E0 219 Linear Algebra and Applications / August-December 2016

(ME, MSc. Ph. D. Programmes)

Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 2239/(Maths Dept. 3212) E-mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in

Lectures: Monday and Wednesday; 11:00–12:30 Venue: CSA, Lecture Hall (Room No. 117)

Corrections by: Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303)/
Vineet Nair (vineetn90@gmail.com; Lab No.: 303)/
Rahul Gupta (rahul.gupta@csa.iisc.ernet.in; Lab No.: 224)/
Sayantan Mukherjee (meghanamande@gmail.com; Lab No.: 253)/
Palash Dey (palash@csa.iisc.ernet.in; Lab No.: 301, 333, 335)

Midterms: 1-st Midterm: Saturday, September 17, 2016; 15:00 – 17:00

2-nd Midterm: Saturday, October 22, 2016; 15:00 – 17:00

Final Examination: December ??, 2016, 09:00 -- 12:00

Evaluation Weightage : Assignments : 20%				Midterms (Two): 30%				Final Examination: 50%		
Range of Marks for Grades (Total 100 Marks)										
	Grade S	Grade A		Grade B		Grade C		Grade D		Grade F
Marks-Range	> 90	76—90		61 — 75		46 — 60		35—45		< 35
	Grade A ⁺	Grade A	Gı	rade B ⁺	B ⁺ Grae		Grade C		Grade D	Grade F
Marks-Range	> 90	81 — 90	71	80	61 — 70		51—60		40 — 50	< 40

3. Generating systems, Linear independence, Bases

Submit a solution of the *-Exercise ONLY. Due Date: Wednesday, 24-08-2011 (Before the Class)

Complete Correct solution of the Exercise 3.4 (b) carry BONUS POINTS!!!

3.1 (a) Let K be a field of characteristic $\neq 2$, i. e. $1+1\neq 0$ in K and let $a\in K$. Compute the solution set of the following systems of linear equations over K:

$$ax_1 + x_2 + x_3 = 1$$
 $x_1 + ax_2 + x_3 = 1$ and $x_1 + x_2 - x_3 = 1$ $2x_1 + 3x_2 + ax_3 = 3$ $x_1 + x_2 + ax_3 = 1$; $x_1 + ax_2 + 3x_3 = 2$;

For which a these systems have exactly one solution?

- **(b)** The set of *m*-tuples $(b_1, \ldots, b_m) \in K^m$ for which a linear system of equations $\sum_{j=1}^n a_{ij}x_j = b_i$, $i = 1, \ldots, m$, over a field K has a solution is a K-subspace of K^m .
- (c) Let K be a subfield of the field L and let $\sum_{j=1}^{n} a_{ij}x_j = b_i, i = 1, ..., m$ be a system of linear equations over K. If this system has a solution $(x_1, ..., x_n) \in L^n$, then it also has a solution in K^n .
- **3.2** (a) Let $x_1, ..., x_n \in V$ be linearly independent (over K) in a K-vector space V and let $x := \sum_{i=1}^n a_i x_i \in V$ with $a_i \in K$. Show that $x_1 x, ..., x_n x$ are linearly independent over K if and only if $a_1 + \cdots + a_n \neq 1$.
- (b) Let x_1, \ldots, x_n be a basis of the K-vector space V and let $a_{ij} \in K$, $1 \le i \le j \le n$. Show that

$$y_1 = a_{11}x_1$$
, $y_2 = a_{12}x_1 + a_{22}x_2$, ..., $y_n = a_{1n}x_1 + a_{2n}x_2 + \cdots + a_{nn}x_n$

is a basis of *V* if and only if $a_{11} \cdots a_{nn} \neq 0$.

- (c) Show that the family $\{\ln p \mid p \text{ prime number }\}$ of real numbers is linearly independent over \mathbb{Q} . (**Hint :** Use the Fundamental Theorem of Arithmetic, see Supplement S1.2 (f).)
- **3.3** Let K be a field and let K[X] (respectively, $K[X]_m$, $m \in \mathbb{N}$) be the K-vector space of all polynomials (respectively, polynomials of degree < m) with coefficients in K. Let $f_n \in K[X]$, $n \in \mathbb{N}$, be a sequence of polynomials with deg $f_n \le n$ for all $n \in \mathbb{N}$. Show that:
- (a) For every $m \in \mathbb{N}$, f_0, \dots, f_{m-1} is a K-basis of the subspace $K[X]_m$ if and only if $\deg f_n = n$ for all $n = 0, \dots, m-1$. (**Hint**: Use Exercise 3.2 (b).)
- **(b)** $f_n, n \in \mathbb{N}$, is a basis of the *K*-vector space K[X] if and only if deg $f_n = n$ for all $n \in \mathbb{N}$.
- *3.4 (a) The geometric sequences $(1, \lambda, \lambda^2, ..., \lambda^n, ...) \in K^{\mathbb{N}}$, $\lambda \in K$, are linearly independent over K in the K-vector space of the sequences $K^{\mathbb{N}}$. (Hint: Let $y_j := (\lambda_j^{i-1})_{i \in \mathbb{N}^*}$. Suppose that $\lambda_1, ..., \lambda_n \in K$

September 5, 2016; 4:30 p.m.

are distinct and $\sum_{j=1}^{n} a_j y_j = 0$ with $a_1, \dots, a_n \in K$. Then $a_1 x_1 + \dots + a_n x_n = 0$, where $x_j := (1, \lambda_j, \dots, \lambda_j^{n-1})$, and hence $a_1 = \cdots = a_n = 0$, See Supplement S3.4 (a).

