E0 219 Linear Algebra and Applications / August-December 2016

(ME, MSc. Ph. D. Programmes)

Download from: http://www.math.iisc.ernet.in/patil/courses/courses/Current Courses/...

Tel: +91-(0)80-2293 2239/(Maths Dept. 3212) E-mails: dppatil@csa.iisc.ernet.in / patil@math.iisc.ernet.in

Lectures: Monday and Wednesday; 11:00–12:30 Venue: CSA, Lecture Hall (Room No. 117)

Corrections by: Nikhil Gupta (nikhil.gupta@csa.iisc.ernet.in; Lab No.: 303) / Vineet Nair (vineetn90@gmail.com; Lab No.: 303) /

Rahul Gupta (rahul.gupta@csa.iisc.ernet.in; Lab No.: 224) / Sayantan Mukherjee (meghanamande@gmail.com; Lab No.: 253) / Palash Dey (palash@csa.iisc.ernet.in; Lab No.: 301, 333, 335)

Midterms: 1-st Midterm: Saturday, September 17, 2016; 15:00 – 17:00 2-nd Midterm: Saturday, October 22, 2016; 15:00 – 17:00

Final Examination: December ??, 2016, 09:00 -- 12:00

Evaluation Weightage : Assignments : 20%				Midterms (Two): 30%				Final Examination: 50%		
Range of Marks for Grades (Total 100 Marks)										
	Grade S	Grade A	A Grad	Grade B		Grade C		Grade D	Grade F	
Marks-Range	> 90	76—90	61—	61 — 75		4660		35—45	< 35	
	Grade A ⁺	Grade A	Grade B ⁺	Gra	de B	Grade	C	Grade D	Grade F	
Marks-Range	> 90	81—90	71 — 80	61 —	-70	51 — 60)	40 — 50	< 40	

7. Direct Sums and Projections; — Dual spaces

Submit a solution of the *-Exercise ONLY. Due Date: Monday, 26-09-2016 (Before the Class)

Let K be arbitrary field and let \mathbb{K} denote either the field \mathbb{R} or the field \mathbb{C} .

- **7.1** Let $f: U \to V$ and $g: V \to W$ be homomorphisms of K-vector spaces. If gf is an isomorphism of U onto W, then show that V is the direct sum of $\operatorname{Im} f$ and $\operatorname{Ker} g$, i. e., $V = \operatorname{Im} f \oplus \operatorname{Ker} g$.
- **7.2** Assume that K has at least n elements. Let U_1, \ldots, U_n be subspaces (of a finite dimensional K-vector space V) of equal dimension. Then show that U_1, \ldots, U_n have a common complement in V, i. e. $V = U_i \oplus W$ for every $i = 1, \ldots, n$. (**Hint:** Use the Exercise 4.5.)
- **7.3** Suppose that the K-vector space V is the direct sum of the subspaces U and W.
- (a) For every linear map $g: U \to W$, show that the graph $\Gamma(g) := \{u + g(u) \mid u \in U\} \subseteq V$ of g is a complement of W in V.

- (b) Show that the map $\operatorname{Hom}_K(U,W) \to \mathcal{C}(W,V)$ defined by $g \mapsto \Gamma(g)$ is bijective, where $\mathcal{C}(W,V)$ denote the set of all complements of W in V. Describe this bijection for $V = \mathbb{R}^2$ and $U = \mathbb{R} \times \{0\} (= x\text{-axis explicitly.})$
- (c) Suppose that $\operatorname{Dim}_K U = \operatorname{Dim}_K W = n$. Let u_1, \dots, u_n and w_1, \dots, w_n be bases of U and W, respectively. Then show that $u_1 + w_1, \dots, u_n + w_n$ is a basis of a complement of U as well as a complement of W in V.
- *7.4 Let V be a K-vector space and let $f_1, \ldots, f_n \in V^*$ be linear forms on V. Let $f: V \to K^n$ be the homomorphism defined by $f(x) := (f_1(x), \ldots, f_n(x))$. Then show that $\operatorname{Dim}_K(Kf_1 + \cdots + Kf_n) = \operatorname{Dim}_K(\operatorname{Im} f)$. In particular, f_1, \ldots, f_n are linearly independent if and only if the homomorphism f is surjective. (**Hint:** Note that $\operatorname{Im} f$ is finite dimensional and hence $\operatorname{Rank}_K f = \operatorname{Rank}_K f^* = \operatorname{Dim}_K(Kf_1 + \cdots + Kf_n)$, see also Supplement S7.33.)
- **7.5** A K-linear map $f: V \to W$ be a homomorphism of K-vector spaces is injective (resp. surjective, bijective) if and only if the dual map $f^*: W^* \to V^*$ is surjective (resp. injective, bijective) (**Remark:** It is not really necessary to assume that V and W are finite dimensional.)
- **7.6** Let x_1, \ldots, x_n be all non-zero vectors in a K-vector space V over a field K with $|K| \ge n$. Then Show that there exists a hyperplane H in V such that the vectors $x_i \notin H$ for all $i = 1, \ldots, n$. (**Hint:** There exist a linear form $f_i \colon V \to K$ such that $f_i(x_i) = 1 \neq 0$ for each $i = 1, \ldots, n$. Therefore the subspaces $(Kx_i)^\circ, i = 1, \ldots, n$ are proper subspaces of the K-vector space V^* and hence $(Kx_1)^\circ \cup \cdots \cup (Kx_n)^\circ \subseteq V^*$ by Exercise 2.2. Now, choose $f \in V^* \setminus (Kx_1)^\circ \cup \cdots \cup (Kx_n)^\circ$ and take $H := \operatorname{Ker} f$.)