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8 . T h e P r i m e S p e c t r u m1

— Z a r i s k i To p o l o g y

• For a ready reference use the R8 S u m m a r y o f R e s u l t s listed below

R8 S u m m a r y o f R e s u l t s

R8.0 Some topological concepts.
R8.0.1 Noetherian topological spaces. A topological space X is called n o e t h e r i a n if any one
of the following equivalent conditions holds :
(i) Every open subset of X is quasi-compact2.
(ii) The open subsets of X satisfy the ascending chain condition.
(iii) The closed subsets of X satisfy the descending chain condition.
(iv) Every non-empty family of open subsets of X contains a maximal element.
(v) Every non-empty family of closed subsets of X contains a minimal element.

In particular, noetherian topological space is quasi-compact and every subspace Y ⊆ X is also noethe-
rian. Moreover, every non-empty noetherian topological space X is a finite the union of irreducible
closed subspaces, see Exercise 8.2. In particular, every noetherian topological space is locally con-
nected.
By the formal Hilbert’s nullstellensatz, the prime spectrum SpecA of a ring A is a noetherain topologi-
cal space if and only if the radical ideals in A satisfy the ascending chain condition, in particular, if A is
a noetherain ring, then the prime ideals satisfy ACC and X = SpecA is a noetherian topological space.
More generally, if A = ∑

n
i=1 A fi is a finitely generated ideal in a ring A, then D(a) = ∪n

i=1D( fi) is
quasi-compact.
The ring Q[Xi | i∈N]/〈X2

i | i∈N〉 is not noetherain, but its prime spectrum {m := 〈xi | i∈N〉} is
singleton and hence noetherian.

R8.0.2 Irreducible topological spaces. A topological space X is called i r r e d u c i b l e if it satisfies
any one of the following equivalent conditions :
(i) X 6= /0 and U ∩V 6= /0 for arbitrary non-empty open subsets U , V ⊆ X .
(ii) X 6= /0 and every non-empty open subset of X is dense in X .
(iii) X 6= /0 and every non-empty open subset of X is connected, i .e. it is not a disjoint union of two

1 The prime spectrum of a (commutative) ring. Modern Algebraic Geometry is a fascinating branch of
Mathematics that combines methods from Commutative Algebra and Geometry. It transcends the limited scope
of Commutative Algebra by means of geometrical construction principles. The challenge of new problems has
caused extensions and revisions. The concept of schemes invented by Grothendieck in the lates 1950s made it
possible to introduce methods even into fields that formerly seemed far from Geometry, for example Algebraic
Number Theory. This paved the way to spectacular new achievements such as the proof of Fermat’s Last Theorem
(by Wiles and Taylor) a famous problem that was open for more than 350 years. Commutative algebra is one of
the foundation stones of this modern algebraic geometry. It provides the complete local tools for the subject the
same way as differential calculus provides the tools for differential geometry.
The first step in the Language of Schemes is to explain the construction of so-called affine schemes which are
schemes of special type, namely SpecA the prime spectrum of a (commutative) ring A. Such schemes serve as the
local parts from which more general global schemes are obtained via gluing process. The prime spectrum SpecA
of a (commutative) ring A is a ringed space, i. e. a topological space with a sheaf of rings on it. In this Exercise
Set we discuss SpecA as a topological space. Its topology so-called Zariski topology was primarily (for closed
points) introduced by Ocar Zariski and later generalized to SpecA.

2 A subset U of a topological space X is called q u a s i - c o m p a c t if every open cover of U admits a finite
subcover.
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non-empty open subsets of X ..
(iv) X 6= /0 and Y ∪Z ( X for arbitrary proper closed subsets Y , Z ( X .

R8.1 The K-Spectrum of an algebra over a field K and the K-Zariski Topology. Classical
Hilbert’s Nullstellensatz is the starting point of classical algebraic geometry which provides a
bijective correspondence between affine algebraic sets which are geometric objects and radical ideals
in a polynomial ring over an algebraically closed field which are algebraic objects. Below we fix
conventions, notations, concepts and some most important results and examples.

R8.1.1 K-Spectrum of a polynomial algebra and K-Zariski topology. Let K[X1, . . . ,Xn] be a
polynomial algebra over a field K in indeterminates X1, . . . ,Xn.

(a) The map Kn→ Spm K[X1, . . . ,Xn], a=(a1, . . . ,an) 7→ma=〈X1−a1, . . . ,Xn−an〉, is injective.

(b) The map Kn −→ HomK-alg(K[X1, . . . ,Xn],K), a = (a1, . . . ,an) 7−→ ξa, is bijective, where ξa :
K[X1, . . . ,Xn]→ K, Xi 7→ a i is the substitution homomorphism. (Hint : Use the universal property of the
K-algebra K[X1, . . . ,Xn].)

(c) The subset K-Spec K[X1, . . . ,Xn] := {m∈ Spm K[X1, . . . ,Xn] |K[X1, . . . ,Xn]/m= K } of the max-
imal spectrum Spm K[X1, . . . ,Xn] is called the K - s p e c t r u m of K[X1, . . . ,Xn].
The map Hom K-alg(K[X1, . . . ,Xn],K)−→ K-Spec K[X1, . . . ,Xn], ξ 7−→ Ker ξ , is bijective.
(Hint : Every maximal ideal m in K[X1, . . . ,Xn] with K[X1, . . . ,Xn]/m = K is of the type ma for a unique
a = (a1, . . . ,an) ∈ Kn; the component a i is determined by the congruence Xi ≡ ai mod m. — Therefore
K-Spec K[X1, . . . ,Xn] := {ma ∈ Spm K[X1, . . . ,Xn] | a ∈ Kn}.)

(d) Use (a) and (b), to establish the identifications :

Kn←−−−−−−−−→ HomK-alg(K[X1, . . . ,Xn] ,K) ←−−−−−−−−→ K-Spec K[X1, . . . ,Xn] ,

a ←−−−−−−−−−−−−−−−−−−−−→ ξa ←−−−−−−−−−−−−−−−−−−−−→ ma = Kerξa .

(e) For an ideal a in K[X1, . . . ,Xn], the set of common zeros

VK(a) := {a ∈ Kn | F(a) = 0 for all F ∈ a}=
⋂

F∈a VK(F)

of all polynomials F ∈ a in Kn = K-Spec K[X1, . . . ,Xn], is called an a f f i n e K-a l g e b r a i c s e t
or a f f i n e a l g e b r a i c K-v a r i e t y d e f i n e d b y a. Note that VK(a) = VK(

√
a).

Further, the set FK(Kn) := {VK(a) | a ∈ r-I(K[X1, . . . ,Xn])} of all affine K-algebraic sets in Kn form
the closed sets of a topology — called the K-Z a r i s k i t o p o l o g y on Kn = K-Spec K[X1, . . . ,Xn].
The open subsets are the complements DK(a) := KnrVK(a), a ∈ r-I(K[X1, . . . ,Xn]) and DK(F) =
{a ∈ Kn | F(a) 6= 0}= KnrVK(F), F ∈ K[X1, . . . ,Xn], form a basis for the Zariski topology on Kn.
Therefore we have defined the inclusion reversing map :

VK : r-I(K[X1, . . . ,Xn])−→ FK(Kn), a 7−→ VK(a).

(f) (P o l y n o m i a l m a p s) For F ∈ K[X1, . . . ,Xn], the function Fi∗ : Kn→ K, a 7→ F(a), is called
the p o l y n o m i a l f u n c t i o n defined by F. By the identifications in (d) F(a)=ξa(F)≡ F modma
for any a ∈ Kn ; F(a) is called the v a l u e o f F at a, or at ξa, or at ma.
For an infinite field K, the polynomial function ϕ∗F defined by F determines the polynomial F . This
is the following well-known i d e n t i t y t h e o r e m f o r p o l y n o m i a l s3, see Exercise 4.13.
Let ϕ : K[Y1, . . . ,Ym]→ K[X1, . . . ,Xn] be a K-algebra homomorphism and let Fi := ϕ(Yi),1≤ i≤ m.
Then the map ϕ∗ : Kn→ Km defined by ϕ∗(a1, . . . ,an) = (F1(a), . . . ,Fm(a)) is called the p o l y n o -
m i a l m a p associated to ϕ . Under the identifications in (d), the polynomial map ϕ∗ is obviously
described as follows : ξa 7→ ϕ∗ξa = ξa ◦ϕ or by ma 7→ ϕ∗ma = ϕ−1(ma) = mF(a) , a ∈ Kn. For
every G ∈ K[Y1, . . . ,Ym], we have G∗ ◦ϕ∗ = ϕ(G)∗.
Examples. Let ϕ : A→ B be a K-algebra homomorphism. If ϕ is an isomorphism, then ϕ∗ is bijective (with

3 Identity Theorem for Polynomials. Let K be an infinite field and let F,G ∈ K[X1, . . . ,Xn] . If ϕ∗F = ϕ∗G then
F = G..
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(ϕ∗)−1 = (ϕ−1)∗). However, if ϕ∗ is bijective then ϕ need not be an isomorphism. For example :
(1) Let K be a perfect field of characteristic p > 0. Then the F r o b e n i u s map ffp : K→ K, x 7→ xp, is bijective,
but the corresponding K-algebra homomorphism K[X ]→ K[X ], X 7→ X p, is not an automorphism.
(2) For an odd integer n> 1, the mapR→R, x 7→ xn, is bijective, but the correspondingR-algebra homomorphism
R[X ]→R[X ], X 7→ Xn, is not bijective. If we replaceR by C then the map x 7→ xn is not bijective.
(Remark : This is can be generalized in many ways by using the following important result :
Theorem. Let K be an algebraically closed field of characteristic zero and let ϕ be a K-algebra endomorphism
of K[X1, . . . ,Xn] . If ϕ∗ : Kn→ Kn is bijective, then ϕ is an automorphism.
The example (1) above shows that the assumption about the characteristic in this theorem is necessary. The group
Aut Kalg K[X1, . . . ,Xn] of K-algebra automorphisms of a polynomial algebra K[X1, . . . ,Xn], n > 1 (for n = 1, see
Exercise 4.11), is not yet well understood. In this connection, let us state a famous J a c o b i a n c o n j e c t u r e
which is still open in general.
Jacobian Conjecture. Let K be a field of characteristic zero, ϕ be a K-algebra endomorphism of K[X1, . . . ,Xn]
and let Fi := ϕ(Xi), 1≤ i≤ n. Then ϕ is bijective if (and only if) the Jacobian determinant

∂ (F1, . . . ,Fn)

∂ (X1, . . . ,Xn)
:= Det

(
∂Fi

∂X j

)
1≤i , j≤n

is a non-zero constant.)

