E0 219 Linear Algebra and Applications / August-December 2016

(ME, MSc. Ph. D. Programmes)

Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 2239/(Maths Dept. 3212) E-mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in

Lectures: Monday and Wednesday; 11:00–12:30 Venue: CSA, Lecture Hall (Room No. 117)

Corrections by: Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303)/

Vineet Nair (vineetn90gmail.com; Lab No.: 303)/ Rahul Gupta (rahul.gupta@csa.iisc.ernet.in; Lab No.: 224)/

Sayantan Mukherjee (meghanamande@gmail.com; Lab No.: 253) / Palash Dey (palash@csa.iisc.ernet.in; Lab No.: 301, 333, 335)

Midterms: 1-st Midterm: Saturday, September 17, 2016; 15:00 – 17:00 2-nd Midterm: Saturday, October 22, 2016; 15:00 – 17:00

Final Examination: December ??, 2016, 09:00 -- 12:00

Evaluation Weightage : Assignments : 20%				Midterms (Two): 30%				Final Examination: 50%		
Range of Marks for Grades (Total 100 Marks)										
	Grade S Grade A		4	Grade B		Grade C		Grade D		Grade F
Marks-Range	> 90	76—90)	61—75		4660		35—45		< 35
	Grade A ⁺	Grade A	Grad	le B ⁺	Grad	le B	Grade C		Grade D	Grade F
Marks-Range	> 90	81—90	71—	1 — 80		61 — 70)	40 — 50	< 40

5. Linear Maps

Submit a solution of the *-Exercise ONLY. Due Date: Wednesday, 07-09-2016 (Before the Class)

Let K be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C} .

5.1 (Pointer representation) Let $\omega \in \mathbb{R}_+^{\times}$ and W be the \mathbb{R} -vector space of the functions $a\sin(\omega t + \varphi)$, $a, \varphi \in \mathbb{R}$, with basis $\sin \omega t$, $\cos \omega t$, (see Exercise 4.1). Then the map

$$\gamma: a\sin(\omega t + \varphi) \longmapsto ae^{i\varphi}, a \geq 0,$$

is a \mathbb{R} -vector space isomorphism of W onto \mathbb{C} . (**Remark**: This isomorphism is called the pointer representation on of the simple harmonic motion with the circular frequency ω . The differentiation in W correspond to the multiplication by $i\omega$ to the pointer representation, i.e. $\gamma(\dot{x}) = i\omega \gamma(x)$ for $x \in W$. In the representation $ae^{i\varphi}$ of $a\sin(\omega t + \varphi)$, $a \ge 0$, $a = |ae^{i\varphi}|$ is called the (maximal) amplitude and $e^{i\varphi}$ is called the phase factor.)

5.2 Let $I \subseteq \mathbb{R}$ be an interval with more than one point and let $a \in I$. For $n \in \mathbb{N}^$, let

$$T_{a,n}: \mathbb{C}^{n-1}_{\mathbb{K}}(I) \to \mathbb{K}[t]_n$$

be the map which maps every function $f \in C^{n-1}_{\mathbb{K}}(I)$ to its *Taylor-polynomial* of degree < n of f at a, i. e.,

$$f \mapsto T_{a,n}(f) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^k.$$

Show that $T_{a,n}$ is \mathbb{K} -linear. Determine the kernel and the image of this map $T_{a,n}$. (**Remark**: See also Exercise 3.5 and Supplement S5.15.)

- **5.3** Let V be a K-vector space with $Dim_K V \ge 2$ (i. e. V contain at least two linearly independent vectors). Then every additive map $f: V \to V$ with $f(Kx) \subseteq Kx$ for all $x \in V$ is a homothecy $\vartheta_a: V \to V$, $x \mapsto ax$, of V by a scalar $a \in K$.
- **5.4** Let $f_1: V \to V_1$ and $f_2: V \to V_2$ be homomorphisms of K-vector spaces. The K-linear map $f: V \to V_1 \times V_2$ defined by $f(x) = (f_1(x), f_2(x))$ is an isomorphism if and only if f_1 surjective and the restriction $f_2|_{\operatorname{Ker} f_1}: \operatorname{Ker} f_1 \to V_2$ is bijective.

1/2

†5.5 (Characters) Let M and N be two monoids with neutral elements e_M and e_N , respectively. A map $\varphi: M \to N$ is called a (monoid-)homomorphism if $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in M$ and $\varphi(e_M) = e_N$.

Let M be a monoid and let K be a field. By a character of M in K we mean a homomorphism of M in the multiplicative group (K^{\times}, \cdot) of K. The map $M \to K^{\times}$, $x \mapsto 1_K$ is a character of M in K, called the trivial character. If $a \in K^{\times}$, then the conjugation by $a \times_a : K \to K^{\times}$, $b \mapsto aba^{-1}$ is a character of the multiplicative monoid of K with values in K.

(Le m m a of De de kind-Artin¹) Let M be a monoid and et K be a field. Then the set $\chi(M,K)$ of characters of M in K is linearly independent (in the K-vector space K^M of all K-valued functions on M) over K. (**Hint:** Suppose that $a_1\chi_1 + \cdots + a_n\chi_n = 0$ with $a_1,\ldots,a_n \in K^\times$, pairwise distinct $\chi_1,\ldots,\chi_n \in \chi(M,K)$ is a linear dependence relation with minimal $n \in \mathbb{N}$. Note that $n \geq 2$, since every character $\chi \neq 0$. Let $x \in M$ be fixed and $y \in M$ be arbitrary. Then $0 = (a_1\chi_1 + \cdots + a_n\chi_n)(xy) = a_1\chi_1(xy) + \cdots + a_n\chi_n(xy) = a_1\chi_1(x)\chi_1(y) + \cdots + a_r\chi_n(x)\chi_r(y)$ and hence $a_1\chi_1(x)\chi_1 + \cdots + a_n\chi_n(x)\chi_n = 0$. Now, conclude that $\chi_1 = \cdots = \chi_n$ a contradiction to $n \geq 2$.)

¹This assertion is used frequently (especially in *Galois Theory*).