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8. The Prime Spectrunﬂ
— Zariski Topology

e For a ready reference use the R§ Summary of Results listed below

R8 Summary of Results

R 8.0 Some topological concepts.

R8.0.1 Noetherian topological spaces. A topological space X is called noetherian if any one
of the following equivalent conditions holds :

(i) Every open subset of X is quasi—compaciEl

(ii) The open subsets of X satisfy the ascending chain condition.

(iii) The closed subsets of X satisty the descending chain condition.

(iv) Every non-empty family of open subsets of X contains a maximal element.

(v) Every non-empty family of closed subsets of X contains a minimal element.

In particular, noetherian topological space is quasi-compact and every subspace ¥ C X is also noethe-
rian. Moreover, every non-empty noetherian topological space X is a finite the union of irreducible
closed subspaces, see Exercise 8.2. In particular, every noetherian topological space is locally con-
nected.

By the formal Hilbert’s nullstellensatz, the prime spectrum SpecA of a ring A is a noetherain topologi-
cal space if and only if the radical ideals in A satisfy the ascending chain condition, in particular, if A is
a noetherain ring, then the prime ideals satisfy ACC and X = SpecA is a noetherian topological space.
More generally, if A =Y | Af; is a finitely generated ideal in a ring A, then D(a) = U D(f;) is
quasi-compact.

The ring Q[X; | i € IN]/(X?| i € IN) is not noetherain, but its prime spectrum {m:= (x; | i€ IN)} is
singleton and hence noetherian.

R 8.0.2 Irreducible topological spaces. A topological space X iscalled irreducible ifitsatisfies
any one of the following equivalent conditions :

(i) X #0and UNV # 0 for arbitrary non-empty open subsets U, V C X.

(i) X # 0 and every non-empty open subset of X is dense in X.

(iii) X # 0 and every non-empty open subset of X is connected, i .e. it is not a disjoint union of two

IThe prime spectrum of a (commutative) ring. Modern Algebraic Geometry is a fascinating branch of
Mathematics that combines methods from Commutative Algebra and Geometry. It transcends the limited scope
of Commutative Algebra by means of geometrical construction principles. The challenge of new problems has
caused extensions and revisions. The concept of schemes invented by Grothendieck in the lates 1950s made it
possible to introduce methods even into fields that formerly seemed far from Geometry, for example Algebraic
Number Theory. This paved the way to spectacular new achievements such as the proof of Fermat’s Last Theorem
(by Wiles and Taylor) a famous problem that was open for more than 350 years. Commutative algebra is one of
the foundation stones of this modern algebraic geometry. It provides the complete local tools for the subject the
same way as differential calculus provides the tools for differential geometry.

The first step in the Language of Schemes is to explain the construction of so-called affine schemes which are
schemes of special type, namely SpecA the prime spectrum of a (commutative) ring A. Such schemes serve as the
local parts from which more general global schemes are obtained via gluing process. The prime spectrum Spec A
of a (commutative) ring A is a ringed space, i. e. a topological space with a sheaf of rings on it. In this Exercise
Set we discuss SpecA as a topological space. Its topology so-called Zariski topology was primarily (for closed
points) introduced by Ocar Zariski and later generalized to SpecA.

2 A subset U of a topological space X is called quasi-compact if every open cover of U admits a finite
subcover.
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Page 2 8. The Prime Spectrum — Zariski Topology Exercise Set 8

non-empty open subsets of X..
(iv) X #0and Y UZ C X for arbitrary proper closed subsets ¥, Z C X.

R8.1 The K-Spectrum of an algebra over a field K and the K-Zariski Topology. Classical
Hilbert’s Nullstellensatz is the starting point of classical algebraic geometry which provides a
bijective correspondence between affine algebraic sets which are geometric objects and radical ideals
in a polynomial ring over an algebraically closed field which are algebraic objects. Below we fix
conventions, notations, concepts and some most important results and examples.

R8.1.1 K-Spectrum of a polynomial algebra and K-Zariski topology. Let K[X|,...,X,] be a
polynomial algebra over a field K in indeterminates X1, ..., Xj.

(a) The map K" — Spm K[X1,...,X,], a=(ay,...,an) — my=(X|—ay,...,Xy,—ay), is injective.

(b) The map K" — Hom g5 (K[X1,...,X,],K), a = (a1,...,an) — &, is bijective, where &, :
K[X,..., X,] — K, X; — a; is the substitution homomorphism. (Hint : Use the universal property of the

K—a]gebra'K[Xl,..wX,,].)

(c) The subset K-Spec K[X1,...,X,] :={m e SpmK[X),...,X,] | K[Xi,...,X,]/m =K } of the max-
imal spectrum Spm K[X,...,X,] is called the K-spectrum of K[X],...,X;].

The map Hom g0 (K[X1,. .., Xy],K) — K-Spec K[X,...,X,], & — Ker &, is bijective.

(Hint: Every maximal ideal m in K[Xj,...,X,] with K[X],...,X,]/m = K is of the type m, for a unique
a = (ay,...,ay) € K"; the component a; is determined by the congruence X; = «@; mod m. — Therefore
K-Spec K[X1,.... X, :={m, € Spm K[Xi,...,X,| |a € K"}.)

(d) Use (a) and (b), to establish the identifications :
K" ¢+————— Homg_u(K[X],...,Xs],K) ————— K-SpecK[X|,...,Xy],
a &a m, = Keré&,.

(e) For an ideal a in K[X{,...,X,], the set of common zeros

Vig(a):={a€ K" |F(a)=0forall F € a}=\pcq Vk(F)
of all polynomials F € a in K" = K-Spec K[X|,...,X,], is called an affine K-algebraic set
or affine algebraic K-variety defined by a. Note that Vg(a) = Vg (v/a).
Further, the set Fg (K") := {Vg(a) | a € -J(K[X},...,X,])} of all affine K-algebraic sets in K" form
the closed sets of a topology — called the K-Zariski topology on K" = K-Spec K[X|,...,X;].
The open subsets are the complements Dg (a) := K"\ Vg(a), a € r-J(K[X,...,X,]) and Dg(F) =
{a € K" | F(a) #0} = K"\ Vk(F), F € K[Xj,...,X,|, form a basis for the Zariski topology on K".
Therefore we have defined the inclusion reversing map :

Vi tI(K[X1, .. X)) — Tr(K"),  ar— Vi(a).

(f) (Polynomial maps) For F € K[X},...,Xy], the function Fi* : K" — K, a+ F(a), is called
the polynomial function defined by F. By the identifications in (d) F(a)=&,(F) = F modm,
forany a € K"; F(a) is called the value of F ata,orat&,, oratm,.

For an infinite field K, the polynomial function ¢ defined by F determines the polynomial F. This
is the following well-known identity theorem for polynomialﬂ see Exercise 4.13.
Let ¢ : K[Yq,..., Y] = K[Xi,...,X,] be a K-algebra homomorphism and let F; := @(Y;),1 <i<m.
Then the map ¢* : K" — K™ defined by ¢*(ay,...,an) = (Fi(a),...,Fn(a)) is called the polyno-
mial map associated to ¢. Under the identifications in (d), the polynomial map ¢* is obviously
described as follows: &, @*E, = E, 0@ or by my, — @ m, = ¢~ (m,) = My (), a € K. For
every G € K[Yy,...,Y,], we have G* 0 0* = ¢(G)*.

Examples. Let ¢ : A — B be a K-algebra homomorphism. If ¢ is an isomorphism, then ¢* is bijective (with

3 Identity Theorem for Polynomials. Let K be an infinite field and let F,G € K[X\,...,X,]. If 9 = @(; then
F=G.
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(*)~! = (¢~ 1)*). However, if ¢* is bijective then ¢ need not be an isomorphism. For example :

(1) Let K be a perfect field of characteristic p > 0. Then the Frobenius map ff), : K — K, x —~ xP, is bijective,
but the corresponding K-algebra homomorphism K[X| — K[X], X — X, is not an automorphism.

(2) For an odd integer n > 1, the map R — R, x+— x”, is bijective, but the corresponding IR-algebra homomorphism
R[X] — R[X], X — X", is not bijective. If we replace R by C then the map x — x" is not bijective.

(Remark : This is can be generalized in many ways by using the following important result :

Theorem. Let K be an algebraically closed field of characteristic zero and let ¢ be a K-algebra endomorphism
of K[X1,...,Xu]. If 9* : K" — K" is bijective, then @ is an automorphism.