- (b) Let $f: I \to K$ be a K-valued function with image f(I) infinite. Then the family $f^n, n \in \mathbb{N}$ of powers of f is linearly independent (over K) in the K-vector space K^I of all K-valued function on the set I. (Hint: Since the image f(I) of f is infinite, I is infinite. By restricting f to a suitable subset of I, we may assume that f is a sequence $f = (\lambda_0, \lambda_1, \lambda_2, \dots, \lambda_m, \dots)$ with pairwise distinct $\lambda_m, m \in \mathbb{N}$. Now, use the Supplement S3.4 (b).
- **3.5** Let $F = a_0 + a_1 X + \cdots + a_n X^n \in K[X]$ be an arbitrary polynomial of degree n and for $i \in \mathbb{N}$, let $F^{(i)}$ denote the i-derivative of F. Suppose that $m \cdot 1_K \neq 0$ for all $m = 1, \dots, n$ (i. e., the characteristic Char K > n or 0). Then:
- (a) The polynomials $F = F^{(0)}, F^{(1)}, \dots, F^{(n)} = n!a_n$, is a basis of the K-vector space $K[X]_{n+1}$. (Recall that the (formal) k-th derivative (defined inductively) $F^{(k)}(X) = \sum_{j=k}^{n} j(j-1) \cdots (j-k+1) a_j X^{j-k}$ of a polynomial $F = \sum_{i=0}^{n} a_i X^i \in K[X]$ is a polynomial of degree n-k for every $k=0,\ldots,n$ (if K is an arbitrary field of characteristic 0 or >n). —**Hint:** Use Exercise 3.2 (b).)
- **(b)** If $\lambda_0, \ldots, \lambda_n$ are pairwise distinct, the polynomials $F(X \lambda_0), \ldots, F(X \lambda_n) \in K[X]$ are linearly independent over K. (**Hint:** For this first we will prove the well-known T a y l o r 's f o r m u l a for polynomial functions:

$$F(X-\lambda) = \sum_{k=0}^{n} (-1)^k \lambda^k \frac{F^{(k)}(X)}{k!}.$$

By using binomial formula 2 and interchanging the summations, we get :
$$F(X-\lambda) = \sum_{j=0}^n a_j (X-\lambda)^j = \sum_{j=0}^n a_j \sum_{k=0}^j \binom{j}{k} X^{j-k} (-\lambda)^k = \sum_{k=0}^n (-1)^k \lambda^k \sum_{j=k}^n j(j-1) \cdots (j-k+1) \, a_j \, \frac{X^{j-k}}{k!}$$

$$= \sum_{k=0}^n (-1)^k \lambda^k \, \frac{F^{(k)}(X)}{k!} \, .$$

Now, to prove linear independence $F(X - \lambda_0), \dots, F(X - \lambda_n)$ over K, consider $0 = \sum_{i=0}^n c_i F(X - \lambda_i)$ with coefficients $c_i \in K$. Using the above Taylor's formula, it follows that

$$0 = \sum_{i=0}^{n} c_i F(X - \lambda_i) = \sum_{i=0}^{n} c_i \sum_{k=0}^{n} (-1)^k \lambda_i^k \frac{F^{(k)}(X)}{k!} = \sum_{i=0}^{n} \frac{(-1)^k}{k!} \left(\sum_{i=0}^{n} c_i \lambda_i^k\right) F^{(k)}(X)$$

and hence by the linear independence of $F = F^{(0)}, F^{(1)}, \dots, F^{(n)}$ over K (see part (a)) we have $\sum_{i=0}^{n} c_i \lambda_i^k = 0$ for all k = 0, ..., n. Now, use the Supplement S3.4 (a) to conclude that $c_0 = \cdots = c_n = 0$.)

D. P. Patil/IISc

¹Formal derivatives Let K be a field. For a polynomial $F = \sum_{n \in \mathbb{N}} a_n X^n \in K[X]$, we define the (formal) derivative of F by $F' := \sum_{n \in \mathbb{N}} na_n X^{n-1} \in K[X]$. This formal derivative satisfies usual product and quotient rules | (FG)' = F'G + FG' for all $F, G \in K[X]$ and $(F/G)' = (GF' - G'F)/G^2$ for all $F, G \in K[X], G \neq 0$.

²Binomial Formula: For elements x and y in a commutative ring A and a natural number $n \in \mathbb{N}$, we have $(x+y)^n = \sum_{m=0}^n \binom{n}{m} x^m y^{n-m}.$