(g) For a better understanding of the map VK , we define the inclusion reversing map in the opposite
direction :

IK : FK(Kn)−→ r-I(K[X1, . . . ,Xn]).
For this to every subset V ⊆ Kn, we associate the radical ideal in K[X1, . . . ,Xn]

IK(V ) := {F ∈ K[X1, . . . ,Xn] | F(a) = 0 for all a ∈V}=
⋂

a∈V ma ∈ r-I(K[X1, . . . ,Xn])

is called the K - i d e a l o f V . Further, the reduced affine K-algebra
K[V ] := K[X1, . . . ,Xn]/IK(V )

is called the K - c o o r d i n a t e r i n g o f V which is also called the r i n g o f r e g u l a r, or
p o l y n o m i a l K - v a l u e d f u n c t i o n s o n V because its elements f = F (mod IK(V )) ∈ K[V ]
can be considered as (polynomial) function f : V → K, a 7→ F(a) (which is independent of the choice
of a representative F of the residue-class f ). For example, if xi = Xi(mod IK(V )), then xi : V → K,
a 7→ ai(= i-th coordinate of a), i = 1, . . . ,n, is called its i-th coordinate function. Therefore the map

K[V ] ∼−−−−→ Poly(V,K), F 7−→ (F : V → K , a 7→ F(a))
is a K-algebra isomorphism.

(h) (M o r p h i s m o f a f f i n e K - a l g e b r a i c s e t s) Let K be a field and let V ⊆ Km, W ⊆ Kn

be affine K-algebraic sets. A map f : V →W is called a m o r p h i s m o f a f f i n e a l g e b r a i c K-
s e t s if there exist polynomials F1, . . . ,Fn ∈ K[X1, . . . ,Xm] such that f (a) = (F1(a), . . . ,Fn(a)) ∈W
for every a ∈V . In other words, f is a polynomial map.
Note that the composition of morphisms of affine algebraic K-sets is again a morphism of affine
algebraic K-sets. Therefore, the collection of affine algebraic K-sets with morphisms of K-algebraic
sets form a category — denoted by Aff K-AlgSets. The set of morphisms in this category is denoted
by HomAff K-AlgSets(V,W ). In particular, every isomorphism 4 of affine K-algebraic sets is a homeo-
morphism of the underlaying topological spaces. Further, the regular (or polynomial) functions of an
affine K-algebraic set V ⊆ Kn are precisely the morphisms V → K1.
The canonical map
(b.1) ∗ : HomAff K-AlgSets(V,W )−→ HomK-alg(K[W ],K[V ]),
defined by f 7−→ ( f ∗ : K[W ]→ K[V ], f ∗(yi) 7→ fi (mod IK(V )), i = 1, . . . ,n),
(it is routine to check that this map is well-defined and that f ∗ is a K-algebra homomorphism). The
K-algebra homomorphism f ∗ is said to be induced from f .
Conversely, if ϕ : K[W ]−→ K[V ] is a K-algebra homomorphism, then there are polynomials F1, . . . ,
Fn ∈ K[X1, . . . ,Xm] such that ϕ(yi) = fi := Fi (mod IK(V ) , i = 1, . . . ,n), and it is routine to check that
these f1, . . . , fn define a morphism of affine K-algebraic sets ϕ∗ : V →W , a 7→ ( f1(a), . . . , fn(a))

4 A morphism f ∈MorC(X ,Y ) is a category C with objects X ,Y ∈ObjC is called an i s o m o r p h i s m if there
exists a morphism g ∈MorC(X ,Y ) such that f ◦g = idY and g◦ f = idX .
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which does not depend on the choice of f1, . . . , fn ∈ K[V ]. Altogether this defines a map
(b.2) ∗ : Hom K-alg(K[W ],K[V ])−→ HomAff K-Alg(V,W ),

ϕ 7−→ (ϕ∗ : V →W, a 7→ ( f1(a), . . . , fn(a)) ∈ Kn ).
which is the inverse of the map defined in (b.1). This proves that there is a canonical bijection

HomAff K-AlgSets(V,W ) ∼−−−−→ HomK-alg(K[W ],K[V ]).
(Remark : Note that a bijective morphism f : V →W is not necessarily an isomorphism of affine K-algebraic sets.
For example, if V := VK(XY −1)∪{(0,1)}= VK(a)⊆ K2, where a := 〈XY −1〉∩〈X ,Y −1〉 and if f : V → K1

is the first projection (a,b) 7→ a, then f is bijective, but not an isomorphism, since the K-algebra homomorphism
ϕ : K[X ] = K[K1]→ K[V ] = K[X ,Y ]/a, X 7→ X(moda), associated to f is not an isomorphism.)

(i) The assignments V  K[V ], f  f ∗ defines a (contravariant) functor from the category
Aff K-AlgSets of affine K-algebraic sets to the category Aff K-Alg of affine K–algebras.
(Remark : If K is algebraically closed, then this functor is an equivalence onto the full subcategory of all reduced
affine K–algebras (by the Hilbert Nullstellensatz, see R8.1.2 (c) below.)

R8.1.2 With the notations and definitions introduced in R8.1.1 above, we have :
(a) For every subset V ⊆ Kn, VK(IK(V )) =V (:= the closure of V in Kn with respect to the K-Zariski
topology on Kn). In particular, IK(VK(IK(V ))) = IK(V ) and VK(IK(VK(a))) = VK(a), where a is
an ideal in K[X1, . . . ,Xn]. Further, the map IK is injective. (Hint : Since V ⊆ VK(IK(V )), V ⊆ VK(IK(V )).
For the other inclusion, if VK(b) is a closed subset containing V , where b is an ideal in K[X1, . . . ,Xn], then
b ⊆

⋂
a∈V ma = IK(V ) and hence VK(b) ⊇ VK(IK(V )). — Remark : Generally, for arbitrary field K it is

rather difficult to describe the image of the map IK in the set of radical ideals in K[X1, . . . ,Xn]. However, for an
algebraically closed field we have a complete answer, see the next part (b).)

(b) Let K be an algebraically closed field. Then the maps

FK(Kn)
IK−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−
VK

r-I(K[X1, . . . ,Xn])

V p−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ IK(V )
VK(a)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−p a

FrrK (Kn)
IK←−−−−−−−−−−−−−−−−−−−−−−−→

VK
Spec(K[X1, . . . ,Xn])

VK(p)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ p

are inclusion-reversing, bijective and mutually inverses of each other. Moreover, under this bijective
correspondence irreducible affine K-algebraic sets in Kn (see R8.0.2) corresponds to the prime ideals
in K[X1, . . . ,Xn]. (This is an immediate consequence of the famous geometric version of Hilbert’s Nullstellensatz
(HNS 2) : Let K be an algebraically closed field and let a⊆ K[X1, . . . ,Xn] be an ideal. Then IK(VK(a)) =

√
a.

— Remark : Let K be an arbitrary field, a ⊆ K[X1, . . . ,Xn] be an ideal and let A :=K[X1, . . . ,Xn]/a. The ideal
IK(VK(a))/a in A is the intersection

⋂
ξ∈K-Spec A mξ of the maximal ideals mξ in A corresponding to the points

ξ ∈ K-Spec A and therefore an invariant of the K-algebra A, called the K- r a d i c a l rA o f A. The equality
IK(VK(a)) =

√
a is equivalent with the condition that the nil-radical of A and the K-radical of R coincide.

Therefore the equality IK(VK(a)) =
√
a implies the equality IK(VK(b)) =

√
b for any ideal b in a polynomial

algebra K[Y1, . . . ,Ym] with A∼= K[Y1, . . . ,Ym]/b.)

(c) Let K be an algebraically closed field and A = K[x1, . . . ,xn] = K[X1, . . . ,Xn]/a be a reduced affine
algebra over K. Then there exists an affine K-algebraic subset V⊆ Kn with the K-coordinate ring
K[V ] ∼−→ A (as K-algebras). (Hint : Since A is reduced, a =

√
a ∈ r-I(K[X1, . . . ,Xn]). Then IK(VK(a)) =√

a= a by the geometric version HNS 2 and hence K[V ] = K[X1, . . . ,Xn]/a ∼−→ A.)

R8.1.3 (K-S p e c t r u m o f a n a l g e b r a o v e r a f i e l d K) Let K be a field and let A be an
arbitrary K-algebra. The set

K-Spec A := {m ∈ Spm A | A/m= K}
is called the K-s p e c t r u m o f A. Note that under the identifications as in R8.1.1 (d), we have
K-Spec A = HomK-alg(A,K).

(a) If A ∼−→ K[X1, . . . ,Xn]/a is a representation of the affine K-algebra A, then the affine K-algebraic
set VK(a) := {a ∈ Kn | F(a) = 0 for all F ∈ a} is called the set of K- r a t i o n a l p o i n t s of A.
Under the bijective maps in R8.1.1 (d), we also have identifications :
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VK(a) = HomK-alg(A ,K) = K-Spec A.
In particular, for every affine K-algebraic set V in Kn, we have V = HomK-alg(K[V],K).