The example (1) above shows that the assumption about the characteristic in this theorem is necessary. The group
Autgq K[X1,...,X,] of K-algebra automorphisms of a polynomial algebra K[X,...,X,], n > 1 (for n =1, see
Exercise 4.11), is not yet well understood. In this connection, let us state a famous Jacobian conjecture
which is still open in general.

Jacobian Conjecture. Let K be a field of characteristic zero, ¢ be a K-algebra endomorphism of K|X;,...,X,]
and let F; := @(X;), 1 <i <n. Then @ is bijective if (and only if) the Jacobian determinant

O, F) o <8F>
I<i,j<n

a(X1,..., Xn) 0X;
is a non-zero constant.)

(g) For a better understanding of the map Vg, we define the inclusion reversing map in the opposite

direction: Ix : F(K") — t-I(K[X1, ..., X))
For this to every subset V C K", we associate the radical ideal in K[X{,...,X,]

Ix(V):={F €K[X1,...,Xn] | F(a) =0forall a € V} = N ey Mz € -I(K[X1,...,Xn])
iscalled the K-ideal of V. Further, the reduced affine K-algebra

K[V] = K[Xi, . X Ik(V)

is called the K-coordinate ring of V which is also called the ring of regular, or
polynomial K-valued functions on V because its elements f = F (mod Ix(V)) € K[V]
can be considered as (polynomial) function f : V — K, a — F(a) (which is independent of the choice

of a representative F of the residue-class f). For example, if x; = Xj(mod Ig(V)), then x; : V — K,
a v ai(=i-thcoordinate of a), i = 1,..., n, is called its i-th coordinate function. Therefore the map

K[V] —=—Poly(V,K), F+—(F:V —K,aw F(a))
is a K-algebra isomorphism.

(h) Morphism of affine K-algebraic sets) Let K beafieldandletV C K", W C K"
be affine K-algebraic sets. Amap f:V — Wiscalleda morphism of affine algebraic K-
sets if there exist polynomials Fj,...,F, € K[X|,...,X,] such that f(a) = (F\(a),...,Fy(a)) €W

for every a € V. In other words, f is a polynomial map.

Note that the composition of morphisms of affine algebraic K-sets is again a morphism of affine
algebraic K-sets. Therefore, the collection of affine algebraic K-sets with morphisms of K-algebraic
sets form a category — denoted by Aff K-AlgSets. The set of morphisms in this category is denoted

by Hom 44 k- 14 Sets(V,W). In particular, every isomorphisnﬂ of affine K-algebraic sets is a homeo-
morphism of the underlaying topological spaces. Further, the regular (or polynomial) functions of an
affine K-algebraic set V C K" are precisely the morphisms V — K.

The canonical map

(b.1) i HomAﬁ" K-Alg Sets (Va W) — HomK-alg (K[W} ) K[V} )’

defined by Fr— (F:KW] = K[V], £*0i) = fi (mod Ig (V)i = 1,....n),

(it is routine to check that this map is well-defined and that f* is a K-algebra homomorphism). The
K-algebra homomorphism f* is said to be induced from f.

Conversely, if ¢ : K[W] — K[V] is a K-algebra homomorphism, then there are polynomials Fi, ...,
F, € K[X1,...,Xm] such that ¢(y;) = fi := F; (mod Ix (V) ,i=1,...,n), and it is routine to check that
these f1,..., fn define a morphism of affine K-algebraic sets @*:V — W, a— (fi(a),...,f.(a))

4 A morphism f € More (X,Y) is a category C with objects X,Y € ObjC s called an isomorphism if there
exists a morphism g € More (X,Y) such that fog =idy and go f = idyx.
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which does not depend on the choice of f1,..., f, € K[V]. Altogether this defines a map
(b.2) * : Hom g1 (K[W], K[V]) — Hom g7 g_a1g(V, W),
o— (0" : V=W, a— (fi(a),....fa(a)) €K™).

which is the inverse of the map defined in (b.1). This proves that there is a canonical bijection

Hom 4 k-aigers(V, W) ——— Hom g_a1o (K[W], K[V]).
(Remark : Note that a bijective morphism f:V — W is not necessarily an isomorphism of affine K-algebraic sets.
For example, if V := Vg (XY —1)U{(0,1)} = Vi (a) C K2 where a:= (XY — 1)N(X,Y — 1) and if f:V — K'
is the first projection (a,b) +— a, then f is bijective, but not an isomorphism, since the K-algebra homomorphism
¢ :K[X] =K[K'| = K[V] =K[X,Y]/a, X ~ X(moda), associated to f is not an isomorphism.)
(i) The assignments V ~» K[V], f ~» f* defines a (contravariant) functor from the category
Aff K-AlgSets of affine K-algebraic sets to the category Aff K-Alg of affine K—algebras.

(Remark : If K is algebraically closed, then this functor is an equivalence onto the full subcategory of all reduced
affine K—algebras (by the Hilbert Nullstellensatz, see R8.1.2 (c) below.)

R 8.1.2 With the notations and definitions introduced in R8.1.1 above, we have :

(a) Forevery subset V C K", Vg (Ig(V)) =V (:= the closure of V in K" with respect to the K-Zariski
topology on K"). In particular, Ig (Vg (Ix(V))) =Ig(V) and Vk(Ix(Vk(a))) = Vk(a), where a is
an ideal in K[X|,...,X,]. Further, the map I is injective. (Hint: Since V C Vi (Ix(V)), V C Vg (Ix(V)).
For the other inclusion, if Vg (b) is a closed subset containing V, where b is an ideal in K[Xj,...,X,], then
b C Nyey My = Ix(V) and hence Vi (b) O Vi(Ix(V)). — Remark: Generally, for arbitrary field K it is
rather difficult to describe the image of the map g in the set of radical ideals in K[X|,...,X,]. However, for an
algebraically closed field we have a complete answer, see the next part (b).)

(b) Let K be an algebraically closed field. Then the maps

S:'K(Kn) IK r—J(K[Xl,...,XnD
Vi
Vil s
Frrg (K") \I/K Spec (K[X1, ..., X,])
Vk(p) £ P

are inclusion-reversing, bijective and mutually inverses of each other. Moreover, under this bijective
correspondence irreducible affine K-algebraic sets in K" (see R8.0.2) corresponds to the prime ideals
in K[Xj,...,X;]. (This is an immediate consequence of the famous geometric version of Hilbert’s Nullstellensatz

(HNS 2): Let K be an algebraically closed field and let a C K[Xy,...,X,| be an ideal. Then Jx(Vk(a)) = v/a.
—Remark: Let K be an arbitrary field, a C K[X),...,X,] be an ideal and let A:=K[X},...,X,|/a. The ideal
Ix(Vk(a))/ain A is the intersection (gcggpec 4 Me Of the maximal ideals mg in A corresponding to the points

& € K-Spec A and therefore an invariant of the K-algebra A, called the K-radical vy of A. The equality
Ix(Vk(a)) = V/a is equivalent with the condition that the nil-radical of A and the K-radical of R coincide.
Therefore the equality Ix (Vg (a)) = +/a implies the equality Ix (Vg (b)) = /b for any ideal b in a polynomial
algebra K[Y,..., Y] with A 2 K[Y|,...,Y,]/b.)

(c) Let K be an algebraically closed field and A = K|[xy,...,x,] = K[X1,...,X,]/a be a reduced affine
algebra over K. Then there exists an affine K-algebraic subset V C K" with the K-coordinate ring
K[V] =% A (as K-algebras). (Hint: Since A is reduced, a = v/a € r-J(K[X1,...,X,]). Then Ix(Vk(a)) =

v/a = a by the geometric version HNS 2 and hence K[V] = K[X,...,X,]/a =% A.)

R8.1.3 (K-Spectrum of an algebra over a field K) Let K be a field and let A be an
arbitrary K-algebra. The set

K-Spec A :={m € SpmA |A/m =K}
is called the K-spectrum of A. Note that under the identifications as in R8.1.1 (d), we have
K-Spec A = Hom g_q16 (A, K).

(a) IfA =5 K[Xj,...,X,]/ais a representation of the affine K-algebra A, then the affine K-algebraic
set Vg(a) :={a € K" | F(a) =0 forall F € a} is called the set of K-rational points of A.
Under the bijective maps in R8.1.1 (d), we also have identifications :
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Vi (a) = Homg_4(A,K) = K-Spec A.
In particular, for every affine K-algebraic set V in K", we have V = Hom g_q1¢ (K[V], K).

