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9 . I n t e g r a l E x t e n s i o n s∗
— C o h e n - S e i d e n b e r g T h e o r e m s∗

• For a ready reference use the R9 S u m m a r y o f R e s u l t s listed below

• For proofs of Supplementary Results cited see the ∗S u p p l e m e n t s at the end

R9 S u m m a r y o f R e s u l t s

R9.1 Integral extensions In a ring extension A⊆ A′, it is useful to consider elements x ∈ A′ which
are zeros of monic polynomials in A[X ].

R9.1.1 Integral dependence. Let ϕ : A→ A′ be a ring homomorphism (A′ is an A-algebra with
the structure homomorphism). An element x ∈ A′ is called i n t e g r a l o v e r A with respect to ϕ

if it satisfies so-called integral equation over A, i .e. if there are elements a0, . . . ,an−1 ∈ A such that
xn + an−1xn−1 + · · ·+ a1x+ a0 = 0. In other words the kernel of the substitution homomorphism
εx : A[X ]→ A′, X 7→ x, contains a monic polynomial over A.

The ring (or, A-algebra) A′ is called i n t e g r a l o v e r A, or ϕ is called i n t e g r a l over A if each
x ∈ A′ is integral over A. Further, ϕ is called f i n i t e if the A-algebra A′ is finite over A. If A⊆ A′ is
a ring extension, then A′ is an A-algebra with the structure homomorphism ι : A→ A′ (the natural
inclusion) and we say that A′ is integral over A if ι is integral over A.

R9.1.2 Example Let A[X ] be the polynomial ring in one indeterminate X over a ring A 6= 0 and let
f = Xn +an−1Xn−1 + · · ·+a1X +a0 ∈ A[X ]. Further, let Y be another indeterminate. We claim that
the substitution homomorphism ε f : A[Y ]→ A[X ], Y 7→ f , is finite and hence integral. For a proof,
first note that the equation Xn + an−1Xn−1 + · · ·+ a1X +

(
a0− ε f (Y )

)
= 0 is an integral equation

for X over A[Y ]. From this conclude by induction that the A[Y ]-module A[X ] (with the structure
homomorphism ε f ) is generated by 1,X , . . . ,Xn−1. In other words ε f is finite. Alternatively, this also
follows directly from the following Lemma. Furthermore, it follows that ϕ is integral which is a
non-trivial fact which cannot be derived by a direct ad hoc computation.

The following Lemma is the key to handling integral dependence which give a basic characterization
on integral dependence in terms of finiteness :

R9.1.3 Lemma Let A→ A′ be a ring homomorphism and let x ∈ A′. Then the following statements
are equivalent :
(i) x is integral over A.
(ii) The subring A[x]⊆ A′ generated by ϕ(A) and x in A′ is a finite A-module.
(iii) There exists a finite A-module V ⊆ A′ such that 1 ∈V and xV ⊆V .
(iv) There exists an A[x]-module V such that V is a finite A-module and AnnA[x]V = 0 .

R9.1.4 Remark The proof of the implication (iv)⇒ (i) in the above Lemma shows that : If xV ⊆ aV
for an ideal a ⊆ A, then there is an integral equation xn + an−1xn−1 + · · ·+ a1x + a0 = 0 with
a j ∈ an− j , j = 0, . . . ,n−1.

R9.1.5 A nice property of integral extensions A⊆ A′ is that they are compatible with residue-class,
localizations, and polynomial rings, i. e. :
(a) If a′ is an ideal in A′, then A′/a′ is an integral extension of A/(A∩a′).
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(b) If S⊆ A is a multiplicatively closed subset in A, then S−1A′ is an integral extension of S−1A.

(c) The polynomial extension A[X ]⊆ A′[X ] is also an integral extension.

R9.1.6 (G e o m e t r i c p r o p e r t i e s o f r i n g e x t e n s i o n s) (see Examples R9.1.8 for moti-
vation) Let A := K[V ] and A′ := K[V ′] be K-coordinate rings of affine K-algebraic sets and let ι :
K[V ]→K[V ′] be the K-algebra homomorphism which corresponds to the morphism π := ι∗ : V ′→V
on K-spectra, see R8.1.1 (h). We study the contraction and extension of prime ideals under the ring
homomorphism ι — this is equivalent to the study the images and inverse images of irreducible closed
subsets under the morphism π .
Note that, if ι is injective, i. e. A is a subring of A′, then the contraction of a prime ideal p′ ∈ SpecA′
is precisely A∩p′ =: p ∈ SpecA and the extension of a prime ideal p ∈ SpecA is precisely the ideal
pA′ generated by p in A′. Geometrically, the first assertion means that the image of an irreducible
closed subset of V ′ under π is also irreducible in V .
The main geometric question one can ask whether the converse is also true, i. e. every prime ideal
p ∈ SpecA is of the form p = A∩ p′ for some prime ideal p′ ∈ SpecA′. Equivalently, for a given
irreducible closed subset W of V , whether there are irreducible closed subset W ′ of V ′ with the image
π(W ′) =W .
There are five main geometric results on integral ring extensions in the above spirit which are com-
monly named maximality, Incomparability, Lying over, Going-up and Going-down their algebraic
counterparts – known as Cohen-Seidenberg Theorems — are listed in R9.1.8 below.

R9.1.7 Definition Let A be a ring, A′ be an A-algebra with structure homomorphism ϕ : A→ A′.
We say that a prime ideal p′ ∈ SpecA′ l i e s o v e r p ∈ SpecA if p′ contracts to p, i. e. ϕ−1(p′) = p
(also denoted by A∩p′ = p).

R9.1.8 Cohen-Seidenberg Theorems Let A⊆ A′ be an integral extension of rings.

(1) (M a x i m a l i t y) Suppose that p′∈SpecA′ lies over p∈SpecA. Then p′∈Spm A′ if and only if
p∈Spm A.

(2) (I n c o m p a r a b i l i t y) Suppose that p′,q′∈SpecA′ with p′⊆q′ and both p′, q′ lie over p. Then
p′=q′.

(3) (Ly i n g o v e r) For a given p ∈ SpecA, there exists a prime ideal p′ ∈ SpecA′ lying over p. In
other words the map ϕ∗ : SpecA′→ SpecA associated to ϕ on spectra is surjective. (Remark : More
generally, for every ring extension A⊆ A′ and p ∈ SpecA, there exists a prime ideal p′ ∈ SpecA′ lying over p if
and only if pA′ ∩A = p. — Proof )

(4) (G o i n g - u p) Suppose that p, q ∈ SpecA with p ⊆ q and that p′ ∈ SpecA′ lies over p. Then
there exists q′ ∈ SpecA′ such that p′ ⊆ q′ and that q′ lies over q.

(Remark : Note that the properties maximality, incomparability and going-up hold for arbitrary
integral ring homomorphisms ϕ : A→ A′. In particular, dimA′ ≤ dimA (the dimension dimA of a
ring A is the Krull-dimension of A, see Exercise Set 10). Moreover, if ϕ is injective, then the property
lying over holds for ϕ and hence dimA′ = dimA.
Further, note that, if a 6= 0 is an ideal in a ring A, then the canonical surjective ring homomorphism
πa : A→ A/a is obviously integral, but the Lying over property fails for πa.)

R9.1.9 Examples (G e o m e t r i c e x a m p l e s) Let X ,Y be indeterminates, A :=C[X ], F =
F(X ,Y )∈C[X ,Y ] be a non-constant monic polynomial in Y over A and A′ :=A[Y ]/〈F〉 = A[x,y],
where x,y are the residue-classes of X ,Y modulo F = Y 2−X2. Note that (see Exercise 8.8 and Exer-
cise 8.21 (d))C-Spec A′=VC(F)={(a,b)∈C2 | F(a,b)=0} andC-Spec A=C-SpecC[X ]=C and
the ring extension ι : A→ A′ which corresponds to the morphism π := ι∗ :C-Spec A′→C-Spec A,
(a,b) 7→ a of affine C-algebraic sets on C-spectra.

In the following we consider the following three examples (the subtle but important difference be-
tween these examples is that in (a) the given polynomial is monic in Y , whereas in (b) and (c) it is not
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(with the leading term being XY ). This has geometric consequences for the inverse images π−1(x)
for points x ∈C, the so-called fibers of π) :

(a) F = X2 −Y 2. In this case A′ = A[y] and y2 = X2 and A′ is integral over A. Substituting
arbitrary value (a ∈C) for X , we always get a (monic) quadratic equation Y 2−a2 = 0 in Y (over C).
Geometrically, this means that in any fiber π−1(a) has two points (counted with multiplicities).

(b) F = XY − 1. In this case y ∈ A′ does not satisfy a monic polynomial over A (since there are
no polynomials g , h ∈ A[Y ] with g = h(XY − 1)). Substituting arbitrary value (a ∈ C) for X , we
get a linear polynomial aY −1 = 0 in Y over C for a 6= 0, but a constant polynomial −1 for a = 0.
Geometrically, the consequence is that the fibers π−1(a) are singletons for a 6= 0 and the fiber
π−1(0) = /0 for a = 0.

(c) F = XY . This case is similar to the case (b), again A′ is not integral over A. Substituting arbitrary
value (a ∈C) for X , we get (since the aY = 0 is linear polynomial in Y over C for a 6= 0 and is the
zero polynomial (in Y over C) if x = 0) exactly one solution (a,0) for a 6= 0 and infinitely many
solutions (0,b), b ∈C for a = 0. Geometrically, this means that the fibres π−1(0) are singletons if
a 6= 0 and the fiber π−1(0) is infinite, in fact, it is the affine line VC(X).

To illustrate geometric questions (such as in R.9.1.6) we will draw pictures of affine K-algebraic sets
and their closed subsets (affine K-algebraic subsets), but label them with their algebraic counterparts
(see Exercise Set 8, R8.1.4). With this considerations the pictures corresponding to the above three
examples are drawn as follows :
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From the algebraic counter parts and the corresponding geometric consequences, we note the following
observations :

(1) In the example (a) : A′ =C[X ,Y ]/〈Y 2−X2〉=C[x,y], where x,y are the residue-classes of X ,Y
modulo Y 2−X2 and hence C-Spec A′ = VC(Y 2−X2) has two irreducible components, namely, the
affine lines (over C) VC〈Y +X〉 and VC〈Y −X〉 corresponding to the minimal prime ideals p′ :=
〈y+x〉 and p′′ := 〈y−x〉 ∈ SpecA′, respectively. The points on the affine line VC〈Y +X〉 are (a,−a),
a ∈C corresponding to the maximal ideals 〈x−a,y+a〉 ∈ Spm A′, a ∈C and p′ ( 〈x−a,y+a〉 for
every a ∈C. Similarly, the points on the affine line VC〈Y −X〉 are (a,a), a ∈C corresponding to the
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maximal ideals 〈x−a,y−a〉 ∈ Spm A′, a ∈C and p′′ ( 〈x−a,y−a〉 for every a ∈C. Further, the
irreducible components VC〈Y +X〉 and VC〈Y −X〉 intersects exactly at the origin (0,0).