(b) For an affine algebra A over an algebraically closed field K, we have K-Spec A = Spm A.
(Hint : This follows from the algebraic version of Hilbert’s Nullstellensatz :
HNS 3 : For an arbitrary maximal ideal m ∈ Spm A in an affine algebra A over K, the residue field A/m is a
finite field extension of K. In particular, SpmC[X1, . . . ,Xn] =C-SpecC[X1, . . . ,Xn].
Note that SpmR[X1, . . . ,Xn])R-SpecR[X1, . . . ,Xn] for n≥1. In fact, the maximal ideal m:=〈X2

1+1,X2, . . .Xn〉 6∈
R-SpecR[X1, . . . ,Xn] and the residue fieldR[X1, . . . ,Xn]/m=C and therefore it is called a c o m p l e x p o i n t
of SpmR[X1, . . . ,Xn].)

(c) On the K-spectrum K-Spec A of an arbitrary K-algebra, we define the a f f i n e K - a l g e b r a i c
s u b s e t s (and hence the K-Zariski topology) as follows : For f ∈ A, we put :
VK( f ) := {ξ ∈ K-Spec A | ξ ( f ) = 0}= {ξ ∈ K-Spec A | f (ξ ) = 0}= {m ∈ K-Spec A | f ∈m}

and, for an ideal a in A, we put VK(a) :=
⋂

f∈a VK( f ). Note that VK(a) = VK(
√
a).

The set FK(K-Spec A) = {VK(a) | a ∈ r-I(A)} of all affine K-algebraic sets in K-Spec A form the
closed sets of a topology — called the K-Z a r i s k i t o p o l o g y on K-Spec A. The open subsets are
the complements DK(a) :=K-Spec ArVK(a), a ∈ r-I(A) and DK( f )={ξ ∈ K-Spec A | ξ ( f ) 6=0}=
K-Spec ArVK( f ), f ∈ A form a basis for the K-Zariski topology on K-Spec A. Therefore we have
defined the inclusion reversing map :

VK : r-I(A)−→ FK(K-Spec A), a 7−→ VK(a).
Further, for an arbitrary subset V ⊆ K-Spec A, we associate the radical ideal

IK(V ) := { f ∈ A | f (ξ ) = 0 for all ξ ∈V}=
⋂

ξ∈V mξ ∈ r-I(A).
These radical ideals satisfy the same properties of Exercise 8.9 (a).

(d) If A is an affine algebra over an algebraically closed field K, then the maps

FK(K-Spec A)
IK−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−

VK

r-I(A)

V p−−−−−−−−−−−−−−−−−−−−−−−→ IK(V )
VK(a)←−−−−−−−−−−−−−−−−−−−−−−−p a

are inclusion-reversing, bijective and mutually inverses of each other.

(e) Let K be an arbitrary field. Then for every K-algebra homomorphism ϕ : A→ B of arbitrary
K-algebras, we define the map ϕ∗ : K-Spec B→ K-Spec A by ϕ∗ξ :=ξ ◦ϕ or by ϕ∗m=ϕ−1(m),
m=Kerξ ∈K-Spec B=HomK-alg(B,K). Then (idA)

∗ = idK-Spec A and further, if ψ : B→ C is an
another K-algebra homomorphism then (ψ ◦ϕ)∗=ϕ∗ ◦ψ∗.
Therefore, the assignments A K-Spec A, ϕ  ϕ∗ define a contravariant functor from the category
Aff K-Algs of K-algebras to the category Tops of topological spaces. (For a K-algebra homomorphism
ϕ : A→ B the continuity of ϕ∗ : K-Spec B→ K-Spec A, ξ 7→ ξ ϕ , is immediate from the more precise assertion :
For a K-algebra homomorphism ϕ : A→ B and an ideal a in A, we have (ϕ∗)−1(VK(a)) = VK(aB).)

R8.1.4 (A l g e b r a - G e o m e t r y L e x i o n) We give a brief summary of the algebra-geometry
lexicon. Let K be an algebraically closed 5 field, V ∈ F(Kn) be a (fixed) Zariski closed subset in Kn,
FK(V ) be the set of all Zariski closed subsets of V (and hence also closed in Kn) and let K[V ] be the
K-coordinate ring of V .

(a) For an ideal a ∈ I(K[V ]), we put VK,V (a) := {a ∈V | f (a) = 0 for all f ∈ a} which is a common
zero set of all functions f ∈ a in V .
Further, for a subset W ⊆V , we put IK[V ](W ) := { f ∈ K[V ] | f (a) = 0 for all a ∈W} which is the set
of all functions f ∈ K[V ] vanishing on W . Clearly, IK[V ](W ) =

⋂
a∈W ma ∈ r-I(K[V ]).

5 We should mention that some parts of this lexion stay intact even if we drop the hypothesis that K is
algebraically closed
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Then the maps
FK(V )

IK[V ]−−−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−−−
VK,V

r-I(K[V ]) (a.1)

W p−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ IK[V ](W )
VK,V (a)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−p a

FrrK (V )
IK[V ]←−−−−−−−−−−−−−−−−−−−−−−−−→

VK,V
Spec(K[V ]) (a.2)

VK,V (p)←−−−−−−−−−−−−−−−−−−−−−−−−−−−→ p

V
IK[V ]←−−−−−−−−−−−−−−−−−−−−−−−−−−−→

VK,V
K-Spec(K[V ]) (a.3)

a←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ma

FrrComK (V )
IK[V ]←−−−−−−−−−−−−−−−−−−−−−−−−→

VK,V
MinSpec(K[V ])

VK,V (p)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ p

IK[V ] and VK,V are inclusion-reversing, bijective and mutually inverses of each other. Moreover, under
this bijective correspondence irreducible Zariski closed sets in V (see R8.0.2) corresponds to the
prime ideals in K[V ] and (points of) V corresponds to the K-Spec K[V ]. In particular, V is irreducible
if and only if K[V ] is an affine domain. Furthermore, irreducible components of V corresponds to the
minimal prime ideals in K[V ] (see Exercise 8.10).

(b) For two affine K-algebraic sets V ⊆ Km and W ⊆ Kn, there is a bijective corrspondence :

HomAff K-AlgSets(V,W ) ∼←−−−−−−−−−−−−−−−−−→ HomK-alg(K[W ],K[V ]),
Under this correspondence isomorphisms are mapped bijectively onto isomorphisms, but behaves
less well with respect to injectivity (see Exercise 8.26). The composition of two morphisms of affine
K-algebraic sets corresponds to the composition of K-algebra homomorphisms of the coordinate
rings, but in the reversed order.

R8.2 The Prime Spectrum of a (commutative) ring and the Zariski Topology. There is no affine
K-algebraic set (K some field) associated to a general commutative ring A. The abstract substitute for
an affine K-algebraic set is the prime spectrum SpecA. Since (see R8.1.4 (a.3)) affine K-algebraic
sets over algebraically closed field K are embedded into the prime spectrum of its coordinate ring.
We therefore can regard the prime spectrum of a commutative ring as a generalization of an affine
K-algebraic set. Statements about spectra of rings always imply statements about affine K-algebraic
sets as special cases. As in the R8.1, we will summarize some algebra-geometry correspondences.
Let A be a commutative ring and let SpecA (resp. Spm A) denote the set of all prime ideals (resp.
maximal ideals) in A ; — called the p r i m e s p e c t r u m (resp. the m a x i m a l s p e c t r u m) of
the ring A.

R8.2.1 Notation. For the purposes of geometry, X = SpecA is viewed as point set. A point x ∈ X is
a prime ideal in A and we shall also denote it by the ideal-like notation px in situations where we want
to consider it as the prime ideal in A. If x ∈ Spm A⊆ X , we denote it also by mx. The residue field
κ(x) := Apx/pxApx = Q(A/px) of the local ring Apx (which is also the quotient field of the integral
domain A/px) is called the f i e l d o f t h e p o i n t x. For a K-algebra the K-spectrum K-Spec A
is the subset {x ∈ X | κ(x) = K} ⊆ X . The field κ(x) of the point x ∈ X is related to the ring A via
the canonical ring homomorphisms A→ A/px ↪→ κ(x). For an element f ∈ A and x ∈ X , f (x), we
denote the image of f in κ(x) by f (x) and call it the v a l u e o f f a t t h e p o i n t x. This extends
the analogous notation for the K-spectrum, see also Exercise 7.8. But now the function x 7−→ f (x),
x ∈ X , has, in general, values in different fields. A point x ∈ X is a zero of f ∈ A if and only if f ∈ px.
Note that an equation f (x) = 0 for a function f ∈ A and x ∈ X is equivalent to f ∈ px and an equation
( f g)(x) = 0 for two functions f ,g ∈ A and a point x ∈ X is equivalent to either f (x) = 0 or g(x) = 0.
The function x 7−→ f (x) is identically zero on X if and only if f ∈

⋂
x∈X px = nA =

√
0. Therefore,
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if A is not reduced, i. e. if A has non-trivial nilpotent elements, then the function x 7−→ f (x) can be
identically zero without f being zero element of A. The set of all elements f ∈ A which vanish on
Spm A is the Jacobson radical mA =

⋂
x∈Spm A mx of A, and for K-algebra A, the set of all f ∈ A

which vanish on K-Spec A is the K-radical rA =
⋂

x∈K-Spec A mx of A.