(b) For an affine algebra A over an algebraically closed field K, we have K-Spec A = Spm A.

(Hint : This follows from the algebraic version of Hilbert’s Nullstellensatz :
HNS 3: For an arbitrary maximal ideal m € Spm A in an affine algebra A over K, the residue field A/m is a
finite field extension of K. In particular, Spm C[Xj,...,X,] = C-Spec C[Xi,...,X,].

Note that Spm R[Xj,...,X,] 2R-Spec R[X],...,X,] forn>1. In fact, the maximal ideal m:= <X12+17X2, LX) E
R-Spec R[Xj,...,X,] and the residue field R[X],...,X,]/m = C and therefore it is called a complex point
of Spm R[X,...,X,].)

(¢) On the K-spectrum K-Spec A of an arbitrary K-algebra, we define the affine K-algebraic
subsets (and hence the K-Zariski topology) as follows: For f € A, we put:

Vi(f) = {E €K-Spec A | &(f) =0} = {& € K-Spec A | f(&) =0} = {m € K-Spec A | f € m}
and, for an ideal a in A, we put Vg(a) := \scq Vk(f). Note that Vg(a) = Vg (/a).
The set Fx(K-Spec A) = {Vk(a) | a € 1-J(A)} of all affine K-algebraic sets in K-Spec A form the
closed sets of a topology — called the K-Zariski topology on K-Spec A. The open subsets are
the complements Dk (a) :=K-Spec AN Vg (a), a € -J(A) and Dg () ={& € K-Spec A | E(f) #0} =
K-Spec ANVk(f), f € A form a basis for the K-Zariski topology on K-Spec A. Therefore we have
defined the inclusion reversing map :
Vi : 1-J(A) — Tk (K-Spec A), a+— Vg(a).
Further, for an arbitrary subset V C K-Spec A, we associate the radical ideal
Ik(V):={fe€A|f(§)=0forall§ €V} =ecy me €r-I(A).
These radical ideals satisfy the same properties of Exercise 8.9 (a).

(d) If A is an affine algebra over an algebraically closed field K, then the maps

K

Fx(K-Spec A) r-J(A)
Vi Vi x(V)
Vk(a) ia

are inclusion-reversing, bijective and mutually inverses of each other.

(e) Let K be an arbitrary field. Then for every K-algebra homomorphism ¢ :A — B of arbitrary
K-algebras, we define the map ¢@* : K-Spec B — K-Spec A by ¢*& :=E 0 @ or by @*m=¢'(m),
m=Ker& € K-Spec B=Hom g_y1,(B,K). Then (ids)* = idg.gpec o and further, if y:B — C is an
another K-algebra homomorphism then (yo @)*=¢@* o y*.

Therefore, the assignments A ~ K-Spec A, ¢ ~~ ¢* define a contravariant functor from the category
Aff K-Algs of K-algebras to the category Tops of topological spaces. (For a K-algebra homomorphism
¢ : A — B the continuity of @* : K-Spec B — K-Spec A, & — £ @, is immediate from the more precise assertion :
For a K-algebra homomorphism @ : A — B and an ideal a in A, we have (¢*)~'(Vg(a)) = Vg(aB).)

R8.14 (Algebra-Geometry Lexion) We give a brief summary of the algebra-geometry
lexicon. Let K be an algebraically closedEl field, V € F(K") be a (fixed) Zariski closed subset in K",

Fk (V) be the set of all Zariski closed subsets of V (and hence also closed in K") and let K[V] be the
K-coordinate ring of V.

(a) Foranideal a € J(K[V]), weput Vg y(a):={a€cV|f(a)=0forall f € a} whichisacommon
zero set of all functions f € ain V.

Further, for a subset W C V., we put Iy (W) := {f € K[V]| f(a) = 0 for all a € W} which is the set
of all functions f € K[V] vanishing on W. Clearly, Ixy) (W) = Nyew ma € r-J(K[V]).

5 We should mention that some parts of this lexion stay intact even if we drop the hypothesis that K is
algebraically closed
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Then the maps Ty,
Fg(V) r-J(K[V]) (a.1)
VK.V
Wi IK[V] (W)
VK,V (Cl) i
1
Frrg (V) v Spec (K[V]) (a.2)
Vkyv
Vi (p) p
1% Ly K-Spec (K[V]) (a.3)
Vkyv
a my
FrrComg (V) Lo Min Spec (K[V])
Vkyv
Viy(p) p

Ig(v) and Vi v are inclusion-reversing, bijective and mutually inverses of each other. Moreover, under
this bijective correspondence irreducible Zariski closed sets in V' (see R8.0.2) corresponds to the
prime ideals in K[V] and (points of) V corresponds to the K-Spec K[V]. In particular, V is irreducible
if and only if K[V] is an affine domain. Furthermore, irreducible components of V' corresponds to the
minimal prime ideals in K[V] (see Exercise 8.10).

(b) For two affine K-algebraic sets V C K" and W C K", there is a bijective corrspondence :

~

Hom 5 k- a1g8e1s(Vi W) Hom g_10 (K [W],K[V]),
Under this correspondence isomorphisms are mapped bijectively onto isomorphisms, but behaves
less well with respect to injectivity (see Exercise 8.26). The composition of two morphisms of affine
K-algebraic sets corresponds to the composition of K-algebra homomorphisms of the coordinate
rings, but in the reversed order.

R 8.2 The Prime Spectrum of a (commutative) ring and the Zariski Topology. There is no affine
K-algebraic set (K some field) associated to a general commutative ring A. The abstract substitute for
an affine K-algebraic set is the prime spectrum SpecA. Since (see R8.1.4 (a.3)) affine K-algebraic
sets over algebraically closed field K are embedded into the prime spectrum of its coordinate ring.
We therefore can regard the prime spectrum of a commutative ring as a generalization of an affine
K-algebraic set. Statements about spectra of rings always imply statements about affine K-algebraic
sets as special cases. As in the R8.1, we will summarize some algebra-geometry correspondences.

Let A be a commutative ring and let SpecA (resp. Spm A) denote the set of all prime ideals (resp.
maximal ideals) in A ;—called the prime spectrum (resp. the maximal spectrum) of
the ring A.

R8.2.1 Notation. For the purposes of geometry, X = SpecA is viewed as point set. A point x € X is
a prime ideal in A and we shall also denote it by the ideal-like notation p, in situations where we want
to consider it as the prime ideal in A. If x € Spm A C X, we denote it also by m,. The residue field
K(x) :=Ap, /pcAp, = Q(A/py) of the local ring A, (which is also the quotient field of the integral
domain A/p,) is called the field of the point x. Fora K-algebra the K-spectrum K-Spec A
is the subset {x € X | x(x) = K} C X. The field k(x) of the point x € X is related to the ring A via
the canonical ring homomorphisms A — A/p, < k(x). For an element f € A and x € X, f(x), we
denote the image of f in k(x) by f(x) and call itthe value of f at the point x. Thisextends
the analogous notation for the K-spectrum, see also Exercise 7.8. But now the function x — f(x),
x € X, has, in general, values in different fields. A point x € X is a zero of f € A if and only if f € p,.
Note that an equation f(x) = 0 for a function f € A and x € X is equivalent to f € p, and an equation
(fg)(x) = 0 for two functions f,g € A and a point x € X is equivalent to either f(x) =0 or g(x) = 0.
The function x — f(x) is identically zero on X if and only if f € ,cx px = na = /0. Therefore,
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if A is not reduced, i. e. if A has non-trivial nilpotent elements, then the function x — f(x) can be
identically zero without f being zero element of A. The set of all elements f € A which vanish on
Spm A is the Jacobson radical my = () espm 4 Mx Of A, and for K-algebra A, the set of all f € A
which vanish on K-Spec A is the K-radical t4 = [\ cg_gpec 4 Mx Of A.
R8.2.2 Affine Algebraic sets and Zariski topology. Let A be a (commutative) ring. For an ideal a
in A, the set of common zeros

V(a):={x € SpecA | f(x) =0 forall f€E}=\pcqV(f)={x€SpecA|aCp,}
of all elements f € ain X = SpecA, iscalled an (affine) algebraic set in SpecA defined by
a. Note that V(a) = V(y/a). Further, the set F(SpecA) := {V(a) | r-J(A)} of all affine algebraic sets
in SpecA form the closed sets for a topology —called the Zariski topology on SpecA. The
open subsets are the complements D(a) : Spec \V(a), a € 1-1J(A) and D(f) = SpecA\V(f) = {x €
SpecA | f(x) # 0}, f € A, form a basis for the Zariski topology on SpecA. The basic open set D(f)
is also known as the domain of f which explains the usage of the letter D.