(2) In the example (b) : A′ = C[X ,Y ]/〈XY − 1〉 = C[x,y], where x,y are the residue-classes of
X ,Y modulo XY − 1 and hence C-Spec A′ = VC(XY − 1) which is irreducible (since XY − 1 is
irreducible in the UFD C[X ,Y ]) and corresponds to the (unique minimal) zero prime ideal p′ := 〈0〉.
The points on VC〈XY − 1〉 are (a,a−1), a ∈ Cr{0} which corresponds to the maximal ideals
〈x−a,y−a−1〉 ∈ Spm A′, a ∈Cr{0} and p′ ( 〈x−a,y−a−1〉 for every a ∈Cr{0}. In particular,
the origin (0,0) 6∈C-Spec A′.

(3) In the example (c) : A′ = C[X ,Y ]/〈XY 〉 = C[x,y], where x,y are the residue-classes of X ,Y
modulo XY and hence C-Spec A′ has two irreducible components, namely, the affine lines (over
C) VC(X) (y-axis in C2) and VC(Y ) (x-axis in C2) which correspond to the minimal prime ideals
p′ := 〈x〉 and p′′ := 〈y〉, respectively. The points on VC〈X〉 are (0,a), a ∈ C corresponding to the
maximal ideals 〈x,y−a〉 ∈ Spm A′, a ∈C and p′ ( 〈x,y−a〉 for every a ∈C. The points on VC〈Y 〉
are (a,0), a ∈C corresponding to the maximal ideals 〈x−a,y〉 ∈ Spm A′, a ∈C and p′′ ( 〈x−a,y〉
for every a ∈C.

(4) Note that the affine lineC-SpecC[X ] =VC(0) =C1 is irreducible and corresponds to the (unique
minimal) zero prime ideal p = 〈0〉 ∈ SpecA. The points a ∈ C corresponds to the maximal ideals
〈X−a〉 and p( 〈X−a〉 for every a ∈C.

(5) In the example (a) the extension A⊆ A′ is integral (since the polynomial F =Y 2−X2 is monic in
Y ) and the map π is surjective, since all fibers of π are non-empty. Moreover, since C is algebraically
closed field, the restriction of the lying over property to points in the K-spectrum means that (by the
property (1) on maximality in the Theorem R9.1.8 and HNS 4, see Exercise 6.14 (b)) the morphisms
corresponding to integral extensions are always is surjective. Of course, a prime ideal q′ ∈ SpecA′

lying over a given prime ideal q ∈ SpecA is in general not unique — for example, in the picture (a)
there are two choices q′ = 〈x− a,y+ a〉 and q′′ = 〈x− a,y− a〉 for lying over q = 〈X − a〉, a ∈ C,
a 6= 0. Further, the picture shows that the ring extension A⊆ A′ satisfies the Going-up property.

(6) In contrast, in the example (b) there is no prime ideal in A′ lying over the prime ideal q =
〈X〉 ∈ K-Spec A and that the ring extension A⊆ A′ cannot be integral (since the property (2) Lying
over does not hold in the Theorem R9.1.8 ). Further, the C-algebra A′′ :=C[X ,Y ]/a′, where a′ :=
〈XY −1〉∩ 〈X ,Y 〉 is the C-coordinate ring of V ′′ :=V ′∪{(0,0)}. In this case, it is easy to see from
the picture (b) that the ring extension C[X ] = A ⊆ A′′ satisfies the lying over and incomparability
properties, however not the going-up property, since in the picture (b) the maximal ideal 〈x,y〉 of the
origin is the only prime ideal in SpecA′′ lying over q= 〈x〉, but it does not contain the given prime
ideal p′ = 〈0〉 ∈ SpecA′′ (the only prime ideal) lying over p= 〈0〉 ∈ SpecA.

(7) The example (c) is different as the fiber over the prime ideal q = 〈x〉 is the affine line VC(X)
(and hence one dimensional). Moreover, there are prime ideals p′ and q′ ∈ SpecA′ lying over a with
〈x〉= p′ ⊆ q′ = 〈x,y+a〉, a ∈C, as can be seen in the picture (c) above. Such a situation cannot occur
for integral extensions (see the incomparability property (3) in the Theorem R9.1.8) which essentially
means that the fibers of the corresponding maps have to be finite (since finite type integral maps are
finite).

R9.1.10 (G e o m e t r i c i n t e r p r e t a t i o n o f n o r m a l d o m a i n s) Let K be a field and let
K[V ] be the K-coordinate ring of an irreducible affine K-algebraic set V ⊆ Kn. Then K[V ] is an
integral domain and the elements ϕ = f/g ∈ Q(K[V ]) of the quotient field of K[V ] can be interpreted
as r a t i o n a l f u n c t i o n s o n V , i. e. as quotients of polynomial functions that are well-defined
except at some isolated points of V (where the denominator g vanishes), i. e. on VrVK(g). Therefore,
the normality condition on K[V ] is equivalent with the condition that every rational function ϕ on V
which is integral over K[V ] is well-defined on V .

We shall illustrate this geometric observation in the following two examples.
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(a) Let V =C1 be the affine line over C. Then the corresponding C-coordinate ring is C[V ] =C[X ]
is the polynomial ring over C. We already know that C[X ] is a normal domain, since it is a UFD.
However to see this geometrically : If a rational function ϕ ∈ C(X) = Q(C[V ]) on C is not well-
defined at a point a ∈C, then ϕ must have a pole at a, i. e. it is of the form ϕ(X) = f (X)/(X−a)r for
some r ∈N+ and f ∈C(X) which is well-defined and 6= 0 at a. But then ϕ can not satisfy a monic
polynomial ϕn +cn−1ϕn−1 + · · ·+c0 = 0 with c0, . . . ,cn−1 ∈C[X ], since otherwise ϕn has a pole of
order nr at a which cannot be cancelled by lower order pole of the other terms cn−1ϕn−1 + · · ·+ c0.

(b) Let V := VR(Y 2−X2−X3) ⊆ R-SpecR[X ,Y ] and A := R[V ] = R[X ,Y ]/〈Y 2−X2−X3〉 =
R[x,y], where x and y are the residue-classes modulo 〈Y 2−X2−X3〉, respectively. Then y2 = x2+x3.

-
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+
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In this case A is not normal, since the rational function ϕ = y/x∈Q(A)rA satisfies the monic equation
ϕ2−x−1 = (y2/x2)−x−1 =

(
(x2 + x3)/x2)−x−1 = 0. See also Exercise 9.19 (d). (Remark : The

reason forR[V ] not being normal is that the origin is a “singular point” of V . See also Exercise 9.20.)

R9.1.11 Theorem (G o i n g - d o w n) Let A⊆ A′ be an integral extension of integral domains and
suppose that A is normal. Suppose that p, q ∈ SpecA with p ⊆ q and that q′ ∈ SpecA′ lies over q.
Then there exists p′ ∈ SpecA′ such that p′ ⊆ q′ and that p′ lies over p.

For a proof of Going-down Theorem, use the following lemma (for p′ take any minimal prime ideal
over pA′ contained in q′) :

R9.1.12 Lemma Let A ⊆ A′ be an integral extension of integral domains and suppose that A is
normal. If p ∈ SpecA and if p′ ∈ SpecA′ is minimal over pA′, then p′∩A = p.

Proof. p′A′p′ is nilpotent modulo pA′p′ . Therefore, for x ∈ p′∩A , there exist n ∈N∗ and y ∈ A′rp′

such that z := yxn ∈ pA′. Let F = Xm +am−1Xm−1 + · · ·+a0 ∈ A[X ] be the minimal polynomial of
y (see Exercise 9.23). Then G := Xm +am−1 xnXm−1 + · · ·+a0 xmn is the minimal polynomial of z.
All its coefficients am−1 xn, . . . ,a0 xmn belong to p. This follows from z ∈ pA′ and the facts that, by
the Remark on Page 1, there exists an integral equation H(z) = zd +bd−1zd−1 + · · ·+b0 = 0 with
b0, . . . ,bd−1 ∈ p and that G divides the polynomial H = Xd +bd−1Xd−1 + · · ·+b0. Now, if x 6∈ p ,
then am−1, . . . ,a0 ∈ p and ym ∈ pA′ ⊆ q , i. e., y ∈ q , a contradiction. •

R9.1.13 Examples (W h e r e G o i n g - d o w n f a i l s) In contrast to Going-up (see R9.1.8 (3))
property the Going-down property does not hold for general integral extensions. The integral ring
extension K[X ] ↪→ K[X ,Y ]/〈Y 2−X2〉, K is a field, satisfies also the Going-down property, see R
9.1.9 (9). Consider the following two examples :

(a) Let K be a field and V :=VK(Y )∪VK(X , Y−1)⊆K2 be affine K-algebraic set with two disjoint ir-
reducible components VK(Y )= the x-axis and V(X , Y−1)={(0,1)} in K2 corresponding to the prime
ideal p :=〈Y 〉∈SpecK[X ,Y ] and the maximal ideal q′ :=m(0,1)=〈X , Y−1〉∈K-Spec K[X ,Y ], respec-
tively. The the projection morphism π = ι∗ : V → K1, (a,b) 7→ a, of K-algebraic sets corresponds
to the K-algebra homomorphism ι : A := K[K1] = K[X ] ↪→ K[X ,Y ]/〈Y 〉∩ 〈X , Y −1〉= K[V ] =: A′

which is injective and integral (since y(y−1) = 0 in A′, where y denote the residue-class of Y in A′)
and the maximal ideal q′ is the only maximal ideal lying over the maximal ideal q := 〈X〉 ∈ K-Spec A.
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Therefore the Going-down fails if we choose a chain p= 〈0〉( q in SpecA and q′ ∈ SpecA′, since
there is no prime ideal p′ ∈ SpecA′ with p′ ( q′ and which lies over p, see the picture below. In order
to avoid such situation, one need to assume that A′ is an integral domain.
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(b) Let K be a field of characteristic 6= 2, K[X ,Y,Z], K[T,Z] polynomial algebras over K, and let