R8.2.2 Affine Algebraic sets and Zariski topology. Let A be a (commutative) ring. For an ideal a
in A, the set of common zeros

V(a) := {x ∈ SpecA | f (x) = 0 for all f ∈ E}=
⋂

f∈a V( f ) = {x ∈ SpecA | a⊆ px}
of all elements f ∈ a in X = SpecA, is called an ( a f f i n e ) a l g e b r a i c s e t in SpecA defined by
a. Note that V(a) = V(

√
a). Further, the set F(SpecA) := {V(a) | r-I(A)} of all affine algebraic sets

in SpecA form the closed sets for a topology — called the Z a r i s k i t o p o l o g y on SpecA. The
open subsets are the complements D(a) : SpecrV(a), a ∈ r-1I(A) and D( f ) = SpecArV( f ) = {x ∈
SpecA | f (x) 6= 0}, f ∈ A, form a basis for the Zariski topology on SpecA. The basic open set D( f )
is also known as the d o m a i n of f which explains the usage of the letter D.
Therefore we have defined the inclusion reversing map :

V : r-I(A)−→ FK(SpecA), a 7−→ V(a).
For a better understanding of the map VK , we define the inclusion reversing map in the opposite
direction :

I : FK(SpecA)−→ r-I(A).
For this to every subset Y ⊆ X = SpecA, we associate the radical ideal (in A)

IK(Y ) := { f ∈ A | f (y) = 0 for all y ∈ Y}=
⋂

y∈Y py ∈ r-I(A)
is called the i d e a l o f Y . Note that f ∈ py if and only if f (y) = 0. This implies that I({y}) = py
for all y ∈ X . Further, the reduced ring

A(Y ) := A/I(Y )
is called the c o o r d i n a t e r i n g o f Y . is a K-algebra isomorphism.

R8.2.3 Formal Hilbert’s Nullstellensatz. With the notations and definitions introduced as in ??
above, let A be a ring and let X = SpecA be the prime spectrum of A (with Zariski topology). Then :

(a) For every subset Y ⊆ X = SpecA, V(I(Y )) =Y (:= the closure of Y in X with respect to the Zariski
topology). In particular, I(V(I(Y ))) = I(Y ) and V(I(V(a))) = V(a), where a ∈ I(A).

(b) (F o r m a l H i l b e r t ’ s N u l l s t e l l e n s a t z6) I(V(a)) =
√
a for every ideal a ∈ I(A).

(c) The maps

F(X)
I−−−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−−−
V

r-I(A)

Y p−−−−−−−−−−−−−−−−−−−−−−−−−−−→ I(Y )
V(a)←−−−−−−−−−−−−−−−−−−−−−−−−−−−p a

are inclusion-reversing, bijective and mutually inverses to each other. (Remark : In the special case
that if A = K[V ] is the K-coordinate ring of affine K-algebraic set V over an algebraically closed field K the
correspondence in the above part (c)is a generalization of the correspondence in R8.1.4 (a).)

(d) (F u n c t o r i a l P r o p e r t i e s o f Spec ) A ring homomorphism ϕ : A→ B induces a morphism
ϕ∗ : SpecB→ SpecA, q 7→ ϕ−1(q), on spectra. Note that the correspondence between ring homomor-
phisms and morphisms of spectra is not bijective. See Exercise 8.22 for more on functorial properties.
(Remark : In general, ϕ∗ does not restrict to a map Spm B→ Spm A, but if ϕ is a K-algebra homomorphism of
affine K-algebras, then it does. If in addition A = K[W ] and B = K[V ] are coordinate rings of affine K-algebraic
sets over algebraically closed field K, then the correspondence in R 8.1.4 (a) translate this restriction of ϕ∗ in to a
map V →W which is exactly the morphism corresponding to ϕ .)

R8.2.4 Example. For the zero ring 0 the prime spectrum Spec 0 = /0. For a principal ideal domain A, for example,
A = Z, or A = K[X ] or A = K[[X ]], where K is a field and X is an indeterminate over K. The prime spectrum
X = SpecA consists of the zero (prime) ideal 0 ⊆ A and of all pricipal ideals 〈p〉 ⊆ A generated by by prime

6 Also known as S c h e i n n u l l s t e l l e n s a t z
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elements p ∈ A, i. e.
SpecA = {0 ,〈p〉 | p ∈P(A)},

where P(A) denote the complete representative set for prime elements in A under the equivalence relation of being
associates in A. In particular,

SpecZ= {0}∪P, SpecK[X ] = {0}∪{π ∈P(K[X ])} and SpecK[[X ]] = {0 ,〈X〉},
where P(K[X ]) = {π ∈ K[X ] | π non-constant monic irreducible over K }.
Furthermore, the closed subsets in X are of type V(a), a ∈ A. In particular, V(a) = X for a = 0 and V(a) = /0
if a ∈ A× is a unit in A. For elements a ∈ Ar (A× ∪{0}), V(a) = {〈p1〉, . . . ,〈pr〉}, where a = ε pν1

1 · · · pνr
r is a

prime factorization with pairwise coprime prime factors p1, . . . , pr , exponents ν1, . . . ,νr > 0 and a unit ε ∈ A×.
In particular, all prime ideals which are generated by prime elements or, equivalently, all non-zero prime ideal in
A gives rise to closed points in X = SpecA. Further, a subset V ⊆ X is closed if and only if it coincides with X or
/0, or if it is a finite set of closed points. Therefore the zero ideal 0⊆ A yields a dense point in X , i. e. {0}= X .
In particular, if A is not a field, then X 6= {0} and the point 0 ∈ X cannot be closed.
Switching to complements, the open subsets in X are /0, X and the sets of type Xr{x1, . . . ,xr}, where x1, . . . ,xr ∈X
are finitely many closed points. Therefore any non-empty open subset of X will contain the point given by the
zero ideal 0⊆ A and hence the Zariski topology on X = SpecA cannot satisfy the Hausdorff separation axiom,
unless A is a field.

R8.2.5 It follows from the formal Hilbert’s nullstellensatz (R 8.23 (b)) that the prime spectrum SpecA
of a ring A is a noetherain topological space if and only if the radical ideals in A satisfy the ascending
chain condition, in particular, if A is a noetherain ring, then the prime ideals satisfy ACC and
X = SpecA is a noetherian topological space. More generally, if A = ∑

n
i=1 A fi is a finitely generated

ideal in a ring A, then D(a) = ∪n
i=1D( fi) is quasi-compact.

The ring Q[Xi | i∈N]/〈X2
i | i∈N〉 is not noetherain, but its prime spectrum {m := 〈xi | i∈N〉} is

singleton and hence noetherian.

8.1 Let X be a topological space and Y ⊆ X be an irreducible subspace.

(a) Suppose that Y =∪n
i=1Yi with each Yi , is closed in Y . Then Y =Yi for some i = 1, . . . ,n.

(b) Suppose that Y ⊆∪n
i=1Xi with each Xi is closed in X . Then Y ⊆ Xi for some i = 1, . . . ,n.

(c) The closure Y of Y is also irreducible.
(d) Y is contained in a maximal irreducible subspace. (Maximal elements in the ordered
set (I rr(X),⊆) (where I rr(X) is the set of all irreducible subsets X) are called m a x i m a l i r r e -
d u c i b l e s u b s p a c e. — Hint : Let S := {Z ∈ I rr(X) | Y ⊆ Z}. Then Y ∈ S and S is ordered by
the natural inclusion ⊆. Further for a chain (totally ordered subset) C in S, Z′ := ∪Z∈C is irreducible
in X , since for non-empty open subsets U,V of Z′, there exists Z ∈ C with U ∩Z 6= /0 and V ∩Z 6= /0,
hence (U ∩Z)∩ (V ∩Z) 6= /0 (since Z is irreducible). This proves that Z′ ∈ S is an upper bound for C
in S and hence Zorn’s Lemma yields (d). In particular, Max(I rr(X),⊆) 6= /0. Its elements are called
i r r e d u c i b l e c o m p o n e n t s of X .)

(e) The maximal irreducible subspaces of X are closed and cover X .

(f) Let ψ : X → X ′ be a continuous map between topological spaces. Show that if V ⊆ X
is an irreducible subset, then its image ψ(V ) and its closure ψ(V ) are irreducible in X ′.

8.2 Let X be a noetherian topological space. Then :

(a) Every closed subset V ⊆ X is a finite union V =V1∪·· ·∪Vr of irreducible components
V1, . . . ,Vr of V and Vi 6⊆ ∪ j 6=i Vj for every 1≤ i≤ r. In particular, X has only finitely many
irreducible components. (Hint : Consider the collection S of those closed subsets Z of X which
cannot be expressed as a union of finitely many closed irreducible subsets in X .)

(b) X has only finitely many connected components and every connected component is a
union of some irreducible components of X . In particular, the connected components of X
are (closed and) open.
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8.3 The following three special cases of the maps associated to K-algebra homomorphisms
on the K-spectra which are important and are used often, see R8.1.3 (e).
Let A be an arbitrary K-algebra over a field K.

(a) Let ϕ : A→ A′ be a surjective K-algebra homomorphism. Then the map associated
to ϕ on K-Spectra ϕ∗ : K-Spec A′ → K-Spec A is a continuous closed embedding with
Imgϕ∗ = VK(Kerϕ). In particular, the map π∗a : K-Spec(A/a)→ K-Spec A, associated to
the residue-class homomorphism πa : A→ A/a induces a (closed embedding) homeomor-
phism K-Spec(A/a) ∼−→ VK(a)⊆ K-Spec A.

(b) The residue-class homomorphism π : A→ A/nA, where nA is the nil-radical of A,
induces a homeomorphism π∗ : K-Spec(A/nA) ∼−→ K-Spec A. (Hint : This is a special case
of (a), since VK(nA) = K-Spec A.)

(c) For f ∈ A, the canonical K-algebra homomorphism ι f : A→ A f = A[1/ f ] induces (an
open embedding) a homeomorphism ι∗f : K-Spec A f

∼−→ DK( f )⊆ K-Spec A.
More generally, for an arbitrary multiplicatively closed subset S ⊆ A, the canonical ho-
momorphism ιS : A→ A−1S induces a homeomorphism from K-Spec S−1A ∼−→ Img ι∗S =
{m ∈ K-Spec A |m∩S = /0} ⊆ K-Spec A.