Therefore we have defined the inclusion reversing map :
V:r1-J(A) — Fg(SpecA), ar— V(a).

For a better understanding of the map Vg, we define the inclusion reversing map in the opposite
direction: I: Fg(SpecA) — r-J(A).
For this to every subset Y C X = SpecA, we associate the radical ideal (in A)

Ig(Y):={f €Al f(y)=0forall ye Y} =cypy €1-J(A)
is called the ideal of Y. Note that f € p, if and only if f(y) = 0. This implies that I({y}) = p,
for all y € X. Further, the reduced ring

AY):=A/I(Y)
iscalled the coordinate ring of Y.isa K-algebra isomorphism.

R8.2.3 Formal Hilbert’s Nullstellensatz. With the notations and definitions introduced as in ??
above, let A be a ring and let X = SpecA be the prime spectrum of A (with Zariski topology). Then:

(a) Forevery subset ¥ C X = SpecA, V(I(Y)) = Y (:= the closure of Y in X with respect to the Zariski
topology). In particular, I(V(I(Y))) =1(Y) and V(I(V(a))) = V(a), where a € J(A).

(b) (Formal Hilbert’s NullstellensatzEI) I(V(a)) = +/a for every ideal a € J(A).
(¢) The maps

F(X) ! r-J(A)
\Y
Y (Y
V(a) 1a

are inclusion-reversing, bijective and mutually inverses to each other. (Remark: In the special case
that if A = K[V] is the K-coordinate ring of affine K-algebraic set V over an algebraically closed field K the
correspondence in the above part (c)is a generalization of the correspondence in R8.1.4 (a).)

(d) (Functorial Properties of Spec) A ring homomorphism ¢ : A — B induces a morphism

¢@* : Spec B — SpecA, q — qf1 (g), on spectra. Note that the correspondence between ring homomor-
phisms and morphisms of spectra is not bijective. See Exercise 8.22 for more on functorial properties.
(Remark : In general, ¢* does not restrict to a map Spm B — Spm A, but if ¢ is a K-algebra homomorphism of
affine K-algebras, then it does. If in addition A = K[W] and B = K[V] are coordinate rings of affine K-algebraic
sets over algebraically closed field K, then the correspondence in R 8.1.4 (a) translate this restriction of ¢* in to a
map V — W which is exactly the morphism corresponding to ¢.)

R8.2.4 Example. For the zero ring 0 the prime spectrum Spec 0 = (). For a principal ideal domain A, for example,
A=17Z,or A=K[X] or A= K[X], where K is a field and X is an indeterminate over K. The prime spectrum
X = SpecA consists of the zero (prime) ideal 0 C A and of all pricipal ideals (p) C A generated by by prime

6 Alsoknownas Scheinnullstellensatz
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elements p € A, i.e.
SpecA ={0,(p) | p € P(A)},

where IP(A) denote the complete representative set for prime elements in A under the equivalence relation of being
associates in A. In particular,

SpecZ = {0} UP, SpecK[X]|={0}U{m € P(K[X])} and SpecK[X] ={0,(X)},
where P(K[X]) = {7 € K[X] | # non-constant monic irreducible over K }.
Furthermore, the closed subsets in X are of type V(a), a € A. In particular, V(a) = X for a =0 and V(a) =0
if @ € A* is a unit in A. For elements a € A~ (A% U{0}), V(@) = {(p1),....(pr)}, wherea = ep|" ---pVr isa
prime factorization with pairwise coprime prime factors py,..., p,, exponents Vi,..., V. >0and aunite € A,

In particular, all prime ideals which are generated by prime elements or, equivalently, all non-zero prime ideal in
A gives rise to closed points in X = SpecA. Further, a subset V C X is closed if and only if it coincides with X or
0, or if it is a finite set of closed points. Therefore the zero ideal 0 C A yields a dense point in X, i.e. {0} =X.
In particular, if A is not a field, then X # {0} and the point 0 € X cannot be closed.

Switching to complements, the open subsets in X are @, X and the sets of type X~ {xj,...,x,}, where x,...,x, € X
are finitely many closed points. Therefore any non-empty open subset of X will contain the point given by the
zero ideal 0 C A and hence the Zariski topology on X = SpecA cannot satisfy the Hausdorff separation axiom,
unless A is a field.

R8.2.5 It follows from the formal Hilbert’s nullstellensatz (R 8.23 (b)) that the prime spectrum Spec A
of aring A is a noetherain topological space if and only if the radical ideals in A satisfy the ascending
chain condition, in particular, if A is a noetherain ring, then the prime ideals satisfy ACC and
X = SpecA is a noetherian topological space. More generally, if A = }.1' | Af; is a finitely generated
ideal in a ring A, then D(a) = U’ D(f;) is quasi-compact.

The ring Q[X; | i € N]/(X?| i € IN) is not noetherain, but its prime spectrum {m:= (x; | i€ IN)} is
singleton and hence noetherian.

8.1 Let X be a topological space and Y C X be an irreducible subspace.
(a) Suppose that Y = U"_,Y; witheach Y; , is closedin Y. Then Y =Y; for some i =1,...,n.
(b) Suppose that Y C U}_ | X; with each X; is closed in X. Then ¥ C X; for some i = 1,...,n.

(¢) The closure Y of Y is also irreducible.

(d) Y is contained in a maximal irreducible subspace. (Maximal elements in the ordered
set (Jrr(X),C) (where Jrr(X) is the set of all irreducible subsets X) are called maximal irre-
ducible subspace.—Hint: Let 8§ :={Z € Jrr(X) |Y C Z}. Then Y € 8 and § is ordered by
the natural inclusion C. Further for a chain (totally ordered subset) Cin 8, Z' := Uyce is irreducible
in X, since for non-empty open subsets U,V of Z', there exists Z € € with UNZ # @ and VNZ # 0,
hence (UNZ)N(VNZ) # 0 (since Z is irreducible). This proves that Z' € § is an upper bound for C
in 8 and hence Zorn’s Lemma yields (d). In particular, Max (Jrr(X), C) # 0. Its elements are called
irreducible components of X.)

(e) The maximal irreducible subspaces of X are closed and cover X.

(f) Let v : X — X’ be a continuous map between topological spaces. Show thatif V C X
is an irreducible subset, then its image y(V) and its closure y/(V) are irreducible in X’.

8.2 Let X be a noetherian topological space. Then :

(a) Every closed subset V C X is a finite union V =V, U- - - UV, of irreducible components
Vi,...,Vyof Vaand V; £ U;; V; for every 1 <i <r. In particular, X has only finitely many
irreducible components. (Hint: Consider the collection § of those closed subsets Z of X which
cannot be expressed as a union of finitely many closed irreducible subsets in X.)

(b) X has only finitely many connected components and every connected component is a
union of some irreducible components of X. In particular, the connected components of X
are (closed and) open.
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8.3 The following three special cases of the maps associated to K-algebra homomorphisms
on the K-spectra which are important and are used often, see R8.1.3 (e).

Let A be an arbitrary K-algebra over a field K.

(a) Let ¢ : A — A’ be a surjective K-algebra homomorphism. Then the map associated
to @ on K-Spectra ¢* : K-Spec A’ — K-Spec A is a continuous closed embedding with
Img ¢* = Vg(Ker¢). In particular, the map ©; : K-Spec (A/a) — K-Spec A, associated to
the residue-class homomorphism g : A — A/ a induces a (closed embedding) homeomor-
phism K-Spec (A/a) =% Vg(a) C K-Spec A.

(b) The residue-class homomorphism m : A — A/ny, where ny is the nil-radical of A,
induces a homeomorphism n* : K-Spec (A/ns) == K-Spec A. (Hint : This is a special case
of (a), since Vg (ng) = K-Spec A.)

(c) For f € A, the canonical K-algebra homomorphism is: A — Ay = A[1/ f] induces (an
open embedding) a homeomorphism 17 : K-Spec Ay = Dk(f) € K-Spec A.

More generally, for an arbitrary multiplicatively closed subset S C A, the canonical ho-
momorphism 15 : A — A~!S induces a homeomorphism from K-Spec S~'A -~% Img 15 =
{m € K-Spec A | mNS =0} C K-Spec A.