ε : K[X ,Y,Z]→ K[T,Z] be the K-algebra (substitution) homomorphism defined by ε(X)=T 2−1,
ε(Y )=T (T 2−1), and ε(Z)=Z, and A :=Img ε=K[(T 2−1),T (T 2−1),Z]⊆ A′ :=K[T,Z]. Note that
the quotient field of A is Q(A) = Q(A′) = K(T,Z) (since T−1=ε(X)/ε(Y )∈Q(A) and the K-alge-
bra A′ is integral over A (since T 2 ∈ A and Z ∈ A, A′ is generated by integral elements T and Z).
Moreover, A′ is the normalization of A ∼←−

(
K[X ,Y ]/〈Y 2−X2(X +1)〉

)
[Z] = K[V ][Z], where K[V ]

is the K-coordinate ring of the affine plane curve (over K) V := VK(Y 2−X2(X +1))⊆K2. Moreover,
the K-algebra A is the affine K-coordinate ring K[V ×K1] of the affine surface (over K) V ×K1 ⊆ K3

and the injective integral K-algebra homomorphism ι : A→ A′ corresponds to the morphism

π = ι∗ : K-Spec A′ = K2 −→V ×K1, (t,z) 7−→ (t2−1 , t3− t , z),

of affine K-algebraic sets, see R8.1.1 (h). In fact, this is a 2-dimensional version (base change) of
the situation of Example 9.19 (d) (see also R9.1.10 (b)). Although both affine K-algebraic sets are
irreducible, the singular locus of the base space V ×K1 makes the Going-down property fails :

(b.1) Note that p:=〈(T 2−1)−(Z2−1),T (T 2−1)−Z(Z2−1)〉∈SpecA, since A/p ∼−→K[T,Z]/〈T−Z〉
and p ′ := 〈T−Z〉∈SpecA′ is the only prime ideal in A′ which lies over p (proof ?), i. e. p= A∩p ′.
Moreover, p ′ 6∈ Spm A′, since p 6∈ Spm A. Furthermore, pA′ ⊆ q ′ := 〈T−1,Z+1〉∈K-Spec A′ and
hence p( q ∈ Spm A, and p ′ 6⊆ q ′ (since the characteristic of K is 6= 2).

(b.2) With the prime ideals p∈SpecA and q ′ ∈SpecA′ as defined in (b.1), it follows that for the
choice of the chain p( q :=q ′∩A and q ′∈K-Spec A′, there is no prime ideal SpecA′ which lies over
p and is contained in q ′.

(b.3) Geometric interpretation (for the failure of Going-down for ι : A→ A′) : With the notations as
in (b.1), the prime ideal p ′ ∈ SpecA′rSpm A′ corresponds to the irreducible affine plane curve — the
diagonal VK(T −Z) = ∆ := ∆K 2 := {(t, t) | t ∈ K} ⊆ K 2

and the prime ideal p ∈ SpecA corresponds to the irreducible affine space curve (on the affine surface
V ×K1) — the image C := π(∆) = {(t2−1 , t3− t , t) ∈ K3 | t ∈ K} ⊆V ×K1.

However, the inverse image π−1(C)=∆∪{(1,−1),(−1,1)}, where the point (1,−1) corresponds
to the maximal ideal q ′ ∈K-Spec A′, and the additional points (1,−1), (−1,1) do not lie in any
irreducible affine K-algebraic subset C ′ ⊆ K 2 with π(C ′)=C (prove!). Therefore the Going-down

D. P. Patil/IISc 2020MA-MA312-ca-ex09-revised.tex July 5, 2020 ; 6:07 p.m. 6/21



Exercise Set 9 MA 312 Commutative Algebra / Jan–April 2020 Page 7

fails for ι : A→ A′. The source of the additional points (1,−1) and (−1,1) can be explained as
follows :

(b.4) The affine curve C on V ×K1 passes twice through the singular locus of V ×K1 — the affine
line {(0,0)}×K1 ⊆V ×K1. Since every point of this singular locus has two preimages in K 2, the
two points of C on the singular locus have four preimages in K 2. The two of these preimages lie in
the diagonal ∆K 2 , and the other two points are the additional points (1,−1) and (−1,1).
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9.1 (a) Let ϕ i : A→ Ai, i = 1, . . . ,n be finite (resp. integral) ring homomorphisms. Then
the ring homomorphism A→∏

n
i=1 Ai, , a 7→ (ϕi(a))i∈{1,...,n} is also finite (resp. integral).

(b) Let Ai ⊆ A′i be ring extensions, xi ∈ A′i , 1≤ i≤ n, and x = (x1, . . . ,xn) ∈∏
n
i=1 A′i. Then

x is integral over ∏
n
i=1 Ai if and only xi is integral over Ai for all i = 1, . . . ,n. Further,

∏
n
i=1 Ai is integrally closed in ∏

n
i=1 A′i if and only if Ai is integrally closed in A′i for all

i = 1, . . . ,n,

9.2 Let A⊆ B be a ring extension.

(a) Let r1, . . . ,rn be positive integers and X1, . . . ,Xn be indeterminates. If B is integral over
A, then B[X1, . . . ,Xn] is integral over A[X r1

1 , . . . ,X rn
n ].

(b) Let f = f (X) ∈ A[X ] be a monic polynomial of positive degree. If B is integral over A,
then B[X ] is integral over A[ f ].

9.3 Let A⊆ B be an extension of rings and let x ∈ B×. Show that
(a) x is integral over A if and only if x ∈ A[x−1]. (Hint : Note that (multiplying by x−n+1

and conversely by xn−1) xn +a1xn−1 + · · ·+an = 0, for some a1, . . . ,an ∈ A, n ≥ 1, if and only if
x =−a1−a2x−·· ·−anx−n+1 ∈ A[x−1].)

(b) A[x]∩A[x−1] is integral over A.
(Hint : If y = a0 + · · ·+anxn = b0 + · · ·+bmx−m where m,n ∈N+, a0, . . . ,an,b0, . . . ,bm ∈ A. The
A- submodule of B generated by 1,x, . . . ,xm+n+1 is a faithful A[y]-module.)

(c) If B is integral over A, then B×∩A = A× and x−1 ∈ A[x] for all x ∈ B×.

9.4 Let A ⊆ B be a ring extension. If BrA is multiplicatively closed in B, then A is
integrally closed in B. (Hint : Let x ∈ BrA. If x integral over A with an integral equation
xn + a1xn−1 + · · ·+ an−1x+ an over A with minimal n ∈ N. Then n > 1, since x 6∈ A. Further,
y := xn−1 + a1xn−2 + · · ·+ an−1 6∈ A, otherwise xn−1 + a1xn−2 + · · ·+ (an−1 − y) = 0 will be an
integral equation of degree n−1, a contradiction to the minimality of n. But xy =−an ∈ A. Therefore
BrA is not closed under multiplication. a contradiction.)
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9.5 (a) In the matrix ring M2(Q) give two elements which are integral over Z, but neither
their sum nor their product are integral over Z. (Hint : Consider the unipotent matrices E2 +N,
where E2 is the identity matrix and N is a nilpotent matrix.)

(b) Let K be a field and let A := K[Y kXk+1 | k ∈N] be the K-subalgebra of the polynomial
algebra K[X ,Y ] generated by monomials Y kXk+1, k ∈N. Show that A[XY ] is contained in a
finitely generated A-module, but XY is not integral over A . (Note that A is not noetherian!)

9.6 Let A := Z[X ]/〈2X − 1〉 be the residue class Z-algebra of the polynomial algebra
Z[X ] by the ideal generated by 2X−1 and let ϕ :Z ↪→Z[X ]

π−→ A be the canonical ring
homomorphism.
(a) Is A a finite algebra over Z? Is A integral over Z?
(b) Describe the fibres of the map Spec ϕ : SpecA−→ SpecZ .

9.7 We say that an integral domain A with quotient field K is a v a l u a t i o n r i n g of K
if for every x ∈ K, x 6= 0 if either x ∈ A or x−1 ∈ A. Show that every valuation ring A is a
normal domain.

9.8 Let A⊆ B be an integral extension of rings. Show that :

(a) Let m ∈ Spm A be a maximal ideal in A and let Sm := Arm. Then the natural map
B/mB→ S−1

m (B/mB) is an isomorphism. (Hint : Show that the image of each s ∈ Sm in B/mB
does not belong to M for every M ∈ Spm B/mB and hence is a unit in B/mB.)

(b) mA=mB∩A, where mA and mB denote the Jacobson-radical of A and B, respectively.

9.9 Let ϕ : A→ B be an injective integral homomorphism of integral domains and let
ψ : B→C be a ring homomorphism. Show that ψ is injective if and only if ψϕ is injective.

9.10 Let A be an integral domain and p be a non-maximal prime ideal in A. Show that Ap

can not be integral over A.

9.11 Let ϕ : A→ B be a ring homomorphism and let ϕ∗ : SpecB−→ SpecA be the map
associated to ϕ on spectra.

(a) If ϕ is integral over A, then the map ϕ∗ is closed. See also Exercise 9.32 (b).

(b) The following conditions are equivalent :
(i) B is integral over A.
(ii) For every y ∈ B, the element 1/y is a unit in ϕ(A)[1/y]⊆ B[1/y] := By.
(iii) The map SpecB[X ]→ SpecA[X ] is closed.
(Hint : For a proof of (iii)⇒ (ii) consider the following commutative diagrams :

A[X ]

εA ,1/y

��

ϕ[X ] // B[X ]

εB ,1/y

��
ϕ(A)[X ]/〈yX−1〉= ϕ(A)[1/y]

ϕ ′ // B[1/y] = B[X ]/〈yX−1〉

SpecB[X ]
ϕ[X ]∗ // SpecA[X ]

SpecB[1/y]

ε∗1/y

OO

ϕ ′∗ // Specϕ(A)[1/y] ,

ε∗A ,1/y

OO
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where εA ,1/y : A[X ]→ ϕ(A)[1/y], F 7→ ϕ(A)(F)(1/y) (resp. εB ,1/y : B[X ]→ B[1/y], G 7→G(1/y)) is
the substitution A-algebra (resp. B-algebra homomorphism) and ϕ ′ : A′ := ϕ(A)[1/y]→ B[1/y] = By,
is the canonical ring homomorphism induced by ϕ . Note that, since εA ,1/y, εB ,1/y are surjective and
ϕ ′ is injective. Therefore the maps ε∗A ,1/y, ε∗B ,1/y are homeomorphism onto the closed subsets, see
Exercise 8.25 (a) and hence, since ϕ ′ is injective, ϕ ′∗ is surjective see Exercise 8.25 (b). This proves
that {p′ ∈ Specϕ(A)[1/y] | 1/y ∈ p′}= ϕ ′∗

(
{q ∈ SpecBy | 1/y ∈ q}

)
= ϕ ′∗( /0) = /0, since y ∈ B, and

hence 1/y is a unit in ϕ(A)[1/y].