8.4 Let K be a field and A be a K-algebra.
(a) K-Spec A is dense in SpecA if and only if the nilradical nA of A coincides with the
K-radical rA =

⋂
ξ∈K-Spec Amξ of A.

(b) The closed irreducible subsets in K-Spec A are precisely the sets VK(p), where p ∈
SpecR is a prime ideal with IK(VK(p)) = p.

8.5 Let X = SpecA be the prime spectrum (with Zariski topology) of a ring A.

(a) For every x ∈ X , the closure {x}= V(px) = {y ∈ X | px ⊆ py}.

(b) A point x ∈ X is closed, i. e. {x} is closed in X if and only if the prime ideal px
corresponding to x is a maximal ideal in A.
(c) Spm A is dense in SpecA if and only if nA =mA, where nA and mA denote the nil-radical
and the Jacobson radical ideal of A, respectively.

8.6 Let X = SpecA be the prime spectrum of the ring A. The Zariski topology on X does
not necessarily satisfy the Hausdorff (also known as T2) separation axiom, see Example R
8.2.4, however the following weaker separation axiom (known as T0) holds :

(a) The Zariski topology on X = SpecA yields a K o l m o g r o v s p a c e, i. e. a topolog-
ical space satisfying the following separation axiom T0 : Given any two distinct points
x,x′ ∈ X , x 6= x′, there exists an open neighbourhood U of x such that x′ 6∈U , or an open
neighbourhood of U ′ of x′ such that x 6∈U ′.

(b) For functions f , f ′ ∈ A, the following statements are equivalent :
(i) D( f ) = D( f ′). (ii) V( f ) = V( f ′). (iii) rad( f ) = rad( f ′).

(c) X = SpecA is a Hausdorff if and only if every prime ideal in A is maximal, i. e.
dim A≤ 0. If SpecA is a Hausdorff space, then SpecA is compact and totally disconnected,
i. e. the only connected subsets are singletons. (Recall that dimA denote the Krull-dimension of
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A, see Exercise Set 10. The implication “ dimA = 0⇒ SpecA is Hausdorff ” is not obvious. — Hint :
Note that A is reduced with dimA≤ 0 if and only if every principal ideal (or every finitely generated)
ideal is generated by an idempotemnt element.)

8.7 Let A be a ring. Then :

(a) For every g ∈ A, the subset D(g) ⊆ X is quasi-compact (with respect to the induced
Zariski topology on X). In particular, X = D(1) is quasi-compact.

(b) An open subset U ⊆ SpecA is quasi-compact if and only if SpecArU =V (a) for some
finitely generated ideal a⊆ A.

8.8 Let A be a ring.

(a) Let a⊆ A be an ideal and let πa : A→ A/a be the canonical residue-class homomor-
phism. Then the map associated to πa on spectra

π∗a : SpecA/a−→ SpecA, p 7−→ π−1
a (p),

induces a homeomorphism of topological spaces SpecA/a ∼−→ V(a), where V(a) is
equipped with the subspace topology induced by the Zariski topology of SpecA.

(b) The canonical residue-class homomorphism πnA : A−→ A/nA =: Ared induces a canon-
ical homeomorphism π∗nA

: SpecAred
∼−→ SpecA, where nA is the nil-radical of A.

8.9 Let X = SpecA be the prime spectrum of a ring A and let nA be the nil-radical of A.

(a) The following statements are equivalent :
(i) X is an irreducible topological space with respect to the Zariski topology.
(ii) Ared := A/nA is an integral domain.
(iii) nA is a prime ideal in A.

(b) Let Y ⊆ X be a closed subset. Then Y is irreducible if and only if I(Y ) is a prime ideal
in A.

(c) Let I rr(X) be the set of all irreducible closed subsets in X . The maps

I rr(X)
I−−−−−−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−−−−−−
V

SpecA

Y p−−−−−−−−−−→ I(Y )
{y}= V(py)←−−−−−−−−−−p py

are inclusion-reversing, bijective and mutually inverses to each other. (In particular, every
irreducible closed subset Y ⊆ X contains a unique point y ∈ such that Y = {y}. This unique point
is called the g e n e r i c p o i n t of Y and the points of its closure {y} are called specializations
of y. More precisely, a point x ∈ X is called a s p e c i a l i z a t i o n of a point y ∈ X if x ∈ {y}, or
equivalently, py ⊆ px. For example, if A is an integral domain, then SpecA is irreducible and hence
admits a unique generic points which corresponds to the zero prime ideal.)

8.10 (M i n i m a l P r i m e I d e a l s) Let A be a ring.
(a) Let S ⊆ A be a multiplicatively closed subset in A and a ⊆ A be an ideal in A with
a∩S = /0. Then the ordered set M := {b∈ I(A) | a⊆ b⊆ ArS} (with respect to the natural
inclusion ⊆) has maximal elements. Moreover, every such maximal element in M is a
prime ideal in A. In particular, if A 6= 0, then SpecA 6= /0.
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(b) The set ZDiv(A) of all zerodivisors in A is a union of (some) prime ideals in A.
In particular, the set S0 = Nzd(A) of non-zerodivisors in A is a saturated multiplicatively
closed subset in A, see also Exercises 7.2 and Exercise 7.3.

(c) Suppose that A 6= 0. Then the ordered set (SpecA,⊆) has minimal elements — called
m i n i m i a l p r i m e i d e a l s in A and every q ∈ SpecA contains a minimal prime ideal.
Prove that every minimal prime ideal p in A is contained in the set of zerodivisors in A.
(Proof : Note that SpecAP = {pAp}, since p is a minimal element in (SpecA,⊆). Therefore
nAp

= pAp and so for every a ∈ p, a/1 ∈ pAp is nilpotent in Ap, i. e. san = 0 for some s ∈ Arp and
for some minimal n≥ 1. Then san−1 6= 0, but (san−1)a = 0 and hence a is a zerodivisor in A.)

8.11 (a) Show that a noetherian ring A has only finitely many minimal prime ideals, i. e.

the set of minimal elements in the ordered set (SpecA,⊆) is Min(SpecA,⊆) = {p1, . . . ,pr}
finite (and non-empty if A 6= 0). The irreducible components of SpecA are V(p1), . . . ,V(pr).
(Remark : Note that even if A is not noetherian the ordered set (SpecA,⊆) has minimal elements,
See above Exercise 8.10 (c). However, there are rings with infinitely many prime ideals, for example,
in Boolean rings!)

(b) Let A be a ring and K = Q(A) be the total quotient ring of A. Further, let M(A) :=
Min(SpecA,⊆) be the set of all minimal prime ideals in A. Suppose that M(A) is finite
(for example, if A in noetherian). Show that the following statements are equivalent :
(i) A is reduced.
(ii) ZDiv(A)=

⋃
p∈M(A) p and Ap=Q(A/p) (the quotient field of A/p) for each p ∈M(A).

(iii) K/pK =Q(A/p) (the quotient field of A/p) for each p∈M(A) and K = ∏
p∈M(A)

K/pK.

(Proof : The implication (i)⇒(ii) also holds without the assumption that the set M(A) is finite. For
a proof, first note that ∪p∈M(A) p ⊆ ZDiv(A) by Exercise 8.10 (c). Conversely, if ab = 0 with
a ∈ A, a 6= 0 , b ∈ A and if a 6∈ p for some p ∈M(A) := Min(SpecA,⊆). Then b ∈ p. There-
fore, if a 6∈ ∪p∈M(A) p, then b ∈ ∩p∈M(A) p = nA = 0, since A is reduced by assumption. This
proves that if a 6∈ ∪p∈M(A) p, then a 6∈ ZDiv(A) and hence ZDiv(A) ⊆ ∪p∈M(A) p. Therefore the
equality ZDiv(A) = ∪p∈M(A) p. Let p ∈M(A) be fixed. then Ap is reduced (since A is reduced
by assumption (i) and Exercise 7.26 (a)) and SpecAp = {pAp} and hence Ap is a field. Further,
Ap == Ap/pAp = Q(A/p).
(iii)⇒ (i) : Since M(A) is finite, K is a finite product of fields and hence K is reduced. Further, the
canonical ring homomorphism A→ K, a 7→ (ap)p∈M(A) (where ap denote the residue class of a in
A/p⊆ Q(A/p)) is injective and hence A reduced.
(ii)⇒(iii) : Put S := ArZDiv(A) and let q ∈ SpecA with q∩S = /0. Then q⊆ ZDiv(A) = ∪p∈M(A) p

by assumption (ii) and hence, since M(A) is finite, by Prime avoidance Lemma (see Exercise 1.9 (b))
q ⊆ p for some p ∈M(A). Therefore q = p, since p is minimal. But K = Q(A) = S−1A. There-
fore SpecK = {pK | p ∈ M(A)} = M(K) = Spm K. Further, for a fixed p ∈ M(A), K/pK =
S−1A/pS−1A = S−1(A/p) and hence S−1(A/p) is a field. But, clearly S−1(A/p) ⊆ Q(A/p) and
hence K/pK = Q(A/p). Furthermore, since S⊆ Arp, p= ι