8.4 Let K be a field and A be a K-algebra.

(a) K-Spec A is dense in SpecA if and only if the nilradical ng of A coincides with the
K-radical ta = (¢ck-spec o Mg Of A.

(b) The closed irreducible subsets in K-Spec A are precisely the sets Vg (p), where p €
SpecR is a prime ideal with Jg(Vk(p)) = p.

8.5 Let X = SpecA be the prime spectrum (with Zariski topology) of a ring A.
(a) Forevery x € X, the closure {x} = V(p,) = {y € X | p» C p,}.

(b) A point x € X is closed, i.e. {x} is closed in X if and only if the prime ideal p,
corresponding to x is a maximal ideal in A.

(c) Spm A is dense in SpecA if and only if ng = my, where ng and my denote the nil-radical
and the Jacobson radical ideal of A, respectively.

8.6 Let X = SpecA be the prime spectrum of the ring A. The Zariski topology on X does
not necessarily satisfy the Hausdorff (also known as T,) separation axiom, see Example R
8.2.4, however the following weaker separation axiom (known as T) holds :

(a) The Zariski topology on X = SpecA yieldsa Kolmogrov space,i.e. atopolog-
ical space satisfying the following separation axiom T(: Given any two distinct points
x,xX' € X, x # x/, there exists an open neighbourhood U of x such that X' ¢ U, or an open
neighbourhood of U’ of x’ such that x € U’.

(b) For functions f, f’ € A, the following statements are equivalent :
@) D(f)=D(f). (i) V(f)=V(f"). (i) rad(f) = rad(f").
(¢) X = SpecA is a Hausdorff if and only if every prime ideal in A is maximal, i.e.

dim A <0. If SpecA is a Hausdorff space, then SpecA is compact and fotally disconnected,
i.e. the only connected subsets are singletons. (Recall that dimA denote the Krull-dimension of
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A, see Exercise Set 10. The implication “ dimA = 0 = SpecA is Hausdorff ” is not obvious. — Hint :
Note that A is reduced with dimA < 0 if and only if every principal ideal (or every finitely generated)
ideal is generated by an idempotemnt element.)

8.7 Let A be aring. Then:

(a) For every g € A, the subset D(g) C X is quasi-compact (with respect to the induced
Zariski topology on X). In particular, X = D(1) is quasi-compact.

(b) An open subset U C SpecA is quasi-compact if and only if SpecANU =V (a) for some
finitely generated ideal a C A.

8.8 Let A be aring.

(a) Let a C A be an ideal and let 7, : A — A/a be the canonical residue-class homomor-
phism. Then the map associated to 7, on spectra

T’ : SpecA/a — SpecA, pr— 1, (p),
induces a homeomorphism of topological spaces SpecA/a == V(a), where V(a) is
equipped with the subspace topology induced by the Zariski topology of SpecA.

(b) The canonical residue-class homomorphism 7, , : A — A /Mg =:Areq induces a canon-
ical homeomorphism 7;; L SpecAreq —= SpecA, where ny is the nil-radical of A.

8.9 Let X = SpecA be the prime spectrum of a ring A and let ny be the nil-radical of A.

(a) The following statements are equivalent :

(i) X is an irreducible topological space with respect to the Zariski topology.
(ii) Apeq :=A/ny is an integral domain.
(iii) ny is a prime ideal in A.

(b) LetY C X be a closed subset. Then Y is irreducible if and only if I(Y) is a prime ideal
inA.

(c) Let Jrr(X) be the set of all irreducible closed subsets in X. The maps
I
Jrr(X) SpecA
\%
L Y ———I(Y)
=V —n

are inclusion-reversing, bijective and mutually inverses to each other. (In particular, every
irreducible closed subset Y C X contains a unique point y € such that ¥ = {y}. This unique point
is called the generic point of ¥ and the points of its closure {y} are called specializations

of y. More precisely, a point x € X is called a specialization of apointy € X if x € {y}, or
equivalently, py C p,. For example, if A is an integral domain, then SpecA is irreducible and hence
admits a unique generic points which corresponds to the zero prime ideal.)

810 (Minimal Prime Ideals) Let A be aring.

(a) Let S C A be a multiplicatively closed subset in A and a C A be an ideal in A with
anNS = 0. Then the ordered set M := {b € J(A) | a C b C A~S} (with respect to the natural
inclusion C) has maximal elements. Moreover, every such maximal element in M is a
prime ideal in A. In particular, if A # 0, then SpecA # 0.
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(b) The set ZDiv(A) of all zerodivisors in A is a union of (some) prime ideals in A.
In particular, the set So = Nzd(A) of non-zerodivisors in A is a saturated multiplicatively
closed subset in A, see also Exercises 7.2 and Exercise 7.3.

(c) Suppose that A # 0. Then the ordered set (SpecA, C) has minimal elements — called
minimial prime ideals inA and every q € SpecA contains a minimal prime ideal.
Prove that every minimal prime ideal p in A is contained in the set of zerodivisors in A.
(Proof: Note that SpecAqz = {pAp}, since p is a minimal element in (SpecA,C). Therefore
na, = pAp and so forevery a € p, a/l € pAy is nilpotent in A, i.e. sa” = 0 for some s € AN p and
for some minimal n > 1. Then sa”~! # 0, but (sa”~')a = 0 and hence a is a zerodivisor in A.)

8.11 (a) Show that a noetherian ring A has only finitely many minimal prime ideals, i. e.

the set of minimal elements in the ordered set (SpecA, C) is Min (SpecA, C) = {p1,...,pr}
finite (and non-empty if A # 0). The irreducible components of SpecA are V(p;),...,V(p,).
(Remark : Note that even if A is not noetherian the ordered set (SpecA, C) has minimal elements,
See above Exercise 8.10 (c). However, there are rings with infinitely many prime ideals, for example,
in Boolean rings!)

(b) Let A be a ring and K = Q(A) be the total quotient ring of A. Further, let M(A) :=
Min (SpecA, C) be the set of all minimal prime ideals in A. Suppose that M(A) is finite
(for example, if A in noetherian). Show that the following statements are equivalent :
(i) A isreduced.
(i) ZDiv(A) =Upen) b andAp =Q(A/p) (the quotient field of A/p) for each p € M(A).
(i) K/pK=Q(A/p) (the quotient field of A/p) for each p € M(A) and K = H K/pK.
pEM(A)
(Proof : The implication (i)=-(ii) also holds without the assumption that the set N(A) is finite. For
a proof, first note that Upepga)p € ZDiv (A) by Exercise 8.10 (c). Conversely, if ab = 0 with
ac€A,a#0,beAandif adp for some p € M(A) := Min(SpecA,C). Then b € p. There-
fore, if @ € Upeng(a) b, then b € Nypepga)p = na = 0, since A is reduced by assumption. This
proves that if a & Upcy(a) P, then a & ZDiv(A) and hence ZDiv(A) C Upcp(a)p- Therefore the
equality ZDiv(A) = Upeng(a)p- Let p € M(A) be fixed. then Ay is reduced (since A is reduced
by assumption (i) and Exercise 7.26 (a)) and SpecA, = {pA} and hence A, is a field. Further,
Ap ==Ap/pAp =Q(A/p).
(iii)= (i) : Since M(A) is finite, K is a finite product of fields and hence K is reduced. Further, the
canonical ring homomorphism A — K, a — (ay )peM(A) (where ay, denote the residue class of @ in
A/p € Q(A/p)) is injective and hence A reduced.
(i)=(iii) : PutS:=A~ZDiv(A) and let q € SpecA with qN S = 0. Then q C ZDiv (A) = Upcn(a) P
by assumption (ii) and hence, since M(A) is finite, by Prime avoidance Lemma (see Exercise 1.9 (b))
q C p for some p € M(A). Therefore q = p, since p is minimal. But K = Q(A) = S~!A. There-
fore SpecK = {pK | p € M(A)} = M(K) = Spm K. Further, for a fixed p € M(A), K/pK =
S71A/pS~'A = S71(A/p) and hence S™'(A/p) is a field. But, clearly S~'(A/p) € Q(A/p) and
hence K /pK = Q(A/p). Furthermore, since S C A\p, p = lS_l (pK) and lS_1 (K~pK)=A~p. There-
fore Ky g = Ap = Q(A/p) (the second equality by assumption in (ii)) is an integral domain. Now, (iii)
follows immediate from the following Exercise :

Exercise : Let A be a commutative ring and let M(A) = Min (SpecA, C) be the set of all minimal
prime ideals in A. Then:

(1) If Ay, is an integral domain for every p € SpecA, then p € M(A) are pairwise comaximal.
(2) The following statements are equivalent :
(i) Ay is an integral domain for every p € SpecA and M(A) is finite.
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(i) A=A; x---xA, is a finite product of integral domains Ay,...,A,. Moreover, in this case,
Ai :A/pl with {pl [ 7pl’l} = M(A)

Proof: (1) Suppose that p, g € M(A) are not comaximal, i.e. p+q C m for some m € Spm A. Then
A contains two minimal prime ideals pAy, and A . But Ay, is an integral domain by assumption
and so (0) is its only minimal prime ideal. Therefore pAy = qAm and hence p = g.