Remark : It follows from this Exercise that : Integral morphisms of affine schemes is even an
universally closed map.)
9.12 (a) Let K be an algebraically closed field and let ϕ : A→ B be an integral K-algebra
homomorphism of K-algebras of finite type. Then ϕ∗(K-Spec B) = VK(Kerϕ). (Hint : It
is enough to prove the inclusion VK(Kerϕ)⊆ ϕ∗(K-Spec B). To prove this, replacing A by A/Kerϕ ,
we may assume that ϕ is injective. Then, since ϕ is injective and integral, for every ξ ∈ K-Spec A the
maximal ideal mξ , there exists a maximal ideal n ∈ Spm B lying over mξ , i. e. mξ = ϕ∗(n). Now by
Hilbert’s Nullstellensatz (HNS 3) (see R8.1.3 (b)) n ∈ K-Spec B.)

(b) Let K be an algebraically closed field. Let ϕ : A→ B be an integral K-algebra homo-
morphism of K-algebras of finite type. Then the map ϕ∗ : K-Spec B→K-Spec A associated
to ϕ on K-spectra is closed. (Hint : Use part (a).)
(c) If K is not algebraically closed, then give an example to show that the assertion in
(b) is not true. (Hint : For example, for the natural inclusion ι :R[X ]→R[X ,Y ]/〈Y 2−X〉, the
image ι∗(R-SpecR[X ,Y ]/〈Y 2−X〉)={a ∈R | a≥ 0} is not closed in the R-Zariski topology of
R-SpecR[X ].

R

R

R

R

[

[

]

]

,Spec

Spec

X

X

XY2-
-

-
-- -Y-

-

6( )

↓ι*
x

y

.)

9.13 Let A⊆ A′ be an integral extension of rings and let p ∈ SpecA. Suppose that there is
only one prime ideal p′ ∈ SpecA′ lying over p. Show that :

(a) p′A′p is the only maximal ideal of A′p, i. e. the ring A′p is local.

(b) A′p′ = A′p. (Hint : Check that the pair (A′p, ιp : A′ → A′p) satisfies the universal property of
(A′p′ , ιp′ : A′→ A′p′). For this, let ψ : A′→ B be a ring homomorphism with ψ(A′rp′)⊆ B×. Then,
since A′p is a local ring with the unique maximal ideal p′A′p by the part (a), A′prp′A′p = (A′p)

× and
hence ιp(A′rp′)(A′p)

× too. Now, since (Arp) ⊆ (A′rp′), ψ(Arp) ⊆ ψ(A′rp′) ⊆ B×, it follows
that ψ factors uniquely through A′p, i. e. there exists a unique ring homomorphism ψp : A′p 99K B
such that the diagram

A′ A′p

B

ιp

ψ
ψp

is commutative, i. e. ψ = ψp ιp.)

(c) A′p′ is integral over Ap. (Remark : Moreover, the converse of (c) holds i. e. if p′ ∈ SpecA′

and p′∩A = p, and if A′p′ is integral over Ap, then p′ is the only prime ideal in A′ lying over p. Proof
is similar to that of Exercise 9.14 (a).)
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9.14 (a) Let A ⊆ A′ be an integral extension of integral domains, p ∈ SpecA and let p′,
q′ ∈ SpecA′ be two distinct prime ideals in A′ lying over p. Show that A′p′ is not integral
over Ap .

(b) Let K be a field, X an indeterminate, A′ :=K[X ], Y :=X2, and A :=K[Y ]. Further, let
p := 〈Y−1〉 and p′ := 〈X−1〉 be the ideals in A and A′ generated by Y−1 and X−1,
respectively. Then A⊆ A′ is integral extension of integral domains. Is A′p′ integral over Ap?

(c) Let A′ := R[X ], A := R[X2−1], p′ := 〈X −1〉 ∈ SpecA′, and p := p′∩A. Then A′ is
integral over A, but the localization A′p′ is not integral extension of Ap. Is this a counter
example for R9.1.5 (b)? (Hint : Consider the element 1/(X +1) ∈ A′p′ .)

9.15 Let A ⊆ B be a ring extension. Suppose that B is noetherian and for each minimal
prime ideal q ∈Min SpecB, the ring extension A/q∩A⊆ B/q is integral. Show that B is
integral over A. (Hint : Note that since B is noetherian the set Min (SpecB,⊆) is finite. For x ∈ B,
consider the subset S := {F(x) | F ∈ A[X ] is monic} and show that S is multiplicatively closed in B
and that 0 ∈ S.)

9.16 Let A be an integral domain with the quotient field K.

(a) Let L |K be a finite field extension of K and let AL be the integral closure of A in L.
Then the field L is the quotient field of AL. (Hint : In fact, every element x ∈ L can be expressed
as a fraction b/a with b ∈ AL and a ∈ A, a 6= 0.)

(b) Let A ⊆ B be integral domains with quotient fields K and L respectively. Suppose
that B is an A-algebra of finite type and L |K is a finite (field) extension. Then show that
there exists f ∈ A such that B f is a finite A f -module. (Hint : Suppose that B = A[x1, . . . ,xn]
with xi ∈ B, i = 1, . . . ,n. Use the part (a) to write xi = bi/ai, bi ∈ B integral over A, ai ∈ A, ai 6= 0,
i = 1, . . . ,n. Then for f := ∏

n
i=1 ai, prove that A f ⊆ B f = A f [x1, . . . ,xn] is an integral extension.)

9.17 Let A⊆A′ be an integral extension of rings and let ρ : A→Ω be a ring homomorphism
from A into an algebraically closed field Ω. Then ρ extends to a ring homomorphism
ρ ′ : A′ → Ω. (Hint : Algebraic field extension case : Suppose that A′ |A is an algebraic field
extension K |k. By Zorn’s Lemma to the set S := {(E,η) | L is a subfield with k⊆E ⊆K and η |K =

ρ } with the order defined by (E,η) ≤ (E ′,η ′) if E ⊆ E ′ and η ′|E = η , there exists a maximal
extension η0 : E0 → Ω. To prove E0 = K, consider x ∈ K and the substitution homomorphism
εx : E[X ]→ E[x] ⊆ K, X 7→ x ; since x is algebraic over E, its kernel Kerεx = 〈µx ,E〉 6= 0 is the
principal ideal generated by the minimal polynomial µ := µx ,E of x over E. Further, since Ω is
algebraically closed, the polynomial η0(µ) ∈ Ω[X ] has a zero y ∈ Ω. Note that the kernel of the
substitution homomorphism εy : E[X ]→ E[y] ⊆ Ω is 〈µ〉 and hence ε induce a homomorphism
η ′ : E ′ := E[y]→ Ω which extends η0. In particular, (E0,η0) ≤ (E ′,η ′) and hence x ∈ E0 by the
maximality of (E0,η0). This proves that E0 = K and η0 : K→Ω is the desired extension of ρ .
General case : Since p := Kerρ ∈ SpecA, ρ(s) 6= 0 in the field Ω and so ρ(s) ∈ Ω× for every
s∈Arp. Therefore there exists a homomorphism ξ : Ap→Ω with pAp⊆Kerξ . Put κ(p) :=Ap/pAp.
Then κ(p) is a field and ξ factors through a homomorphism ξ : κ(p)→ Ω. Moreover, Ap → A′p
is injective and A′p is integral over Ap. Therefore (by R 9.1.8 (1) and (3)) there exists a maximal
ideal M′ ∈ Spm A′p lying over pAp. Finally, K := A′p/M

′ is a field which is an (integral=) algebraic
extension of κ(p) and hence ξ ′ extends to a homomorphism η : K → Ω by the algebraic field

extension case. Now, the composition ρ ′ : A′→ A′p
πM′−→ K

η−→Ω is the desired extension of ρ .)

9.18 ( N o r m a l i z a t i o n ) Let A be a ring and let Q := Q(A) be its total quotient ring.
Then the integral closure A of A in Q is called the n o r m a l i z a t i o n of A. An integral
domain A is called n o r m a l if A = A. The normalization of an integral domain A is the
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smallest subring of its quotient field Q(A) = K which is normal and contains A.
For example : Every factorial domain A is normal. In particular, polynomial rings over
Z or a K are normal. For the proof note that if x = a/b ∈ Q(A) with gcd(a,b) = 1 and
x is a zero of a polynomial anXn + · · ·+ a0 ∈ A[X ] then a divides a0 and b divides an.
More generally, bX − a is a generator of the kernel of the subsitution homomorphism
ε : A[X ]→ Q(A), X 7→ a/b.

9.19 (a) (M o n o i d a l g e b r a s a n d t h e i r n o r m a l i z a t i o n) Let M be a n u m e r -
i c a l m o n o i d, i. e., M is a submonoid ofN= (N,+) such thatN\M is finite. Let A =
K[M] := {∑m∈M amT m ∈ K[T ]} ⊆ K[T ] be the monoid algebra of M over a field K. Then
the polynomial algebra K[T ] is finite over K[M] , indeed, Dim KK[T ]/K[M] = card(NrM),
and so K[T ] is integral over K[M]. Since T belongs to the quotient field of K[M] and K[T ]
is normal, K[T ] is the normalization of K[M] . The K-algebra K[M] is called the coordinate
algebra of the m o n o m i a l c u r v e over K defined by M. (See the Exercise 9.20.)
(b) Let K be a field and let A be a normal K-subalgebra of K[T ] , A 6= K. Then A is
a polynomial algebra K[ f ] for some f ∈ A. (Note that f is necessarily a non-constant
polynomial in A of least degree.)
As a consequence we get : Let A be a K-subalgebra of K[T ] , A 6= K. Then the normalization
A of A is a polynomial algebra K[ f ] for some non-constant polynomial f ∈ K[T ] . (Note
that every K-subalgebra of K[T ] is a K-algebra of finite type.)
(Hint : For a proof, let µT = Xn + fn−1Xn−1 + · · ·+ f0 ∈ Q(A)[X ] be the minimal polynomial
of T over Q(A). By the Exercise 9.23, the coefficients f0, . . . , fn−1 ∈ A. But every non-constant
coefficient f of µT generates the field Q(A) over K (see the proof of L ü r o t h ’ s t h e o r e m in
the Supplement S 9.1.4). Then K[ f ]⊆ A⊆ Q(A) = K( f ) and K[ f ] = A, since K[T ] and hence A is
integral over K[ f ] and K[ f ] is normal.)