−1
S (pK) and ι

−1
S (KrpK) = Arp. There-

fore KpK = Ap = Q(A/p) (the second equality by assumption in (ii)) is an integral domain. Now, (iii)
follows immediate from the following Exercise :
Exercise : Let A be a commutative ring and let M(A) = Min(SpecA,⊆) be the set of all minimal
prime ideals in A. Then :
(1) If Ap is an integral domain for every p ∈ SpecA, then p ∈M(A) are pairwise comaximal.
(2) The following statements are equivalent :
(i) Ap is an integral domain for every p ∈ SpecA and M(A) is finite.
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(ii) A = A1× ·· · ×An is a finite product of integral domains A1, . . . ,An. Moreover, in this case,
Ai = A/pi with {p1, . . . ,pn}=M(A).
Proof : (1) Suppose that p, q ∈M(A) are not comaximal, i. e. p+q⊆m for some m ∈ Spm A. Then
Am contains two minimal prime ideals pAm and qAm. But Am is an integral domain by assumption
and so (0) is its only minimal prime ideal. Therefore pAm = qAm and hence p= q.
(2) (i)⇒(ii) : Note that, since (nA)m = nAm

) = 0 (since Am is an integral domain by assumption (i))
for all m ∈ Spm A, by local global principle, (see Exercise 7.26) nA = 0, i. e. A is reduced. Now, since
M(A) is finite, the canonical homomorphism A −→∏p∈M(A) A/p , a 7→ (ap)p∈M(A), is injective
(Kerϕ = ∩p∈M(A) p= nA = 0, since A is reduced) and, by (1) and the Chinese Remainder Theorem,
is surjective. Therefore A is product of integral domains.
(ii)⇒(i) : Assume that A = ∏

n
i=1 Ai with Ai integral domain for all i = 1, . . . ,n. Let p ∈ SpecA. Then

Ap = ∏
n
i=1(Ai)p and hence Ap = (Ai)p for some 1≤ i≤ n, since Ap is local and Ai)p are integral do-

mains for all i = 1, . . . ,n. This proves that Ap is an integral domain. Further, note that each p ∈M(A)
is of the form (see for example, Exercise 8.20 below) p = ∏

n
i=1 ai with ai = 0 for some (unique)

1 ≤ i ≤ n and a j = A j for all j = 1, . . . ,n, j 6= i. Therefore the i-th projection A = ∏
n
i=1 Ai → Ai

induces an isomorphism A/pi
∼−→ Ai. This proves (ii). )

8.12 Let A be a ring.

(a) For an element f ∈ A, show the following two conditions are equivalent :
(i) D( f ) is dense in SpecA. (ii) The residue class of f is a non-zero divisor in Ared=A/nA.
— In particular : If f is a non-zero divisor in A, then D( f ) is dense in SpecA. Give an
example which shows that the converse is not true in general.
(Proof : Let M(A) := Min(SpecA,⊆). Then nA = ∩p∈M(A) p. Further, Ared = A/nA is reduced and
the image of ∪p∈M(A) p in Ared is the set ZDivAred of zerodivisors in Ared, see Exercise 8.10.

(i)⇒(ii) : Suppose that g ∈ A with f g = 0 in Ared, i. e. f g ∈ nA = ∩p∈M(A) p. Then /0 = D( f g) =
D( f )∩D(g) and hence D(g) = /0, since D( f ) is dense in SpecA. Therefore g∈ p for every p∈ SpecA.
In particular, g ∈ nA, i. e. g = 0 in Ared.
(ii)⇒(i) : Suppose that f ∈ ZDivAred = ∪p∈M(A) p and that D( f ) is not dense in SpecA. Then
/0 = D( f )∩D(g) = D( f g), i. e. f g ∈ p for every p∈ SpecA for some g ∈ A with D(g) 6= /0. Therefore,
since f 6∈ p for every p ∈M(A), it follows that g ∈ p for every p ∈ nA. In particular, g ∈ p for every
p ∈ SpecA and hence D(g) = /0, a contradiction.

Let A := K[X ,Y ]/(X)∩ (X ,Y )2 = K[x,y]. Then y is a zerodivisor in A, since xy = 0, x 6= 0, y 6= 0,
and D(y) is dense in SpecA = SpecAred = SpecK[y] = SpecK[Y ].
— Remark : Elements in A fulfilling conditions (i) and/or (ii) above are called a c t i v e. Non-
zerodivisors are active.)

(b) If A is Noetherian and if the open set U ⊆ SpecA is dense in SpecA, then there exists
f ∈ A such that D( f )⊆U and D( f ) is dense in SpecR.

(Proof : Suppose that U = SpecArV(a) is dense in SpecA. Then a 6= 0. Further, we claim that
a 6⊆ pi for every i = 1, . . . ,r, where {p1, . . . ,pr} = Min(SpecA,⊆) (which is a finite set, since A is
noetherian, see Exercise 8.11 (a)). For, if a⊆ pi for some 1≤ i≤ r. Then U = SpecArV(a)⊆ Y :=
∪ r

j=1 , j 6=i V(p j) 6= SpecA and Y is a closed subset in SpecA which contradicts the assumption that
U is dense in SpecA. This proves the claim a 6⊆ pi for every i = 1, . . . ,r. Now, by Prime avoidance
Lemma (Exrecise 1.9 (b)) choose f ∈ ar

(
∪r

i=1 pi
)
. Then D( f )⊆U , since f ∈ a, and further, f is a

non-zerodivisor in Ared, since f 6∈ ∪r
i=1 pi and hence by part (a) D( f ) is dense in SpecA.)

8.13 Let A be a ring and X := SpecA. For closed sets Y1,Y2 ⊆ X , show that the following
statements are equivalent :
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(i) Y1]Y2 = X , i. e. Y1∪Y2 and Y1∩Y2 = /0.
(ii) There are complementary idempotents e1,e2 ∈ A (i. e. idempotents with e1 + e2 = 1
and e1e2 = 0) with V(〈ei〉) = Yi, i = 1,2.
(iii) There are comaximal ideals a1, a2 ⊆ A with a1a2 = 0 and V(〈ei〉) = Yi, i = 1,2.
(iv) There are ideals a1, a2 ⊆ A with a1⊕a2 = A and V(ai) = Yi, i = 1,2.
Moreover, given any ei and ai, i = 1,2, satisfying (ii) and either (iii) or (iv), necessarily
ei ∈ ai, i = 1,2.

8.14 Let V be an A-module and let SuppV := {p ∈ SpecA |Vp 6= 0}.

(a) V 6= 0 if and only if SuppV 6= /0.

(b) If a is an ideal in A, then V(a) = SuppA/a.

(c) If p ∈ Supp V , then V(p)⊆ SuppV .

(d) If AnnAV ∩ (Arp) 6= /0, then p 6∈SuppV . The converse holds if V is a finite A-module.

(e) SuppV ⊆ V(AnnAV ) and the equality holds if V is a finite A-module. In particular, if
V is a finite A-module then SuppV is a closed subset in the Zariski topology on SpecA.

8.15 Let V be an A-module. Prove that :

(a) If 0−→V ′ −→V −→V ′′ −→ 0 is a short exact sequence of A-modules, then
Supp,V = SuppV ′∪ SuppV ′′.

(b) If V = ∑ i∈I Vi the sum of the family Vi, i ∈ I A-submodules of V , then
SuppV =

⋃
i∈I SuppVi.

(c) If V is finite A-module and if a is an ideal in A, then Supp(V/aV ) = V(a+AnnA V ).

(d) Find the support of the Z-module Q/Z. Is it closed in the Zariski topology on SpecZ?
(Hint : SuppQ/Z = P (the set of all prime numbers), since Z(p) 6= Q(p) = Q and Z(0) = Q.
In particular, SuppQ/Z is not closed and hence SuppQ/Z 6= V(AnnZQ/Z).)

8.16 Let ϕ : A→ A′ be a ring homomorphism and let ϕ∗ : SpecA′ −→ SpecA be the map
associated to ϕ on spectra. Prove that :

(a) Every p ∈ SpecA is a contraction of some p′ ∈ SpecA′ if and only if ϕ∗ is surjective.

(b) If every p′∈SpecA′ is an extension of some p∈SpecA, then ϕ∗ is injective. Is the
converse true?

8.17 (L o c a l l y f i n i t e l y g e n e r a t e d a n d p r e s e n t e d m o d u l e s) Let A be a
ring. An A-module V is called l o c a l l y f i n i t e l y g e n e r a t e d if each p ∈ SpecA
has a neighborhood on which V becomes finitely generated ; more precisely, there exists
f ∈ Arp such that Vf is finitely generated over A f . It is enough that such an f exist for
each maximal ideal m ∈ Spm A, since every prime ideal p is contained in some maximal
ideal m. Similarly, we define the properties l o c a l l y f i n i t e l y p r e s e n t e d , l o c a l l y
f r e e o f f i n i t e r a n k , and l o c a l l y f r e e o f r a n k n.

(a) If V is a locally finitely generated A-module, then V is finitely generated. (Hint : Note
that a family xi ∈V , i ∈ I, generated V if and only if for every maximal ideal m ∈ Spm A, the images
xi/1 ∈Vm, i ∈ I, generated Vm. Use the fact that X = SpecA is quasi-compact.)
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(b) If V is a locally finitely presented A-module, then V is finitely presented.

(c) For an A-module P the following statements are equivalent :
(i) P is finitely generated and projective.
(ii) P is finitely presented and Pm is free over Am for every m ∈ Spm A.
(iii) P is locally free of finite rank.
(iv) P is finitely presented and for each p ∈ SpecA, there are f ∈ A and n ∈N such that
p∈D( f ) and Pq is free of rank n over Aq at each q∈D( f ). (Hint : Using the parts (a), (b) above,
Exercise 7.22 and the following Exercise, prove the implications : (i)⇐⇒ (ii)⇒(iii)⇒(iv)⇒(ii).
Exercise : Let V be a finite A-module and let S⊆ A be a multiplicatively closed subset.
(a) Let x1, . . . ,xn ∈ V . If the images x1/1, . . . ,xn/1 ∈ S−1V generate S−1V over S−1A, then there
exists f ∈ S such that x1/1, . . . ,xn/1 ∈V f generate V f over A f .
(b) If V is finitely presented and if S−1V is a free S−1A-module of rank n, then there exists f ∈ S
such that V f is afree A f -module of rank n.)

