ∩ ·· · ∩ ar)A[X ] =
(a1A[X ])∩·· ·∩ (arA[X ]) and ι∗(SpecA)⊆ Spec A[X ], but ι∗(Spm A) 6⊆ Spm A[X ].

(c) Find an ideal in the polynomial ring Z[X ] which is not extended from Z under the
natural inclusion ι :Z→Z[X ], i. e. not in the image of the map ι∗ : I(Z)−→ I(Z[X ]).

(d) ϕ∗(SpecB)⊆ SpecA, in other words, contraction of a prime ideal is always a prime
ideal. But, in general, ϕ∗(Spm B) 6⊆ Spm A, i. e. contraction of a maximal ideal need not
be a maximal ideal. (Remark : The behavior of prime ideals under ϕ∗ under the ring extensions
ι :Z−→ B, where B is the ring of algebraic integers in a number field, is one of the central problems
of algebraic number theory.)

∗1.9 Let a be an ideal in a ring A and a ∈ A.

(a) Let p1, . . . ,pr be prime ideals in A such that a+a⊆ p1∪p2∪·· ·∪pr . Then the ideal
Aa+a= 〈a,a〉 ⊆ pi for some i ∈ {1, . . . ,r}. (Remark : There is an example of ideals a1,a2,a
and an element a ∈ A such that a+a⊆ a1∪a2, but a+a 6⊆ ai for i = 1,2.)

(b) ( P r i m e Av o i d a n c e L e m m a ) Let p1, . . . ,pr be ideals in A such that at most two
of them are not prime. If a⊆ p1∪ ·· ·∪pr, then a⊆ pi for some i ∈ {1, . . . ,r}. (Remark :
This is a weaker version of Urysohn’s Lemma5 in SpecA viz. one can “separate” a closed set in
SpecA from a finite set of points outside it.)

R 1.10 Let A :=CR([0,1]) be theR-algebra of continuous real valued functions on the closed
interval [0,1]⊆R. For f ∈ A, let V( f ) := {t ∈ [0,1] | f (t) = 0} denote the set of zeros of
f in [0,1] and U( f ) := [0,1]rV( f ). For f ∈ A, prove that :

(a) f ∈ A× if and only if V( f ) = /0.

(b) f ∈ A is a non-zero divisor in A if and only if V( f ) is nowhere dense in [0,1], i.e. the
complement U( f ) of V( f ) is dense in [0,1]. (Hint : (⇒) Let U := U( f ). If U ( [0,1], then
U∩V = /0 for some non-empty subset V ⊆ [0,1], i.e. V ⊆V( f ). By Exercise6 there exists g ∈ A with
V( f ) = [0,1]rV . But, then f g = 0 and g 6= 0, i.e. f is a zero-divisor in A. (⇐) Suppose that f g = 0
and g 6= 0. Then g = 0 on U which is dense in [0,1] and hence g = 0 on [0,1] by continuity of g. )

(c) A× ( S0 := ArZ(A), i.e. there are non-zero divisors which are non-units in A. (Hint :
Consider f ∈ A with V( f ) = {x1, . . . ,xr}, U( f ) := [0,1]r{x1, . . . ,xr}= ∩r

i=1 ([0,1]r{xi}) is dense
in [0,1].)

(d) For a subset Y ⊂ [0,1], let I(Y ) := { f ∈ A | f (y) = 0 for all y ∈ Y}. For example,
I({t}) = mt := { f ∈ A | f (t) = 0} is a maximal ideal in A. Show that I(Y ) is an ideal in
A and I(Y ) ∈ Spm A if and only if Y is singleton. (Hint : Note that if Y ′ ⊆ Y ⊆ [0,1], then
I(Y )⊆ I(Y ′).)

5 P a v e l S a m u i l o v i c h U r y s o h n ( 1 8 9 8 - 1 9 2 4 ) was a Soviet mathematician who is best known
for his contributions in dimension theory in topology, and for developing Urysohn’s metrization theorem and
Urysohn’s lemma, both of which are fundamental results in topology. This gave Urysohn an international platform
for his ideas which immediately attracted the interest of mathematicians such as David Hilbert.

6 Exercise : For every closed subset Z ⊆R, there exists a continuous function f :R→R such that Z = Z( f ) =
{t ∈R | f (t) = 0}. (Hint : Consider the distance function t 7→ d(t,Z).)
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