(c) In general a K-algebra A of finite type is called r a t i o n a l if it is an integral domain
and if the quotient field Q(A) of A is K-isomorphic to a rational function field K(T1, . . . ,Tm)
in m variables T1, . . . ,Tm. The integer m is nothing but the transcendence degree of the field
extension K ⊆ Q(A). By Lüroth’s theorem (Supplement S 9.1.4), any K-subalgebra A of
K(T ), A 6= K, of finite type is rational with m = 1.

(d) Consider the K-algebra (substitution) homomorphism ε : K[X ,Y ]→ K[T ] defined by
x :=ε(X)=T 2−1 and y :=ε(Y )=T (T 2−1) and the K-subalgebra A := Imgε of K[T ]. Th-
en the polynomial algebra K[T ] is the normalization of A ∼←− K[X ,Y ]/

(
Y 2−X2(X +1)

)
.

(Hint : Obviously, if f ∈K[X ,Y ] with f 6= 0 and if degY f ≤ 1, i. e. f = f0+ f1Y , f0, f1 ∈K[X ], then
f 6∈ Kerε , since ε( f ) = f (ε(X),ε(Y )) = f0(T 2−1)+ f1(T 2−1)T (T 2−1) 6= 0. Therefore Kerε is
the principal ideal generated by Y 2−X2−X3. Note that T = y/x ∈ Q(A) the quotient field of A and
that A is a normal domain, see details in R9.1.10 (b).)

9.20 ( A f f i n e m o n o m i a l c u r v e s ) Let K be an infinite field and let m1, . . . ,mn
be positive integers with gcd(m1, . . . ,mn) = 1. Let γ : K → Kn be the curve defined by
t 7→ (tm1 , . . . , tmn).
(a) Show that γ is injective and the image Imggamma is an affine K-algebraic set. This is
called the a f f i n e m o n o m i a l c u r v e defined (over K) by the sequence m1, . . . ,mn. The
defining ideal IK(Imgγ) is the kernel Kerε of the K-algebra (substitution) homomorphism
ε : K[X1, . . . ,Xn]→ K[T ] defined by Xi 7→ T mi , i = 1, . . . ,n, and so the coordinate K-
algebra of Imgγ is Aγ := K[X1, . . . ,Xn]/Ker ε ∼−→ K[T m1 , . . . ,T mn ] = K[M]⊆ K[T ], where
M =Nm1 + · · ·+Nmn is the numerical monoid generated by the elements m1, . . . ,mn.
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(b) The quotient field of Aγ is the rational function field K(T ). (This means, by definition,
affine monomial curves are rational curves.) K[T ] is the normalization of Aγ , i. e. K[T ] is
the integral closure of Aγ in K(T ). Again by definition, the affine line K = K-Spec K[T ] is
the normalization of the curve Imgγ (and γ : K→ Im γ is the normalization map).

(c) There exists a K-algebra isomorphism Aγ ' K[T ] if and only if mi = 1 for some i. In
this case find a (minimal) set of generators for the ideal IK(Imgγ).

(d) If n = 2 then the ideal IK(Imgγ) is generated by Xm2
1 −Xm1

2 .

(e) Let n = 3 and m1 := 2m,m2 := 2m+1,m3 := 2m+2, m∈N∗. Then the ideal IK(Imgγ)
is generated by two binomials. (Hint : X2

2 −X1X3 and Xm
3 −Xm+1

1 generate IK(Imgγ).)

(f) Let n = 3 and m1 := 2m+ 1,m2 := 2m+ 2,m3 := 2m+ 3, m ∈ N∗. Then the ideal
IK(Imgγ) is generated by three binomials and can not be generated by two polynomials.
(Hint : X2

2 −X1X3 , Xm+2
1 −X2Xm

3 and Xm+1
3 −Xm+1

1 X2 generate IK(Imgγ). — Remark : If Kerε

is generated by n− 1 polynomials then we say that the curve Imgγ is an ( i d e a l - t h e o r e t i c )
c o m p l e t e i n t e r s e c t i o n. In this case IK(Imgγ) is generated by n−1 binomials. If there exist
n−1 polynomials F1, . . . ,Fn−1 ∈ K[X1, . . . ,Xn] such that a=

√
(F1, . . . ,Fn−1), then we say that the

curve Imgγ is a s e t - t h e o r e t i c c o m p l e t e i n t e r s e c t i o n. In 1970 J. Herzog has proved that
the ideal IK(Imgγ) of an affine monomial space curve (n = 3) is always generated by three binomials
and using the explicit form of these generators, he proved that affine monomial space curves are
set-theoretic complete intersections. (In the Example (f) try to find two polynomials F and G such
that IK(Imgγ) =

√
(F,G).) For general n this is still an open question.)

9.21 Let A be an integral domain with quotient field K.

(a) (L o c a l i z a t i o n a n d N o r m a l i z a t i o n c o m m u t e) Let S⊆ Ar{0} be a mul-
tiplicatively closed subset. Then the localization of the normalization S−1A is equal to the
normalization of the localization S−1A.

(b) (N o r m a l i t y a l o c a l p r o p e r t y) The following statements are equivalent :
(i) A is normal. (ii) Ap is normal for every prime ideal p ∈ SpecA. (iii) Am is normal
for every maximal m ∈ Spm A. (Remark : An arbitrary ring A is said to be n o r m a l if Ap is
a normal domain for every p ∈ SpecA. If A is an integral domain, then this definition is equivalent
to the earlier one by part (a). Furthermore, for a ring A with finitely many minimal primes ideals
p1, . . . ,pr ∈ SpecA (for example, if A is noetherian) and the total quotient ring Q(A), the following
statements are equivalent : (i) A is normal. (ii) A is reduced and integrally closed in Q(A).
(iii) A is a finite product of normal domains A1, . . . ,Ar. Moreover, in this case, there exists a
permutation σ ∈Sr such that Ai

∼−→ A/pσ(i) for every i = 1, . . . ,r.)

9.22 Let A⊆ A′ be an extension of rings, A[X ] be the polynomial ring in one indeterminate
X over A and let f ∈ A[X ] be a monic polynomial. Then :

(a) There exists a ring extension A′′ of A such that f splits into linear factors in A′′[X ], i. e.
f (X) = ∏

d
i=1 (X − xi) with x1, . . . ,xd ∈ A′′. Moreover, A′′ is a free A-module of rank d!,

where d := deg f .

(b) Suppose that f = gh with g,h ∈ A′[X ] and g is monic. Then h is monic and the
coefficients of g and h are integral over A.

9.23 Let A be an integral domain with quotient field K, A the integral closure of A in K,
L |K be a field extension and let x ∈ L. Show that the following statements are equivalent :
(i) x is integral over A. (ii) x is algebraic over K and the minimal polynomial (of x over K)
µx ,K ∈ A[X ].
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In particular, if A is normal and if x∈ L is integral over A, then µx ,K ∈ A[X ] and µx ,K(x) = 0
is an integral equation of x over A. Furthermore, if the field extension L |K is finite, then
the above equivalent statements (i) and (ii) are further equivalent to the statement :
(iii) χx ,L |K ∈ A[X ], where χx ,L |K denote the characteristic polynomial of the K-linear map
λx : L→ L, y 7→ xy. For a proof note that V(χx ,L |K) = V(µx ,K).

9.24 Let A be a reduced ring with finitely many minimal prime ideals p1, . . . ,pr (for
example, if A is noetherian) and let S0 = Ar

⋃r
i=1 pi (the set of all non-zerodivisors in A,

see Exercise 8.8). Then there is a canonical isomorphism Q(A) = S−1
0 A ∼−→∏

r
i=1 Q(A/pi).

Let A be the integral closure of A in its total quotient ring Q(A). Show that there is a
canonical isomorphism : A ∼−−−−→∏

r
i=1 A i, where A i is the integral closure of A/pi in its

total quotien ring Q(A/pi), i = 1, . . . ,r. (Hint : If e ∈ A is an idempotent element in any ring,
then e2− e = 0 is an integral equation for e over any subring of A.)

9.25 (C o n d u c t o r) Let A⊆ B be a ring extension and let cB |A := {c ∈ A | cB⊆ A}=
AnnA(B/A) is the so-called c o n d u c t o r o f B o v e r A. The c o n d u c t o r o f A is
the ideal cA = cA |A, where A is the integral closure of A in its total quotient ring Q(A).
Show that :

(a) cB |A is the largest ideal in A which is also an ideal in B. If cB |A contains a non-
zerodivisor in A, then B ⊆ Aa−1 can be embedded in the total quotient ring Q(A) of A.
Furthermore, if A is noetherian, then B is finite over A.

(b) If p∈ SpecArV(cB |A), then Ap = Bp. Moreover, if B is finite over A, then the converse
holds, i. e. if Ap = Bp, then p ∈ SpecArV(cB |A).

(c) Suppose that A is an integral domain with quotient field K, B = A is the integral closure
of A in K and B is finite over A (all these assumptions are satisfied if A is a k-algebra of
finite type over an arbitrary field). Then cB |A 6= 0 and for p ∈ SpecA, Ap is integrally closed
if and only if p 6∈ V(cB |A). In particular, the subset {p ∈ SpecA | Ap is integrally closed}
if open and dense in SpecA.

9.26 (C o n d u c t o r o f M o n o i d A l g e b r a) Let m1, . . . ,mn be positive integers with
gcd(m1, . . . ,mn) = 1 and let M be the submonoid of N= (N,+) generated by m1, . . . ,mn.
For a field K, the normalization of the affine monomial curve X :=SpecA, where A :=
K[T m1 , . . . ,T mn ] = k[M] =⊕m∈MKT m, is the affine line A1

K = SpecK[T ], (see the Exer-
cise 9.19). The conductor cA=Ann K[M] K[T ]/K[M] is the ideal T f k[T ], where f is the least
non-negative integer with f +N⊆M. This integer f = fM is also called the c o n d u c t o r
of M and g=gM := f −1 /∈M is called the F r o b e n i u s n u m b e r of M. The (vector
space) dimension Dim K K[T ]/K[M]=Card(NrM) is the number of gaps and is called
the d e g r e e o f s i n g u l a r i t y δ =δA=δM of A (or of M). If m ∈M, 0≤ m < f , then
f − 1−m = g−m /∈ M and hence 2δM ≥ fM . If M 6= N, then the origin 0 ∈ X is the
only non-normal (= singular) point of the curve X . For the simplest case n = 2, one has
fM =(m1− 1)(m2− 1) and δM = fM/2 = (m1− 1)(m2− 1)/2 which was first proved by
Sylvester. (Hint : If m1 < m2, then show that δM =δM ′ +

(m1
2
)

where M ′=Nm1 +N(m2−m1). —
In general, if fM = 2δM , then the monoid M is called s y m m e t r i c or G o r e n s t e i n. This is the
case if and only if the local ring Am0 , m0 = AT m1 + · · ·+AT mn , in the origin 0 ∈ X is Gorenstein.)