8.18 Let A be a ring. Show that every non-empty closed subset V ⊆ SpecA contains a
closed point. Deduce that an open subset U ⊆ SpecA containing all closed points of SpecA
must coincide with SpecA.

8.19 Let K be an algebraically closed field, K[X1, . . . ,Xn] the polynomial ring in n indeter-
minates X1, . . . ,Xn over K and let X := SpecK[X1, . . . ,Xn]. Show that :

(a) The set of closed points in X can canonically be identified with with Kn.

(b) If n=1 then there is exactly one non-closed point in X , namely the generic point of X .
(c) If n = 2, then the non-closed points in X that are different from the generic point are
given by the principal (prime) ideals 〈 f 〉 where f ∈ K[X1,X2] is irreducible and the closure
{y} of such points consists of y as the generic point and of the curve {x ∈ K2 | f (x) = 0}.
8.20 Let A1, . . . ,An be rings. Show that there is a canonical bijection

Spec ∏
n
i=1 Ai

∼−−−−→
∐n

i=1 SpecAi.
(Hint : Note that the map I(A1)×·· ·× I(An) ∼−→ I(A1×·· ·×An), (a1, . . . ,an) 7−→ a1×·· ·×an, is
bijective. Futher, its inverse induces a canonical bijections : Spec(A1×·· ·×An) ∼−→

∐n
i=1 SpecAi

and Spm(A1×·· ·×An) ∼−→
∐n

i=1 Spm Ai .)

8.21 Let A be a finite type algebra over a field K.

(a) Let Y ⊆ SpecA be a closed subset. Show that the closed points are dense in Y .
(b) Show that SpecA is finite if and only if A is a finite K-algebra, i. e. Dim K A is finite.
(Hint : Note that A is noetherian and hence A contains only finitely many minimal prime ideals. Use
this to reduce the assertion to the case where A is an integral domain.)

8.22 (F u n c t o r i a l p r o p e r t i e s o f S p e c t r a) Every ring homomorphism ϕ : A→ A′

induces a map ϕ∗ :=Specϕ : X ′ :=SpecA′ → SpecA=: X , px′ 7→ ϕ−1(px′) between the
associated spectra. More precisely, for every x′∈X ′, the following diagram is commutative :

A A/ϕ−1(px′) κ(ϕ∗(x′))

A′ A′/px′ κ(x′)

π
ϕ−1(px′ )

ϕ

ι

ϕx ϕx

πpx′ ι
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In particular, for f ∈ A and x′ ∈ X ′, we have :
ϕx ( f (ϕ∗(x′))) = ϕ( f )(x′) , i. e. f ◦ϕ∗ = ϕ( f ) .

Therefore ϕ might be interpreted as the map composing functions f ∈ A with ϕ∗.
Further, id∗A = idSpecA and if ϕ ′ : A′→ A′′ is another ring homomorphism, then (ϕ ′ ◦ϕ)∗ =
ϕ∗ ◦ϕ ′∗, i. e. the diagram

SpecA′

SpecA′′ SpecA

ϕ ′∗ ϕ∗

(ϕ ′◦ϕ)∗

is commutative.

(a) Let ϕ : A−→ A′ be a ring homomorphism and let ϕ∗ : SpecA′ −→ SpecA be the map
associated to ϕ on spectra. Then :

(a.1) (ϕ∗)−1(V(E)) = V(ϕ(E)) for every subset E ⊆ A. In particular, if a is an ideal in
A, then (ϕ∗)−1(V(a) = V(ϕ(a)A′).

(a.2) ϕ∗ (V(a′)) = V
(
ϕ−1(a′)

)
for every ideal a′ ⊆ A′.

(a.3) (ϕ∗)−1(D( f )) = D(ϕ( f )) for every subset f ∈ A.

(b) The map ϕ∗ : SpecA′ −→ SpecA associated to a ring homomorphism ϕ : A→ A′ is
continuous with respect to the Zariski topologies on SpecA and SpecA′.

(c) The assignments A ` SpecA, ϕ ` ϕ∗ define a contravariant functor from the
category Rings of rings to the category Tops of topological spaces.

(d) Let A and A′ be algebras of finite type over a field K and let ϕ : A→ A′ be a K-
algebra homomorphism. Then the map ϕ∗ : SpecA′ −→ SpecA associated to ϕ maps the
maximal spectrum Spm A′ into Spm A, i. e. ϕ∗(Spm A′)⊆ Spm A and maps the K-spectrum
K-Spec A′ into K-Spec A, i. e. ϕ∗(K-Spec A′)⊆ K-Spec A. Moreover, the assignments A `
 Spm A, ϕ ` ϕ∗ and the assignments A` K-Spec A, ϕ ` ϕ∗ define a contravariant
functors from the category Kalgs of K-algebras to the category Tops of topological spaces
(Spm A and K-Spec A are equipped with the induced Zariski topology from SpecA, see also R
8.1.3 (e).).

8.23 Let ϕ : A−→ A′ be a ring homomorphism such that every element f ′ ∈ A′ is of type
f ′ = ϕ( f )u with f ∈ A and u ∈ (A′)×. Then the ϕ∗ : SpecA′ −→ SpecA associated to ϕ is
injective and induces a homeomorphism SpecA′ ∼−→ Imgϕ∗ ⊆ SpecA where SpecA and
SpecA′ are equipped with their Zariski topologies and Imgϕ∗ with the subspace topology
induced from the Zariski topology on SpecA.
There are two typical examples of ring homomorphisms ϕ : A→ A′ where the assumption
in the above assertion is fulfilled, namely, residue-class homomorphisms and localizations.

(a) Let A be a ring and let a ⊆ A be an ideal. Then the map π∗a : SpecA/a −→ SpecA
associated to the residue-class homomorphism πa : A−→ A/a induces a homeomorphism

SpecA/a ∼−→ V(a)⊆ SpecA.
(In this case π∗a is called a c l o s e d i m m e r s i o n of spectra.)
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(b) Let A be a ring and let S ⊆ A be a multiplicatively closed subset in A. Then the map
ι∗S : SpecS−1A −→ SpecA associated to the canonical homomorphism ιS : A −→ S−1A
induces a homeomorphism

SpecS−1A ∼−−−−→
⋂
f∈S

D( f )⊆ SpecA.

In particular, p ∈ SpecA, Sp := Ar p, Img ι∗Sp =
⋂

f∈Sp D( f ). ( If Img ι∗S is open in SpecA,
then ι∗S is called an o p e n i m m e r s i o n of spectra. For example, the latter is the case if S is
generated by finitely many elements f1, . . . , fr ∈ A, since then

⋂
f∈S D( f ) = D( f1 · . . . · fr) is open

in SpecA.)

8.24 Let X ,Y,T be indeterminates over C, A := C[X ,Y ], B := C[X ,Y,T ]/〈XT −Y 〉=
C[x,y] and let π := ι∗ : C-Spec B→ C-Spec A= C2 be the map associated to the inclusion
ι : A ↪→ B on the C-spectra. Show that π induces a homeomorphism π−1(D(X)) ∼−→ D(X)
and hence an open immersion π−1(D(X)→ C2. Further, prove that the fibre π−1((0,0)) is
homeomorphic to C and check that Imgπ = D(X)∪{(0,0)}.

8.25 Let ϕ : A→ B be a ring homomorphism and and let ϕ∗ : SpecB −→ SpecA be the
map associated to ϕ on spectra. Then :

(a) If ϕ is surjective, then ϕ∗ is a homeomorphism of SpecB onto the closed subset
V(Kerϕ) of SpecA. In particular, SpecA and SpecA/nA (where nA is the nil-radical of A)
are canonically homeomorphic. See also Exercise 8.8 (b).

(b) (D o m i n a n t m o r p h i s m s) We say that ϕ∗ is d o m i n a n t if the image ϕ∗ (SpecB)
is dense in SpecA, i. e. ϕ∗ (SpecB) = SpecA. Equivalently, the kernel Kerϕ ⊆ nil(A). In
particular, if ϕ is injective, then ϕ∗ is dominant.

8.26 Let K be a field. Let V ⊆ Kn and W ⊆ Km be two affine K-algebraic subsets with
K-coordinate rings K[V ] := K[X1, . . . ,Xn]/IK(V ) and K[W ] := K[X1, . . . ,Xm]/IK(V ), re-
spectively. Furthermore, let ϕ : K[W ]→ K[V ] be a K-algebra homomorphism and let
ϕ∗ : V ∼= K-Spec K[V ]→ K-Spec K[W ]∼=W be the morphism associated to ϕ . Prove that :

(a) ϕ∗ is dominant (see Exercise 8.25 (b)), i. e. the image ϕ∗(V ) is dense in W if and only
if ϕ is injective. Give an example in which ϕ∗ is dominant but not surjective.

(b) If ϕ is surjective, then ϕ∗ is injective. Is the converse true?
(Hint : Let ϕ : K[X ]

ι→ K[X ]X ∼−→ K[X ,Y ]/〈XY −1〉. Then ϕ is injective but not surjective. Further,
the associated map ϕ∗ : K-SpecK[X ,Y ]/〈XY −1〉 → K-Spec K[X ] is dominant but not surjective.)

8.27 Let A be an integral domain with SpecA = {0,p} (for example, a formal power series
ring A = K[[X ]] in one indeterminate X over a field) and the quotient field K. Further, let
B := A/p×K be the product ring and let ϕ : A→ B be the ring homomorphism defined by
ϕ(x) = (π(x),x) where π(x) is the residue-class of x modulo p. Show that the associated
map ϕ∗ : SpecB→ SpecA on the spectra is bijective, but not a homeomorphism.