(2) (i)=(ii): Note that, since (ng)m = ng4,, ) = 0 (since Ay, is an integral domain by assumption (i))
for all m € Spm A, by local global principle, (see Exercise 7.26) ng =0, i.e. A is reduced. Now, since
M(A) is finite, the canonical homomorphism A — [Tpent(a) A/Ps @ = (@p)pen(a)» is injective
(Kerp =nN peM(A) P =1 = 0, since A is reduced) and, by (1) and the Chinese Remainder Theorem,
is surjective. Therefore A is product of integral domains.

(i1)=-(1): Assume that A = ;1:1 A; with A; integral domain forall i =1,...,n. Let p € SpecA. Then
Ap =TI, (A;)p and hence Ap = (A;),, for some 1 <i < n, since Ay is local and A;)p are integral do-
mains for all i = 1,...,n. This proves that Ay is an integral domain. Further, note that each p € M(A)
is of the form (see for example, Exercise 8.20 below) p = []?_; a; with a; = 0 for some (unique)
l1<i<nanda;j=Ajforall j=1,...,n, j#i Therefore the i-th projection A = []7_ | A; = A;

induces an isomorphism A /p; == A;. This proves (ii). )
8.12 Let A be aring.

(a) For an element f € A, show the following two conditions are equivalent :
(i) D(f) is dense in SpecA. (ii) The residue class of f is a non-zero divisor in Ayeg =A/n4.

—In particular: If f is a non-zero divisor in A, then D(f) is dense in SpecA. Give an
example which shows that the converse is not true in general.

(Proof: Let M(A) := Min (SpecA, C). Then ng = Nycag(a) p- Further, Areq = A/ny is reduced and
the image of Upepg(a) P in Ared is the set ZDivAyeq of zerodivisors in Areq, see Exercise 8.10.

()=(ii): Suppose that g € A with fg = 01in Apeqg, i.€. fg € ng = Npeng(a) b- Then 0 =D(fg) =
D(f)ND(g) and hence D(g) = 0, since D(f) is dense in SpecA. Therefore g € p for every p € SpecA.
In particular, g € ng,i.e. g =01in Apegq.

(i)=(@): Suppose that f € ZDivAreq = Upen(a) P and that D(f) is not dense in SpecA. Then
0=D(f)ND(g) =D(fg),i.e. fg € p forevery p € SpecA for some g € A with D(g) # 0. Therefore,
since f & p for every p € M(A), it follows that g € p for every p € ny. In particular, g € p for every
p € SpecA and hence D(g) = 0, a contradiction.

Let A := K[X,Y]/(X)N(X,Y)?> = K[x,y]. Then y is a zerodivisor in A, since xy = 0, x # 0, y # 0,
and D(y) is dense in SpecA = SpecAeq = SpecK[y] = SpecK[Y].

—Remark: Elements in A fulfilling conditions (i) and/or (ii) above are called active. Non-
zerodivisors are active.)

(b) If A is Noetherian and if the open set U C SpecA is dense in SpecA, then there exists
f € A such that D(f) C U and D(f) is dense in SpecR.

(Proof : Suppose that U = SpecA~\ V(a) is dense in SpecA. Then a # 0. Further, we claim that
a Z p; foreveryi=1,....r, where {py,....p,} = Min(SpecA, C) (which is a finite set, since 4 is
noetherian, see Exercise 8.11 (a)). For, if a C p; for some 1 <i <r. Then U = SpecA\ V(a) CY :=

I.’: 1. 7éiV(p j) 7 SpecA and Y is a closed subset in SpecA which contradicts the assumption that
U is dense in SpecA. This proves the claim a Z p; for every i = 1,...,r. Now, by Prime avoidance
Lemma (Exrecise 1.9 (b)) choose f € ax (U{Zl p,-). Then D(f) C U, since f € a, and further, f is a

non-zerodivisor in Ayeq, since f ¢ U/, p; and hence by part (a) D(f) is dense in SpecA.)

8.13 Let A be aring and X := SpecA. For closed sets Y;,Y, C X, show that the following
statements are equivalent :
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() wh=X,i.e. yUY,and Y NY, =0.

(i) There are complementary idempotents e1,e; € A (i. e. idempotents with e; + e, =1
and eje; = 0) with V({¢;)) =Y;, i = 1,2.

(iii) There are comaximal ideals a;, a, C A with ajay =0and V({e;)) =Y;,i=1,2.

(iv) There are ideals a1, ay C A witha; ®ay =A and V(a;) =Y;, i = 1,2.

Moreover, given any e; and a;, i = 1,2, satisfying (ii) and either (iii) or (iv), necessarily
e;€a;,i=1,2.

8.14 Let V be an A-module and let SuppV := {p € SpecA |V, # 0}.

(a) V #0if and only if SuppV # 0.

(b) If ais an ideal in A, then V(a) = SuppA/a.

(c) If p € Supp V, then V(p) C SuppV.

(d) If AnngV N (A~p)#0, then p ¢ SuppV. The converse holds if V is a finite A-module.

(e) SuppV C V(Ann,V) and the equality holds if V is a finite A-module. In particular, if
V is a finite A-module then SuppV is a closed subset in the Zariski topology on SpecA.

8.15 Let V be an A-module. Prove that:

(@ If 0— V' — V — V” — 0 is a short exact sequence of A-modules, then
Supp,V = SuppV’ U SuppV".
(b) If V=Y ;c; V; the sum of the family V;, i € I A-submodules of V, then
SuppV = Ui SuppVi.
(c) If V is finite A-module and if a is an ideal in A, then Supp (V/aV) = V(a+Ann V).

(d) Find the support of the Z-module Q/Z. Is it closed in the Zariski topology on Spec Z.?
(Hint: SuppQ/Z = P (the set of all prime numbers), since Zp) # Q) = Q and Zp) = Q.
In particular, Supp Q/Z is not closed and hence Supp Q/Z # V(AnnzQ/Z).)

8.16 Let ¢ : A — A’ be a ring homomorphism and let ¢* : SpecA’ — SpecA be the map
associated to ¢ on spectra. Prove that :

(a) Every p € SpecA is a contraction of some p’ € SpecA’ if and only if ¢* is surjective.

(b) If every p’ € SpecA’ is an extension of some p € SpecA, then @* is injective. Is the
converse true?

8.17 (Locally finitely generated and presented modules) LetAbe a
ring. An A-module V is called locally finitely generated if each p € SpecA
has a neighborhood on which V becomes finitely generated ; more precisely, there exists
f € A~p such that V; is finitely generated over Ay . It is enough that such an f exist for
each maximal ideal m € Spm A, since every prime ideal p is contained in some maximal
ideal m. Similarly, we define the properties locally finitely presented, locally
free of finite rank,and locally free of rank n.

(a) If V is alocally finitely generated A-module, then V is finitely generated. (Hint: Note
that a family x; € V, i € I, generated V if and only if for every maximal ideal m € Spm A, the images
Xi/1 € Vi, i € I, generated V. Use the fact that X = SpecA is quasi-compact.)
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(b) If V is a locally finitely presented A-module, then V is finitely presented.

(¢) For an A-module P the following statements are equivalent :

(1) P is finitely generated and projective.
(ii) P is finitely presented and Py, is free over Ay, for every m € Spm A.

Ejii) P is locally free of finite rank.
iv) P is finitely presented and for each p € SpecA, there are f € A and n € IN such that

p € D(f) and P, is free of rank n over A at each g € D(f). (Hint : Using the parts (a), (b) above,
Exercise 7.22 and the following Exercise, prove the implications : (i) <= (ii)=-(iii)=-(iv)=(ii).
Exercise : Let V be a finite A-module and let S C A be a multiplicatively closed subset.