9.27 Let K be a field of characteristic 6= 2 and let 2K× := {x2 | x ∈ K×}be the group
of non-zero squares Then the residue-class group K×/2K× is called the q u a d r a t i c
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r e s i d u e - c l a s s g r o u p of K. (Every element of K×/2K× has the self inverse and hence
K×/2K× is a vector space over F2.)

(a) Let D ∈ K×r2K×, K[
√

D] := K[X ]/(X2 −D) ,
√

D := x = the residue class of X .
Show that K[

√
D] is a quadratic field extension of K and the map K[

√
D] 7−→ D ·2K×

induces a bijective map on the set {[L] | L |K is quadratic field extension of K } of K-algebra
isomorphism classes of the quadratic field extensions of K onto the set of non-trivial
elements of K×/2K×.

(b) Let K be the quotient field of the factorial domain A and let P(A) be a complete
representative system for the associative classes of the prime elements of A. Show that :

K×/2K× ∼−−−−→
(
A×/2A×Q

)
×F(P(A))2 .

(c) For the following fields K give a (canonical) representative system for the isomorphism
classes of the quadratic field extensions of K :
(i) K is a finite field of characteristic 6= 2. (ii) K =R or K = C. (iii) K =Q.
(iv) K=k(X) (resp. K=k((X))) the rational function field (resp. the field of formal Laurent
series) in one variable over a field k of Chark 6= 2.
(v) K =Qp the field of p-adic numbers.

9.28 (Q u a d r a t i c e x t e n s i o n s o f p o l y n o m i a l s r i n g s) Let K be a field,
K[X1, . . . ,Xn] the polynomial ring in n indeterminates X1, . . . ,Xn] over K of characteris-
tic 6= 2 and let f ∈ K[X1, . . . ,Xn] be a polynomial which is not a square in K[X1, . . . ,Xn].
Show that A := K[X1, . . . ,Xn,Y ]/〈 f 〉 (with Y a further indeterminate) is normal if and only
if f is square-free in K[X1, . . . ,Xn].

9.29 Let K be the quotient field of the factorial domain A with 2 ∈ A× and let P(A) be
a complete representative system for the associative classes of the prime elements of A.
Further, let D = επ

ν1
1 · · ·πνr

r ∈ A with ε ∈ A× and π1, . . . ,πr ∈ P(A) are pairwise distinct,
ν1, . . . ,νr ≥ 1, be a non-square element in A and L := K[

√
D] = K[X ]/〈X2−D〉. Then L is

a quadratic extension of K.

(a) An element y = a+b
√

D ∈ L , a,b ∈ K, is integral over A if and only if a ∈ A and b is
fo the form b′/π

µ1
1 · · ·π

µr
r with b′ ∈ A and µ1 ≤ ν1/2, . . . ,µr ≤ νr/2.

(b) A[
√

D]=A[X ]/〈X2−D〉 is normal if and only if ν1= · · ·=νr=1 (i. e. D is square-free).
(Remark : The assertion (a) and (b) are also true if A is noetherian and normal with 2 ∈ A×.)

9.30 Let A be a normal domain with quotient field K.

(a) The polynomial ring A[X ] in one indeterminate X over A is also normal.

(b) Suppose that A is noetherian and L |K is a finite separable field extension. Then the
integral closure AL of A in L is a finite A-algebra. In particular, if A is noetherian, then
AL is a finite A-module. (Hint : Since L |K is finite separable, the trace form TrL |K : L×L→ K,
(x,y) 7→ Tr(xy) is a non-degenerate bilinear form. Use this to show that there is a K-basis y1, . . . ,yd
of L such that AL ⊆ Ay1 + · · ·+Ayd .)

9.31 Let A be a normal domain.
(a) Let X be an indeterminate over A and let A[X ]⊆ B be an integral extension. For every
m ∈ Spm B, show that there exists q ∈ SpecB with q(m and q∩A =m∩A.

D. P. Patil/IISc 2020MA-MA312-ca-ex09-revised.tex July 5, 2020 ; 6:07 p.m. 14/21



Exercise Set 9 MA 312 Commutative Algebra / Jan–April 2020 Page 15

(b) Let B be an A-algebra the structure homomorphism ϕ : A→ B. Suppose that B is a
cyclic A-algebra generated by x ∈ B, i. e. B = A[x], B an integral domain and ϕ is integral
over A. Show that B is a free A-module of finite rank.

9.32 Let X1, . . . ,Xn−1,Xn be indeterminates, A := C[X1, . . . ,Xn−1], F := F(Xn) ∈ A[Xn] be
a monic polynomial over A and let ϕ : A→ A[Xn]/〈F〉 =: B be the canonical ring homo-
morphism. Further, let a := (a1, . . . ,an) ∈ Cn, Ma := 〈X1−a1, . . . ,Xn−an〉 ∈ Spm A[Xn]
with F(a1, . . . ,an) = 0 and let Ma ∈ Spm B denote the image of Ma in B. Show that
m :=Ma∩A ∈ Spm A is a maximal ideal in A and that the canonical ring homomorphism
C= A/m−→ BMa

/mBMa
is an isomorphism if and only if ∂F/∂Xn(a1, . . . ,an) 6= 0.

9.33 Let ϕ : A→ A′ be a ring homomorphism and let ϕ∗ : SpecA′ −→ SpecA be the map
associated to ϕ on spectra.

(a) Consider the following three statements :

(i) ϕ∗ : SpecA′→ SpecA is a closed map, i. e. it maps closed sets to closed sets.

(ii) The map ϕ has the G o i n g - u p p r o p e r t y, i. e. for prime ideals p′ ∈ SpecA′ and
p∈ SpecA with ϕ−1(q′)⊆ p, there exists a prime p′ ∈ SpecA′ with ϕ−1(p′) = p and q′ ⊆ p′.

(iii) For a prime ideal q′ ∈ SpecA′ with q := ϕ−1(q′) ∈ SpecA and ϕ : A/q→ A′/q′ is
the natural ring homomorphism induced by ϕ , the map ϕ

∗ : (SpecA′/q′)−→ Spec(A/q)
associated to ϕ is surjective.
Prove that (i)⇒ (ii)⇐⇒ (iii). See also the part (b) below.
(Hint : Note that (ii)⇐⇒ ϕ∗ (V(q′)) =V

(
ϕ−1(q′)

)
⇐⇒ (iii), since the residue-class map πa :

A→ A/q induces induces a homeomorphism π∗q : Spec(A/q) ∼−→ V(q) ↪→ SpecA. Further, since
ϕ∗ (V(q′)) = V

(
ϕ−1(q′)

)
by the Exercise 8.22 (a.2), the implication (iii)⇒ (i) is immediate.)

(b) Suppose that SpecA′ is a noetherian space. Prove that ϕ∗ : SpecA′→ SpecA is a closed
map if and only if ϕ has the Going-up property.

9.34 Let ϕ : A→ A′ be a ring homomorphism and let ϕ∗ : SpecA′ −→ SpecA be the map
associated to ϕ on spectra.

(a) Consider the following three statements :

(i) ϕ∗ : SpecA′→ SpecA is an open map, i. e. it maps open sets to open sets.

(ii) The map ϕ has the G o i n g - d o w n p r o p e r t y, i. e. for prime ideals q′ ∈ SpecA′

and p ∈ SpecA with p⊆ ϕ−1(q′), there exists a prime p′ ∈ SpecA′ with ϕ−1(p′) = p and
p′ ⊆ q′.

(iii) For a prime ideal q′ ∈ SpecA′ with q := ϕ−1(q′) ∈ SpecA and the natural ring homo-
morphism ϕq : Aq→ A′q′ induced by ϕ , the map ϕ ∗q : Spec(A′q′)→ Spec(Aq) is surjective.
Prove that (i)⇒ (ii)⇐⇒ (iii). See also the part (b) below.
(Hint : Identify (via Spec(ϕ∗Sq) : Spec

(
S−1
q A

)
→ SpecA, where Sq := Arq and ϕSq : A→ S−1

q A
is the natural map) Spec(Aq) with the subspace {p ∈ SpecA | p⊆ q} of SpecA ; similarly, identify
Spec(A′q′) with the subspace {p′ ∈ SpecA′ | p′ ⊆ q′} of SpecA′. Then ϕ∗(Spec(A′q′))⊆ Spec(Aq) .
(ii′) ϕ∗(Spec(A′q′)) = Spec(Aq) if and only if (ii) holds. Further, since ϕ∗ induces ϕ∗q where
ϕq : Aq→ A′q′ is the ring homomorphism induced by ϕ , the equality ϕ∗(Spec(A′q′)) = Spec(Aq)

holds if and only if (iii) holds. This proves the equivalence of (ii) and (iii). Further, since (i) implies
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the inclusion SpecAq ⊆ ϕ∗(Spec(A′q′)) and hence the equality ϕ∗(Spec(A′q′)) = Spec(Aq) . This
proves that the statement (i) implies (ii) and hence also (iii).)

(b) Suppose that A is a noetherian ring and ϕ is finite type over A, i. e. A′ is an A-algebra
of finite type (and hence A′ is also noetherian by HBT). Prove that ϕ∗ : SpecA′→ SpecA is
an open map if and only if ϕ has the Going-down property. (Remark : Proof need the concept
of constructible sets in a topological space.)

9.35 Let ϕ : A→ A′ be a flat homomorphism of rings. Then ϕ has the going-down
property. Moreover, if A is noetherian and the A-algebra A′ is of finite type A, then
ϕ∗ : SpecA′ → SpecA is an open map. (Hint : Use Exercise 9.33 (a) to prove the equivalent
statement (iii). To prove this, let q′ ∈ SpecA′ and q := ϕ−1(q′) ∈ SpecA. Note that ϕq : Aq→ A′q
is flat (base change) and A′q′ is a localization of A′q, hence flat over A′q. Therefore, the composite

ring homomorphism Aq
ϕq−→ A′q→ A′q′ is flat and a local homomorphism. Now, use Exercise 8.31

to conclude that ϕ ∗q : Spec(A′q′)→ Spec(Aq) is surjective. The later statement is immediate from
Exercise 9.33 (b).)