8.28 Let ϕ : A−→ A′ be a ring homomorphism and let ϕ∗ : SpecA′ −→ SpecA be the map
associated to ϕ on spectra. Suppose that X ′ = SpecA′ is irreducible and let x′ ∈ X ′ be its
generic point. Show that ϕ∗(x′) is the generic point of the closure Imgϕ∗ of Imgϕ∗. See
Exercise 8.9 (c).

8.29 Let K be a field, ϕ : A−→ A′ be a K-algebra homomorphism of K-algebras and let
ϕ∗ : SpecA′ −→ SpecA be the map associated to ϕ on spectra. If A′ is finite type over
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K, then image of every closed point x′ ∈ SpecA′ is again a closed point in SpecA. Is the
assumption that A′ is finite type over K necessary?

8.30 (N e i l ’ s P a r a b o l a) Let K be a field, X , Y , T be indeterminates over K and let
ϕ : K[x,y] := K[X ,Y ]/〈Y 2−X3〉 −→ K[T ] be the K-algebra homomorphism defined by
x 7→ T 2, y 7→ T 3. Show that the associated map ϕ∗ : SpecA′→ SpecA on the spectra is a
homeomorphism, although ϕ is injective, but not surjective.

--

0

1

Neil’s Parabola ---Parabola cuspidata

y

x

-- --
--
---

X XY
2 23 3( () )V YR R RSpec X Y /[ ]

,=

(Hint : The K-algebra homomorphism S−1
x ϕ : S−1

x (K[x,y])−→ S−1
x (K[T ]), where Sx :={xn | n∈N},

is an isomorphism. — The plane curve with equation y2 = x3 has been considered by William Neil7

in 1657 and is called the semicubical or Neil’s parabola.)

8.31 (F i b r e s o f a h o m o m o r p h i s m) Let ϕ : A→ B be a ring homomorphism and
let ϕ∗ : SpecB→ SpecA be the map associated to ϕ on spectra. For p ∈ SpecA, the set
(ϕ∗)−1(p) := {q ∈ SpecB | ϕ−1(q) = p} is called the f i b r e o f ϕ∗ over p.
For example, if ϕ = ιS : A→ S−1A is a localization homomorphism, then the fibre over p ∈ SpecA is
{S−1p} if S∩p= /0, and /0 if S∩p 6= /0. If ϕ = πaA→ A/a is a residue-class homomorphism, then
fibre over pSpecA is {p/a} if a⊆ p, and /0 if a 6⊆ p.

(a) Let p ∈ SpecA be such that pBp 6= Bp. Then the map

V(pBp)
(ιB
p )
∗

−−−−−−→ (ϕ∗)−1(p) , q′ 7−→ (ιB
p )
−1(q′) ,

is bijective. (Hint : For p ∈ SpecA, let ιA
p : A→ Ap and ιB

p : B→ Bp be the natural localization
homomorphisms. From the following commutative diagrams

A Ap p ∈ SpecA SpecAp 3 pAp

B Bp q= (ιB
p )
−1(q′) ∈ Img(ιB

p )
∗ ⊆ SpecB SpecBp ⊇ V(pBp) 3 q′

ιA
p

ϕ ϕp

(ιA
p)
∗

ιB
p

ϕ∗ (ϕp)
∗

(ιB
p)
∗

It follows that

V(pBp)
(ιB

p)
∗

∼−→ Img(ιB
p )
∗={(ιB

p )
−1(q′)=:q∈SpecB | pB⊆q and q∩ (Arp)= /0)}

ϕ∗

∼−→ (ϕ∗)−1(p)

and ϕ−1(q) = p. Therefore the map V(pBp)
(ιB

p)
∗

−−−−−−→ (ϕ∗)−1(p), q′ 7−→ (ιB
p )
−1(q′) is bijective.)

(b) Let p ∈ SpecA. Then the map (ϕ∗)−1(p) ∼−−−−→ SpecBp/pBp , q 7−→ qBp/pBp ,

is a homeomorphism. In particular, if B is finite over A, then the fibres of ϕ∗ are noetherian
subspaces of SpecB. (Hint : For every p ∈ SpecA, the κ(p)-algebra Bp/pBp is finite.)

(c) For p ∈ SpecA, the following statements are equivalent :
(i) The fibre (ϕ∗)−1(p) 6= /0. (ii) ϕ−1(pB) = p. (iii) Bp 6= pBp.

7 William Neil (1637-1670) was an English mathematician and founder member of the Royal Society. — The
oldest national institution, formally known as the Royal Society of London, founded in 1660, for promoting science
and its benefits, recognising excellence in science, supporting outstanding science and education.
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(Hint : The implications (i)⇒(ii)⇒(iii) are easy to prove and for (iii)⇒(i) use the part (a).)

(d) Suppose that ϕ is faithfully flat. Then ϕ∗ is surjective. (Hint : Verify the condition (ii) in
the part (c).)

8.32 Let K be a field, X1, . . . ,Xn,Y1, . . . ,Ym be indeterminates over K, and let F1, . . . ,Fm ∈
K[X1, . . . ,Xn]. Further, let ε : K[Y1, . . . ,Ym]−→ K[X1, . . . ,Xn] be the substitution K-algebra
homomorphism with ε(Y1) = F1, . . . ,ε(Ym) = Fm , and let

ε∗ : Kn = K-Spec K[X1, . . . ,Xn]−→ K-Spec K[Y1, . . . ,Ym] = Km

be the map associated to ε on the K-spectra. It is the polynomial map on Kn defined by
a 7−→ (F1(a), . . . ,Fm(a)), a ∈ Kn.
The fibre of ε∗ over 0 is the (affine) K-algebraic set (in Kn) defined by the F1, . . . ,Fm , i. e.

(ε∗)−1(0) = VK(F1, . . . ,Fm) = {a ∈ Kn | F1(a) = · · ·= Fm(a) = 0}.
More generally, the fibre of ε∗ over b = (b1, . . . ,bm) is the affine K-algebraic set

(ε∗)−1(b) = {a ∈ Kn | F1(a) = b1 , . . . ,Fm(a) = bm}.
These fibres are described by using the so-called f i b r e a l g e b r a (see the Exercise 8.28).

K[X1, . . . ,Xn]/ε(mb)K[X1, . . . ,Xn] = K[X1, . . . ,Xn]/〈F1−b1, . . . ,Fm−bm〉
of the map ε at the point b ∈ Km.
(Remark : The study of fibres of a polynomial map Kn→ Km sems to have motivated the definition
of affine K-algebraic sets and their study further.)

(a) For the polynomial map f :R2→R, (x1,x2) 7→ x2
1 +x2

2, and b ∈R, the fibre f−1(b) =
VR(X2

1 +X2
2 −b) is a circle if b > 0, the origin (0,0) if b = 0 and empty if b < 0. Note

that the prime ideals pb := 〈X2
1 +X2

2 − b〉), b ∈ R, and m := 〈X1 , X2〉 ∈ SpecR[X1,X2]
are different, but VR(p0) = VR(m) and VR(pb) = /0 if b < 0. (Remark : In general,
VR(F1, . . . ,Fm)=VR(F2

1 + · · ·+F2
m) for arbitrary polynomials F1, . . . ,Fm ∈R[X1, . . . ,Xn]. Thus,

every affine algebraic set inRn is the zero set of a single polynomial.)
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(b) Let g :R→R be the polynomial map x 7→ x2 which is the restriction of the map f of
the example (a) to the line VR(X2) = {x2 = 0}. The fibre g−1(b) = VR(X2−b) = {±

√
b}

has exactly two points if b > 0 ; it has exactly one point {0} if b = 0 and it is empty
if b < 0. For these three cases the corresponding fibre algebras R[X ]/(X2− b), b ∈ R,
are isomorphic to the product algebra R×R, to the algebra R[ε] := R[X ]/(X2) of dual
numbers and to the algebra C, respectively.

8.33 Let K be a field, B a K-algebra of finite type and let q ∈ SpecB. The the following
statements are equivalent :
(i) q is isolated in SpecB, i. e. {q} is open in SpecB.
(ii) There exists f ∈ B such that D( f ) = {q}.
(iii) Bq is a finite K-algebra.
(Hint : (ii)⇒(iii) : Note that (ii) implies that Bq is local Artinian with the maximal ideal qB f
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and hence B f /qB f is a finite K-algebra (by HNS 3). Therefore B f is finite over K. For (iii)⇒(ii)

consider the exact sequence 0−→ Ker ιq −→ B
ιq−→ Bq −→ Coker ιq −→ 0 of B-modules. Since

Supp(Ker ιq) and Supp(Coker ιq) are closed subsets of SpecB (see Exercise 8.14 (e)), there exists
f ∈ Bq such that (Ker ιq) f = 0 and (Coker ιq) f = 0. This proves the equality SpecB f = {qB f }.)

8.34 Let B be an A-algebra of finite type over the ring A with the structure homomorphism
ϕ : A→ B and let ϕ∗ : SpecB−→ SpecA be the map associated to ϕ on spectra.

(a) Show that the following statements are equivalent :
(i) The fibres of ϕ∗ are discrete.
(ii) For every p ∈ SpecA Bp/pBp is finite over the residue field κ(p) at p.
In particular, the fibres of ϕ∗ are finite.

(b) For a noetherain ring A show that the following statements are equivalent :
(i) A is Artinian.
(ii) SpecA is discrete and finite.
(iii) SpecA is discrete.

8.35 Let B be a flat A-algebra with the structure homomorphism ϕ : A→ B and let ϕ∗ :
SpecB−→ SpecA be the map associated to ϕ on spectra. Then the following statements
are equivalent :
(i) (aB)∩A = a for every ideal a in A.
(ii) The map ϕ∗ : SpecB→ SpecA is surjective.
(iii) For every maximal ideal m ∈ Spm A, we have mB 6= B.
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