(@) Letxq,...,x, € V. If the images x;/1,...,x,/1 € S”!V generate S™!V over S™'A, then there
exists f € S such that x;/1,...,x,/1 € Vy generate Vs over Ay.

(b) If V is finitely presented and if S~!V is a free S~!A-module of rank n, then there exists f € S
such that V; is afree A ;-module of rank n.)

8.18 Let A be a ring. Show that every non-empty closed subset V C SpecA contains a
closed point. Deduce that an open subset U C SpecA containing all closed points of Spec A
must coincide with SpecA.

8.19 Let K be an algebraically closed field, K[X,...,X,] the polynomial ring in n indeter-
minates X, ..., X, over K and let X := SpecK[X{,...,X,]. Show that:

(a) The set of closed points in X can canonically be identified with with K".

(b) If n=1 then there is exactly one non-closed point in X, namely the generic point of X.

(c) If n = 2, then the non-closed points in X that are different from the generic point are
given by the principal (prime) ideals (f) where f € K[X;,X;] is irreducible and the closure
{y} of such points consists of y as the generic point and of the curve {x € K* | f(x) = 0}.

8.20 LetAy,...,A, berings. Show that there is a canonical bijection

Spec [17; Ai —— [}, SpecA..
(Hint : Note that the map J(A1) X --- X I(Ap) = T(A] X -+ X Ay), (a1,...,8,) —> A X -+ Xy, i8
bijective. Futher, its inverse induces a canonical bijections: Spec (A X --- x A,) =% [ [ SpecA;
and Spm (A X -+ xAy) =5[], SpmA;.)

8.21 Let A be a finite type algebra over a field K.

(a) LetY C SpecA be a closed subset. Show that the closed points are dense in Y.

(b) Show that SpecA is finite if and only if A is a finite K-algebra, i.e. Dimg A is finite.
(Hint : Note that A is noetherian and hence A contains only finitely many minimal prime ideals. Use
this to reduce the assertion to the case where A is an integral domain.)

8.22 (Functorial properties of Spectra) Everyring homomorphism ¢ : A — A’
induces a map ¢@* :=Spec @ : X' :=SpecA’ — SpecA=:X, py +— ¢~ !(py) between the
associated spectra. More precisely, for every x’ € X’, the following diagram is commutative :

T

o 1(ps)
A e A/ (py) ———— k(0" (¥))
¢ Ox Ox
A/ ”PXI A//px’ ‘—l> K(X’)
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In particular, for f € A and X’ € X', we have :
e (f(9* () = o(N)(¥), ie. foo™=0o(f).
Therefore ¢ might be interpreted as the map composing functions f € A with ¢*.
Further, id} = idspeca and if ¢’ : A’ — A” is another ring homomorphism, then (¢’ o @)* =
©* o @', i.e. the diagram
SpecA’

SpecA”
is commutative.

(a) Let ¢ : A — A’ be aring homomorphism and let ¢* : SpecA’ — SpecA be the map
associated to ¢ on spectra. Then:

(a.1) ((p*)’l(V(E)) = V(@(E)) for every subset E C A. In particular, if a is an ideal in
A, then (¢*)~1(V () V(p(a)a’).
@2) ¢*(V(e')) =V (¢ '(a)) for every ideal o’ C A'.
)

@3) (¢*)"'(D(f))=D(¢ ( )) for every subset f € A.

(b) The map ¢* : SpecA’ — SpecA associated to a ring homomorphism ¢ : A — A’ is
continuous with respect to the Zariski topologies on SpecA and SpecA’.

(c) The assignments A - SpecA, ¢ -~ ¢* define a contravariant functor from the
category Rings of rings to the category Tops of topological spaces.

(d) Let A and A’ be algebras of finite type over a field K and let ¢ : A — A’ be a K-
algebra homomorphism. Then the map ¢* : SpecA’ — SpecA associated to ¢ maps the
maximal spectrum Spm A’ into Spm A, i.e. ¢*(Spm A’) C Spm A and maps the K-spectrum
K-Spec A’ into K-Spec A, i.e. ¢*(K-Spec A’) C K-Spec A. Moreover, the assignments A -
~> Spm A, @ -~ @* and the assignments A -~ K-Spec A, ¢ -~ ¢* define a contravariant
functors from the category Kalgs of K-algebras to the category Tops of topological spaces
(Spm A and K-Spec A are equipped with the induced Zariski topology from SpecA, see also R
8.1.3 (e).).

8.23 Let ¢ : A — A’ be a ring homomorphism such that every element f’ € A’ is of type
S =¢(f)u with f € A and u € (A’)*. Then the @* : SpecA’ — SpecA associated to @ is
injective and induces a homeomorphism SpecA’ -~ Img @* C SpecA where SpecA and
SpecA’ are equipped with their Zariski topologies and Img @* with the subspace topology
induced from the Zariski topology on SpecA.

There are two typical examples of ring homomorphisms ¢ : A — A’ where the assumption
in the above assertion is fulfilled, namely, residue-class homomorphisms and localizations.

(a) Let A be aring and let a C A be an ideal. Then the map 7 : SpecA/a —> SpecA
associated to the residue-class homomorphism 7, : A — A/a induces a homeomorphism
SpecA/a == V(a) C SpecA.

(In this case 7 is called a closed immersion of spectra.)
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(b) Let A be aring and let S C A be a multiplicatively closed subset in A. Then the map
15 : SpecS!A — SpecA associated to the canonical homomorphism 15 : A — S~'A
induces a homeomorphism

SpecS™'A —=— [ D(f) C SpecA.

fes

In particular, p € SpecA, S, := A\ p, Img Lg‘p = ﬂfesp D(f). (If Img t§ is open in SpecA,
then 1§ is called an open immersion of spectra. For example, the latter is the case if S is
generated by finitely many elements fi, ..., fr € A, since then (| peg D(f) =D(f1 - ... - f+) is open
in SpecA.)
8.24 Let X,Y,T be indeterminates over C, A := C[X,Y], B:=C[X,Y,T|/{(XT —-Y) =
C[x,y] and let w:=1* : C-Spec B — C-Spec A= C? be the map associated to the inclusion
1:A < B on the C-spectra. Show that 7 induces a homeomorphism 7! (D(X)) =% D(X)
and hence an open immersion 7! (D(X) — C2. Further, prove that the fibre £7!((0,0)) is
homeomorphic to C and check that Imgz = D(X) U{(0,0)}.

8.25 Let ¢ : A — B be a ring homomorphism and and let ¢* : SpecB — SpecA be the
map associated to ¢ on spectra. Then:

(a) If ¢ is surjective, then @* is a homeomorphism of SpecB onto the closed subset
V(Ker @) of SpecA. In particular, SpecA and SpecA/ns (where ny, is the nil-radical of A)
are canonically homeomorphic. See also Exercise 8.8 (b).

(b) (Dominant morphisms) We say that ¢* is dominant if the image ¢* (Spec B)
is dense in SpecA, i.e. ¢* (Spec B) = SpecA. Equivalently, the kernel Ker ¢ C nil(A). In
particular, if ¢ is injective, then ¢* is dominant.

8.26 Let K be a field. Let V C K" and W C K™ be two affine K-algebraic subsets with
K-coordinate rings K[V] := K[X1,...,X,]/Ix(V) and K[W] := K[X1,...,Xn]/Ix(V), re-
spectively. Furthermore, let @ : K[W] — K[V] be a K-algebra homomorphism and let
©* 1V = K-Spec K[V] — K-Spec K[W] = W be the morphism associated to ¢. Prove that :

(a) ¢* is dominant (see Exercise 8.25 (b)), i. e. the image ¢*(V) is dense in W if and only
if @ is injective. Give an example in which ¢* is dominant but not surjective.

(b) If ¢ is surjective, then ¢* is injective. Is the converse true?

(Hint : Let ¢ : K[X] 5 K[X]x =% K[X,Y]/(XY — 1). Then @ is injective but not surjective. Further,
the associated map ¢* : K-Spec IK[X, Y]/JXY — 1) — K-Spec K[X| is dominant but not surjective.)
8.27 Let A be an integral domain with SpecA = {0,p} (for example, a formal power series
ring A = K[[X] in one indeterminate X over a field) and the quotient field K. Further, let
B := A/p x K be the product ring and let ¢ : A — B be the ring homomorphism defined by
¢(x) = (7(x),x) where 7(x) is the residue-class of x modulo p. Show that the associated
map ¢@* : Spec B — SpecA on the spectra is bijective, but not a homeomorphism.