9.36 (R i n g s o f i n v a r i a n t s o f f i n i t e g r o u p s — Emmy Noether (1882-1935))
Let B be an A-algebra over a ring A and let G⊆ Aut A-alg B be a finite group of A-algebra
automorphisms of B. The subset BG := {x ∈ B | σ(x) = x for all σ ∈ G} ⊆ B is a subring
of B and is called the r i n g o f i n v a r i a n t s o f G, it is even an A-subalgebra of B.

(a) Every x∈B is integral over BG, i. e. B is integral over BG and so dimBG=dimB.

(b) If B is an A-algebra of finite type, then there exists an A-subalgebra A′ (⊆ BG) of finite
type over A and that B is integral over A′.

(c) If A is noetherian and if B is an A-algebra of finite type, then BG is also an A-algebra of
finite type. In particular, BG is noetherian.

(d) Let S⊆ B be a multiplicatively closed subset in B such that σ(S)⊆ S for every σ ∈ G
and let SG = S∩BG. Then the action of G on B extends to an action on S−1B and that
(SG)−1BG ∼−→ (S−1A)G.
(For the proof indicated below see the article :
[Emmy Noether , Der Endlichkeitsatz der Invarianten endlicher linearer Gruppen der Charakteristik
p, Nachr. Ges. Wiss. Gottingen (1926), 28-35])
( — Hint : (a) : Let G act on the polynomial ring B[X ] coefficient-wise. Then for every x ∈ B, the
polynomial fx := ∏σ∈G (X−σ(x)) ∈ B[X ] is G-invariant and hence its coefficients belong to BG

which provides an integral equation for x.
(b) : Assume that B = A[x1, . . . ,xn] and let A′ be the A-subalgebra of BG generated by all coefficients
of the polynomials fx1 , . . . , fxn . Then A′ is of finite type over A and B is integral over A′ (since
B=A[x1, . . . ,xn]=A′[x1, . . . ,xn] and each xi is integral over A and hence over A′ with integral equation
fxi , i=1, . . . ,n).
(c) : Note that by (b) there exists a finite type A-subalgebra A′ ⊆ BG such that B is integral over A′.
Further, since B is finite type over A, it is also finite type over A′ and hence (by Corollary on Page 1)
B is a finite A′-module. Now, since A′ is noetherian by HBT, B is a noetherian A′-module and hence
the A′-submodule BG of B is also finite A′-module. Therefore BG is an A-algebra of finite type. For,
if A′ = A[y1, . . .ym] and BG = A′z1 + · · ·+A′zr, then BG = A[y1, . . . ,ym,z1, . . . ,zr].)

9.37 Let A be a ring.
(a) Let B an A-algebra, G be a group acting on the A-algebra B (by A-algebra automor-
phisms) and let A be the integral closure of A in B. Then G acts canonically on the
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A-algebra A. (Hint : Let x ∈ A with integral equation xn + a1xn−1 + · · ·+ an−1x+ an = 0 with
a1, . . . ,an ∈ A and let σ ∈ G. Applying σ , we get 0 = σ(0) = σ(xn +a1xn−1 + · · ·+an−1x+an) =
σ(x)n+a1σ(x)n−1 + · · ·+an−1σ(x)+an is an integral equation for σ(x) over A and hence σ(x) ∈ A.
Therefore σ(A)⊆ A. Similarly, σ−1(A)⊆ A and so A⊆ σ(A). Therefore σ(A) = A.)

(b) Suppose that A is a normal domain with quotient field K, L |K be a Galois extension
with Galois group G = Aut K-alg L and let AL be the integral closure of A in L. Prove that
A = AG

L . (Hint : Note that be definition of Galois extension K = LG. Futher, G acts canonically on
AL by part (a) and hence AG

L is an A-algebra and A⊆ AG
L . Conversely, AG

L ⊆ LG = K, since L |K is a
Galois extension and hence AG

L ⊆ AL∩K = A, since A is normal.)

9.38 Let A⊆ B be integral domains with quotient fields K and L, respectively. Suppose that
A is integrally closed and L |K is a finite Galois extension with Galois group G :=Gal(L |K).
Prove that : (a) σ(B)⊆ B for every σ ∈ G. (b) BG = A.

9.39 Let B be a ring, G⊆ Aut Rings B be a finite group of ring automorphisms of B and let
p ∈ SpecBG. Further, let P(p) := {P ∈ SpecB |P∩BG = p}. Then :
(a) G acts transitively on P(p). (b) P(p) is non-empty and finite.

(Hint : (a) : For P ∈ P(p) and σ ∈ G, σ(P) ∈ SpecB, since σ is a ring automorphism of B.
Moreover, σ(P)∩BG =P∩BG = p, since σ leaves BG fixed. Therefore σ(P) ∈ P(p).
For transitivity of the action of G on P(p), let P, P′ ∈ P(p). To find σ ∈ G with σ(P) = P′.
For x ∈ P′, put y := ∏σ∈G σ(x). Then y ∈ BG ∩P′ = p ⊆ P and so there exists σ ∈ G with
σ(x) ∈ P, i. e. x ∈ σ−1(P). This proves that P′ ⊆

⋃
σ∈G σ(P). Therefore by Exercise 1.9 (b)

P′ ⊆ σ(P) for some σ ∈G. But, since B is integral over BG (see Exercise 9.35 (b)) with A =Z), by
Theorem (2) Incomparibility on Page 1, P′ = σ(P).

(b) : Since B is integral over BG, P(p) 6= /0. Now, since G acts transitively on P(p) by (a) and G is
finite, it follows that P(p) is finite. )

9.40 Let f = f (X)∈Z[X ] be a monic polynomial of positive degree and let B :=Z[X ]/〈 f 〉.
For a prime number p ∈ P, show that the number of prime ideals in B lying over the prime
ideal pZ is equal to the number of distinct monic irreducible factors of f in (Z/Z p)[X ].
(Hint : Note that the splitting field of f over Z/Z p is a finite Galois extension of Z/Z p. With this
use Exercise 37 and Exercise 38 to prove the assertion.)

9.41 Let B be an A-algebra over a ring A with the structure homomorphism ϕ : A→ B
and let P ∈ SpecB. We say that P is i s o l a t e d o v e r P∩A =: p ∈ SpecA if P is
maximal and minimal (with respect to the natural inclusion ⊆) in the fibre (ϕ∗)−1(p) =
{P′ ∈ SpecB |P′ ∩A = p} of the map ϕ∗ : SpecB→ SpecA associated to ϕ on spectra
over p, i. e. {P} is open in the fibre (ϕ∗)−1(p).

(a) Let A ⊆ B be an integral extension of rings. Then every P ∈ SpecB isolated over
p :=P∩A. (Hint : Remember the Incomparability (2) in Theorem on Page 1.)

(b) Let A[X ] be the polynomial ring in the indeterminate X over an integral domain A. Then
every prime ideal P ∈ SpecA[X ] cannot be isolated over p=P∩A. (Hint : Let ι : A→ A[X ]
be the natural inclusion. Then both pA[X ], 〈p,X〉 ∈ SpecA[X ] with pA[X ] ( 〈p,X〉 and belong to
(ι∗)−1(p).)

(c) Let B be an integral domain, x∈ B and A⊆ B a subring of B such that x is transcendental
(not algebraic) over A and that A[x]⊆ B is integral. Then every P ∈ SpecB is not isolated
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over P∩A =: p ∈ SpecA. (Hint : Consider the two cases :
Case 1: A is a normal domain : Then by assumptions A[x] = A[X ] is the polynomial ring and hence
also a normal domain, see Exercise 9.29 (a). Let P ∈ SpecB and p1 =P∩A[X ] ∈ SpecA[X ]. Then
p1∩=P∩A = p and P1 cannot be isolated over p by part (b). Now, applying Going-up or Going-
down to the integral extension A[X ]⊆ B, conclude that P is not isolated over p.
Case 2: A is not integrally closed : In this case, let A′ and B′ be integral closures of A and B. Then
clearly x is also transcendental over A′ and B′ is integral over A′[x] = A[X ] is the polynomial ring.
Now, since B′ is integral over B, we can choose P′ ∈ SpecB′ with P=P′∩B and P′ is not isolated
over P′∩A′ by Case 1. From this conclude that P ∈ SpecB is not isolated over P∩A = p. )

9.42 Let A be a normal domain with quotient field K, L |K a finite field extension and let
AL be the integral closure of A in L. Show that if p∈SpecA is any prime ideal, then the set
P(p) :={P ∈ SpecA |P∩A = p} is finite. in other words the map ϕ∗ : SpecAL→ SpecA
associated to ϕ on spectra has finite fibers. (Hint : Put A := AL. Consider the three cases :
Case 1 : L |K is separable : There exists a finite Galois extension L′|K (with Galois group Gal(L′|K))
such that L ⊆ L′. Let A′ be the integral closure of A in L′. Then A′G = A by Exercise 9.36 (b) and
hence by Exercise 9.38 (b) there are only finitely many prime ideals P′ ∈ SpecA′ lie over p. Since A′

is integral over A, for each P ∈ P(p) there is some P′ lies over P (by Theorem (3) Lying over, on
Page 1). This proves that the set P(p) is finite.
Case 2 : L |K is purely separable :
In this case CharK = p > 0 and P(p) = {P :=

√
pA} is singleton, where P :

(∗)
= {x ∈ A | xpn ∈

p for some n ∈N}. Let P ∈ P(p). To prove the equality (*), let x ∈P. First note that xq ∈ K, where
q := pn for some n ∈N+ (since L |K is purely inseparable). But, since xq ∈P ( A, xq is integral
over A and A is normal, xq ∈P∩A = p. Conversely, for x ∈ A with xr ∈ p for some r ∈N+, then
xr ∈P and hence x ∈P, since P is a prime ideal. This proves the equality (*).
Case 3 : General case L |K be arbitrary finite field extension : There is an intermediate field K′ with
K ⊆K′ ⊆ L such that K′ |K is separable and L |K′ is pure inseparable (see for example, Proposition 6.6
on Page 250 of the Book1). Let A′ be the integral closure of A in K′. Then by the Case 1, there are
only finitely many prime ideals P′ ∈ SpecA′ lying over p. Moreover A′ is normal and A is also the
integral closure of A′ in L. For, first A is integral over A, so over A′. Second, if x ∈ L is integral A′,
then x is integral over A and hence x ∈ A as desired. Therefore, by the Case 2 only one prime ideal
P ∈ SpecA lies over each P′ over A. This proves the assertion.)
9.43 Let B be an A-algebra of finite type over a ring A with the structure homomorphism
ϕ : A→ B, q ∈ SpecB and p := ϕ∗(q) = ϕ−1(q). Show that the following statements are
equivalent :
(i) q is isolated in the fibre (ϕ∗)−1(p) of ϕ∗ : SpecB→ SpecA over p.
(ii) κ(q) := Bq/qBq is a finite Ap/pAp = κ(p)-algebra.
(Hint : Use the Exercise 8.29 and the following commutative diagrams :

