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7. Direct Sums and Projections ; — Dual spaces

Submit a solution of the *x-Exercise ONLY. Due Date : Monday, 26-09-2016 (Before the Class)
Let K be arbitrary field and let IK denote either the field R or the field C.

7.1 Let f:U — V and g : V — W be homomorphisms of K-vector spaces. If gf is an isomorphism
of U onto W, then show that V is the direct sum of Im f and Kerg, i.e., V =Im f & Kerg.

7.2 Assume that K has at least n elements. Let Uy,...,U, be subspaces (of a finite dimensional
K-vector space V) of equal dimension. Then show that Uy, ...,U, have a common complement in
V,i.e. V=U;&W forevery i =1,...,n. (Hint : Use the Exercise4.5.)

7.3 Suppose that the K-vector space V is the direct sum of the subspaces U and W.

(a) For every linear map g : U — W, show that the graph I'(g) :={u+g(u) |luc U} CV of gisa

complement of W in V.
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(b) Show that the map Homg (U, W) — C(W,V) defined by g — I'(g) is bijective, where C(W,V)
denote the set of all complements of W in V. Describe this bijection for V.=R? and U = R x {0} (=
x-axis explicitly.

(¢) Suppose that DimgU = DimgW =n. Let uy,...,u, and wy,...,w, be bases of U and W,
respectively. Then show that u; +wy,...,u, +w, is a basis of a complement of U as well as a
complement of W in V.

*7.4 LetV be a K-vector space and let fi,..., f, € V* be linear forms on V. Let f: V — K" be the
homomorphism defined by f(x) := (fi(x) ,...,fu(x)). Then show that Dimg (Kfi + -+ +Kf,) =
Dimg (Im f). In particular, fi,...,f, are linearly independent if and only if the homomor-

phism f is surjective. (Hint: Note that Im f is finite dimensional and hence Rank g f = Rankg f* =
Dimg (Kfi +---+Kf»), see also Supplement S7.33. )

7.5 A K-linear map f: V — W be a homomorphism of K-vector spaces is injective (resp. surjective,
bijective) if and only if the dual map f*:W* — V* is surjective (resp. injective, bijective) (Remark:
It is not really necessary to assume that V and W are finite dimensional.)

7.6 Letxi,...,x, be all non-zero vectors in a K-vector space V over a field K with |K| > n. Then
Show that there exists a hyperplane H in V such that the vectors x; ¢ H foralli=1,...,n. (Hint:
There exist a linear form f;: V — K such that f;(x;) = 1 # 0 for each i = 1,...,n. Therefore the subspaces
(Kx;)°, i=1,...,n are proper subspaces of the K-vector space V* and hence (Kx;)°U---U(Kx,)° C V* by
Exercise 2.2, Now, choose f € V*\ (Kx;)°U---U (Kx,)° and take H := Ker f.)
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