8.28 Let ¢ : A — A’ be a ring homomorphism and let ¢* : SpecA’ — SpecA be the map
associated to @ on spectra. Suppose that X’ = SpecA’ is irreducible and let x' € X’ be its
generic point. Show that @*(x') is the generic point of the closure Img ¢* of Img @* See
Exercise 8.9 (c).

8.29 Let K be afield, ¢ : A — A’ be a K-algebra homomorphism of K-algebras and let
©* : SpecA’ — SpecA be the map associated to ¢ on spectra. If A’ is finite type over
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K, then image of every closed point x’ € SpecA’ is again a closed point in SpecA. Is the
assumption that A’ is finite type over K necessary?

8.30 (Neil’s Parabola) Let K be a field, X, Y , T be indeterminates over K and let
¢ : K[x,y] := K[X,Y]/(Y? — X3) — K[T|] be the K-algebra homomorphism defined by
x> T2,y T3. Show that the associated map ¢@* : SpecA’ — SpecA on the spectra is a
homeomorphism, although ¢ is injective, but not surjective.

Y Vi (Y2- X?) = R-Spec (RIX, Y1/<¥ >-X3)

-1
Neil’s Parabola ---Parabola cuspidata
(Hint: The K-algebra homomorphism S; ' : S /(K [x,y]) — Sy {(K[T]), where Sy :={x" | n€ N},

is an isomorphism. — The plane curve with equation y? = x> has been considered by William Nei
in 1657 and is called the semicubical or Neil’s parabola.)

8.31 (Fibres of a homomorphism) Let ¢ : A — B be a ring homomorphism and
let @* : Spec B — SpecA be the map associated to ¢ on spectra. For p € SpecA, the set
(0*)"'(p) := {q € SpecB | ¢! (q) = p} is called the fibre of ¢@* over p.

For example, if ¢ = 15 : A — S~'A is a localization homomorphism, then the fibre over p € SpecA is

{S7p}if SNp=0,and O if SNp # 0. If ¢ = m4A — A/a is a residue-class homomorphism, then
fibre over pSpecA is {p/a}ifaCp,and0if a  p.

(a) Letp € SpecA be such that pBy, # By,. Then the map
(1) _ _
V(pBp) ——— (¢*)'(p), o — (1)) (d),
is bijective. (Hint: For p € SpecA, let l? tA— Ay and lg : B — By, be the natural localization
homomorphisms. From the following commutative diagrams

A Ay

Uy (lp)
A —— Ay p € SpecA « SpecAp > pAy
¢l lgop ¢*T T(%)*

Ig By—1(./ B\* 1§ ' !
B —— B, q= (1) (q') € Img(y;)* C SpecB «—— SpecBy, 2 V(pBy) 3 q

It follows that

(1) P
V(pBy) = Img (17)*={(1]) " (¢')=:q€Spec B | pBC g and qN(A~p)=0)} = (¢*) ' (p)

Byx

and ¢~ '(q) = p. Therefore the map V(pB,) L (o) ' (p), ¢ — (15)*1 (q') is bijective.)
(b) Letp € SpecA. Then the map (¢*)~!(p) —=— SpecBy/pBy, q+— qBy/pBy.,
is a homeomorphism. In particular, if B is finite over A, then the fibres of ¢* are noetherian
subspaces of Spec B. (Hint : For every p € SpecA, the k(p)-algebra By /p By, is finite.)

(c) For p € SpecA, the following statements are equivalent :

(i) The fibre (¢*)"'(p) #0. (i) ¢ '(pB)=p.  (iii) By # pBy.

7 William Neil (1637-1670) was an English mathematician and founder member of the Royal Society. — The
oldest national institution, formally known as the Royal Society of London, founded in 1660, for promoting science
and its benefits, recognising excellence in science, supporting outstanding science and education.
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(Hint : The implications (i)=-(ii)=-(iii) are easy to prove and for (iii)=>(i) use the part (a).)

(d) Suppose that ¢ is faithfully flat. Then @* is surjective. (Hint: Verify the condition (ii) in
the part (c).)
8.32 Let K be a field, X1,...,X,,Y1,...,Y,, be indeterminates over K, and let F},...,F, €
K[Xi,...,Xy]. Further, let € : K[Y1,...,Y,] — K[X|,...,X,] be the substitution K-algebra
homomorphism with £(Y;) = Fy,...,&(Y,,) = F,, and let
e*: K" =K-Spec K[Xi,...,Xy] — K-Spec K[Y1,..., Y] = K™
be the map associated to € on the K-spectra. It is the polynomial map on K" defined by
a— (Fi(a),...,Fy(a)),a € K".
The fibre of €* over 0 is the (affine) K-algebraic set (in K") defined by the Fi,...,F,,i.e.
(e)71(0) = Vk(F,...,F,) ={a € K"| Fi(a) = -+ = Fy(a) = 0}.
More generally, the fibre of €* over b = (by,...,by,) is the affine K-algebraic set
()" (b)={a€ K" |Fi(a)=by, ... ,Fuy(a) =by}.
These fibres are described by using the so-called fibre algebra (see the Exercise 8.28).
K[Xy,.... Xu]/e(mp) K[X1,.... Xy =K[X1,..., %] /{F1 —D1,...,Fn —bp)
of the map € at the point b € K™.
(Remark : The study of fibres of a polynomial map K" — K" sems to have motivated the definition
of affine K-algebraic sets and their study further.)
(a) For the polynomial map f: R? — R, (x1,x2) — x3 +x3, and b € IR, the fibre f~!(b) =
VR(X?+X? —b) is a circle if b > 0, the origin (0,0) if b = 0 and empty if » < 0. Note
that the prime ideals p, := <X12 4—X22 —Db)), b€ R, and m := (X1, X2) € SpecR[X},X3]
are different, but Vi (po) = Vr(m) and Vg(p,) = 0 if b < 0. (Remark: In general,

VR(Fi,...,Fy) =VR(F{ + -+ F2) for arbitrary polynomials F,...,F, € R[Xj,...,X,]. Thus,
every affine algebraic set in R" is the zero set of a single polynomial.)

<— Vp(Y=X?)

(b) Let g : R — R be the polynomial map x — x> which is the restriction of the map f of
the example (a) to the line VR (X») = {x» = 0}. The fibre g~ ! (b) = VRr(X? —b) = {+V/b}
has exactly two points if » > 0; it has exactly one point {0} if » =0 and it is empty
if b < 0. For these three cases the corresponding fibre algebras R[X]/(X* —b), b € R,
are isomorphic to the product algebra R x R, to the algebra R[e] := R[X]/(X?) of dual
numbers and to the algebra C, respectively.

8.33 Let K be a field, B a K-algebra of finite type and let q € Spec B. The the following
statements are equivalent :

(i) qisisolated in SpecB,i.e. {q} is open in SpecB.

(ii) There exists f € B such that D(f) = {q}.

(iii) By is a finite K-algebra.

(Hint: (ii))=-(iii): Note that (ii) implies that B is local Artinian with the maximal ideal qBy
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and hence By /qBy is a finite K-algebra (by HNS 3). Therefore By is finite over K. For (iii)=(ii)

consider the exact sequence 0 — Keriqy — B N By — Coker 1y — 0 of B-modules. Since
Supp (Ker 1) and Supp (Coker1q) are closed subsets of Spec B (see Exercise 8.14 (e)), there exists
f € Bq such that (Ker 14) r = 0 and (Coker 14) f = 0. This proves the equality Spec By = {qBy}.)

8.34 Let B be an A-algebra of finite type over the ring A with the structure homomorphism
¢ :A— Bandlet ¢* : SpecB — SpecA be the map associated to ¢ on spectra.

(a) Show that the following statements are equivalent :
(i) The fibres of ¢* are discrete.
(ii) For every p € SpecA By, /p By, is finite over the residue field x(p) at p.

In particular, the fibres of ¢@* are finite.

(b) For a noetherain ring A show that the following statements are equivalent :
(i) A is Artinian.

(i) SpecA is discrete and finite.

(iii) SpecA is discrete.

8.35 Let B be a flat A-algebra with the structure homomorphism ¢ : A — B and let ¢ :
Spec B — SpecA be the map associated to ¢ on spectra. Then the following statements
are equivalent :

(i) (aB)NA = afor every ideal a in A.

(i) The map ¢* : Spec B — SpecA is surjective.

(iii) For every maximal ideal m € Spm A, we have mB # B.
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