A

��

ϕ // B

��
κ(p) // κ(q)

SpecB
ϕ∗ // SpecA

Specκ(q)

OO

// Specκ(p) . )

OO

— Remark : We say that B is q u a s i - f i n i t e over A at q ∈ SpecB if any one of the above
equivalent conditions hold. with this definition we state the following very important theorem :
Zariski’s Main Theorem (ZMT)2 Let B be an A-algebra of finite type over a ring A with the

1 Lang, S., Algebra, Graduate Texts in Mathematics 211, Springer-Verlag, 2002.
2 Proved by Oscar Zariski (1899-1986) in 1943. In algebraic geometry it is a statement about the structure of

birational morphisms which states roughly that there is only one branch at any normal point of a variety. It is the
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structure homomorphism ϕ : A→ B and A be the integral closure of ϕ(A) in B and let q ∈ SpecB. If
B is quasi-finite over A at q, then there exists f ∈ A, f 6∈ q such that A f = B f .
For a proof see the following article by Peskine :
[ Peskine, C. : Le théorème principal de Zariski, Bull. Sc. Maths. 90 1966, pp 119-127.]

9.44 Let K be a field.
(a) Let A := K[X ,Y ], A′ := K[X ,Y,Z]/〈Z2−XZ−1〉 and p := 〈X〉 ∈ SpecA. Find a prime
ideal p′ ∈ SpecA′ with pA′ ⊆ p′ such that p= A∩p′.
(b) Test the going-down theorem in the following cases :
(1) A := K[Y,Z], A′ := K[X ,Y,Z]/〈X ,Y 〉 ∩ 〈X +Z〉〈Z2−XY 〉, p := 〈0〉 ⊆ q := A∩ q′ in
SpecA and q′ := 〈X ,Y 〉 ∈ SpecA′.
(2) A :=Q[X ,Y ], A′ :=Q[X ,Y,Z]〈Z2−XY 〉, p := 〈Y 2−X3〉 ⊆ q := 〈X ,Y 〉 in SpecA and
q′ := 〈X ,Y,Z〉 ∈ SpecA′.

special case of Zariski’s connectedness theorem when the two varieties are birational. Zariski’s main theorem can
be stated in several ways which at first sight seem to be quite different, but are in fact deeply related.
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S9 S u p p l e m e n t s ∗

S9.1 In this supplement, we prove the Lüroth’s Theorem which was used in Exercise 9.18.

Recall that a field extension L |K is said to be p u r e l y t r a n s c e n d e n t a l of it is generated
over K by a set of algebraically independent elements over K. In this supplement we study purely
transcendental field extensions of transcendence degree one. Such extension is of the form K(t) |K,
where t transcendental over a field K.

Let y∈K(t), y 6= 0. Then we can write y= p(t)/q(t) with 0 6= p(t),0 6= q(t)∈K[t] and gcd(p(t),q(t))=
1, and define the d e g r e e of y by deg y = Max (deg p(t),degq(t)). It is clear that this definition is
independent of the representation p(t)/q(t) of y as above and that deg y = 0 if and only if y ∈ K×.

First we first prove the following lemma :
S9.1.1 Lemma. Let y ∈ K(t), y 6∈ K. Then y is transcendental over K and the field extension
K(t) |K(y) is algebraic and [K(t) : K(y)] = deg y.

Proof. Let y = P(t)/q(t) with p(t), q(t) ∈ K[t]r{0}, gcd(p(t),q(t)0 = 1, and n = deg y =
Max (deg p(t),degq(t)). Write p(t) = p0 + p1t + · · ·+ pntn and q(t) = q0 + q1t + · · ·+ qntn with
p0, . . . , pn ; q0, . . . ,qn ∈ K and pn 6= 0 or qn 6= 0. Let X be indeterminate and f (X) := p(X)− y ·
q(X) = (p0− yq0)+ (p1− yq1)X + · · ·+(pn− yqn)Xn ∈ K[y][X ] and f (t) = 0. Therefore, since
y 6∈ K, we have n≥ 1 and pn− yqn 6= 0, and hence f (X) 6= 0 and that deg f (X) = n. Therefore t is
algebraic over K[y] and so y is transcendental over K. This shows that K[y,X ] is the polynomial ring
in two variables y and X over K and in this ring f (X) = p(X)− yq(X) is a polynomial of y-degree 1.
Further, gcd(p(X),q(X)) = 1 in K[X ]. Therefore f (X) is irreducible in K[y,X ] = K[y][X ]. Now, since
deg f (X)> 0, f (X) is irreducible in K(y)[X ] by the following Theorem 3 and hence f (X) = µt ,K(y)
is the minimal polynomial of t over K(y). Therefore [K(t) : K(y)] = deg f (X) = n = deg y. •
S9.1.2 Corollary. K(t) = K(y) if and only if deg y = 1.
S9.1.3 Corollary. The group of K-automorphisms of the field K(t) is isomorphic to the projective
linear group PGL2(K).
Proof. Note that for ϕ = f/g ∈ K(X)rK with gcd( f ,g) = 1, the map K(X)→ K(X), F/G 7→
F(ϕ)/G(ϕ) is a K-algebra homomorphism. Moreover, it is a K-algebra automorphism if and only
if deg ϕ = Max (deg f ,degg) = 1. This shows that every σ ∈ Aut K-alg K(X) is the substitution
homomorphism with σ(X) = (aX +b)/(cX +d) with a,b,c,d ∈ K, cX +d 6= 0, at least one of a and
c is non-zero and gcd(aX +b,cX +d) = 1, or, equivalently, ad−bc 6= 0. The map (it is easy to verify
that it is well defined)

AutK-alg K(X)→ PGL2(K) := GL2(K)/K× , σ 7→ the image of
(

a b
c d

)
in PGL2(K)

is a canonical isomorphism of groups, where σ is defined by σ(X) = (aX +b)/(cX +d).
(Remark : The group PGLn(K) is the well-known group of projective collineations of the projective space
PK(Kn) over k . It is called the P r o j e c t i v e l i n e a r g r o u p over K and often occurs in Projective Geometry,
Complex Analysis and Riemann Surfaces.) •

S9.1.4 Lüroth’s Theorem. Let K(t) |K be a purely transcendental field extension over K of tran-
scendence degree one. Then every intermediate subfield K ( L⊆ K(t) is purely transcendental field
extension over K of transcendence degree one.

Proof. We have to show that L = K(y) for some transcendental element y ∈K(t). Note that K(t) |L is
algebraic by Lemma S9.1.1. Let g := µt ,L = Xm +g1Xm−1 + · · ·+gm ∈ L[X ] be the minimal monic

3 Theorem. Let A be a UFD with quotient field K and let f (X) ∈ A[X ] be an irreducible polynomial of
deg f (X)> 0. Then f (X) is irreducible in K[X ].
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polynomial of t over L. Then [K(t) : L] = m and since t is not algebraic over K, g j 6∈ K for some j
with 1≤ j ≤ m.
S9.1.4.1 We claim that L = K(g j) for every j with 1≤ j ≤ m and g j 6∈ K.
Put y := g j Then y is transcendental over K and by Lemma S9.1.1 [K(t) : K(y)] = degy := n. Since
K ⊆ K(y) ⊆ L, to prove L = K(y), it is enough to prove that m = n. Write gi = ai(t)/a0(t) with
ai(t) ∈ K[t], i = 0, . . . ,m, a0(t) 6= 0 and gcd(a0(t),a1(t), . . . ,am(t)) = 1, and let

G(t,X) := a0(t)g(X) = a0Xm +a1(t)Xm−1 + · · ·+am(t) ∈ K[t][X ].
Then G(t,X) is a primitive polynomial (over the UFD) K[t]. Write y = p(t)/q(t) with 0 6= p(t),
0 6= q(t) ∈ K[t] and gcd(p(t),q(t)) = 1, and let

F(t,X) = q(t)p(X)− p(t)q(X) ∈ K[t,X ].
Then, since (F(t,X)/q(t))(t) = 0, g(X) = µt ,L(X) divides the polynomial F(t,X)/q(t) in L[X ] and
hence g(X) divides F(t,X) in K(t)[X ]. Now, since a0(t)g(X) = G(t,X) is primitive over K[t], G(t,X)
divides F(t,X) in K(t)[X ] by Gauss Lemma 4 and hence
S9.1.4.a F(t,X) = G(t,X)H with H ∈ K[t][X ] and deg t F(t,X)≥ deg t G(t,X).
On the other hand, since a j(t)/a0(t) = g j = y = p(t)/q(t) and gcd(p(t),q(t)) = 1, we have a j(t) =
b(t)p(t) and a0(t) = b(t)q(t) for some b(t) ∈ K[t]. This gives
S9.1.4.b deg t G(t,X)≥Max

(
dega j(t),dega0(t)

)
≥Max (deg p(t),degq(t))≥deg t F(t,X).

Combining S9.1.4.b and S9.1.4.a, we get
deg t G(t,X) = deg t F(t,X) = Max (deg p(t),degq(t)) = deg y = n.

Therefore deg t H = 0, i. e. H ∈ K[X ] and so F(t,X) = G(t,X) is primitive over K[t] and so
G(t,X) = F(t,X). Now, since F(X , t) =−F(t,X), we get degX F(t,X) = n and that F(t,X) is primi-
tive over K[X ]. This implies that degX H = 0, and so we get n = degX F(t,X) = degX G(t,X) = m.
This completes the proof of S9.1.4. •

4 Gauss Lemma. Let A be a UFD with quotient field K and let f , g ∈ A[X ] be non-zero polynomials. Then:
(1) If f and g are primitive, then so is f g.
(2) Cont( f g) = Cont( f )Cont(g) (up to multiplication by a unit)
(3) If f is primitive and if f divides g in K[X ], then f divides g in A[X ].
(4) If f is primitive, then the following four conditions are equivalent :

(i) f is irreducible in K[X ]; (ii) f is irreducible in A[X ]; (iii) f is prime in K[X ]; (iv) f is prime in A[X ].
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