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11 . E i g e n v a l u e s1, C h a r a c t e r i s t i c P o l y n o m i a l s and
M i n i m a l P o l y n o m i a l s

Submit a solution of the ∗-Exercise ONLY. Due Date : Monday, 24-10-2016 (Before the Class)

• Highly recommended to solve the Exercise 11.5 to win 10 BONUS POINTS!!!
•• Complete Correct solution of the Exercise 11.8 carry 15 BONUS POINTS!!!
••• Complete Correct solution of the Exercise 11.10 carry 20 BONUS POINTS!!!

Let K be arbitrary field and let K denote either the field R or the field C.

11.1 Let V :=KR and let T ∈R be a positive real number. Let sT : V →V be the linear operator
defined by sT (x)(t) := x(t +T ) for x ∈V .

1 Eigenvalues and eigenvectors are introduced in of linear algebra or matrix theory. They are used in the investigation
of linear transformations. The prefix eigen- is adopted from the German word eigen for “proper”, or “characteristic”.
Historically, they arose in the study of quadratic forms and differential equations. Originally utilized to study principal
axes of the rotational motion of rigid bodies, eigenvalues and eigenvectors have a wide range of applications.
In the 18-th century E u l e r , L . ( 1 7 0 7 – 1 7 8 3 ) studied the rotational motion of a rigid body and discovered
the importance of the principal axes. L a g r a n g e , J . L . ( 1 7 3 6 – 1 8 1 3 ) realized that the principal axes are the
eigenvectors of the inertia matrix. In the early 19-th century, C a u c h y , A . L . ( 1 7 8 9 – 1 8 5 7 ) saw how their
work could be used to classify the quadric surfaces, and generalized it to arbitrary dimensions. Cauchy also coined the
term “racine caractéristique” (characteristic root) for what is now called eigenvalue .
F o u r i e r , J . - B . J . ( 1 7 6 8 – 1 8 3 0 ) used the work of Laplace and Lagrange to solve the heat equation by
separation of variables in his famous 1822 book Théorie analytique de la chaleur. S t u r m , J . K . F . ( 1 8 0 3 –
1 8 5 5 ) developed Fourier’s ideas further and brought them to the attention of Cauchy, who combined them with his
own ideas and arrived at the fact that real symmetric matrices have real eigenvalues. This was extended by H e r -
m i t e , C . ( 1 8 2 2 – 1 9 0 1 ) in 1855 to what are now called Hermitian matrices. Around the same time, Brioschi
proved that the eigenvalues of orthogonal matrices lie on the unit circle and C l e b s c h , A . ( 1 8 3 3 – 1 8 7 2 ) found
the corresponding result for skew-symmetric matrices. Finally, W e i e r s t r a s s , K . ( 1 8 1 5 – 1 8 9 7 ) clarified an
important aspect in the stability theory started by L a p l a c e , P . S . ( 1 7 4 9 – 1 8 2 7 ) by realizing that defective
matrices can cause instability.
In the meantime, L i o u v i l l e , J . ( 1 8 0 9 – 1 8 8 2 ) studied eigenvalue problems similar to those of Sturm ; the
discipline that grew out of their work is now called Sturm-Liouville theory. S c h w a r z , H . A . ( 1 8 4 3 – 1 9 2 1 )
studied the first eigenvalue of Laplace’s equation on general domains towards the end of the 19-th century.
In the beginning of the 20-th century, H i l b e r t , D . ( 1 8 6 2 – 1 9 4 3 ) studied the eigenvalues of integral op-
erators by viewing the operators as infinite matrices. He was the first to use the German word eigen, which means
"own", to denote eigenvalues and eigenvectors in 1904, though he may have been following a related usage by
H e l m h o l t z , H . ( 1 8 2 1 – 1 8 9 4 ). For some time, the standard term in English was "proper value", but the more
distinctive term "eigenvalue" is standard today.
The first numerical algorithm for computing eigenvalues and eigenvectors appeared in 1929, when Vo n
M i s e s ( 1 8 9 3 – 1 9 7 3 ) published the power method. One of the most popular methods today,
the QR algorithm, was proposed independently by J o h n G . F . F r a n c i s ( 1 9 3 4 – ) and V e r a
K u b l a n o v s k a y a ( 1 9 2 0 2 0 1 2 ) in 1961.
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(a) Show that 0 is neither a spectral value nor an eigenvalue for sT and the eigenspace of sT at 1
is VsT (1) =Vper ,T := {x ∈V | x is periodic with period T} .
(b) ForK=C, show that every λ ∈C× is an eigenvalue of sT with eigenfunction exp(ln(λ )/Tt) ,
where, if λ is a negative real number then we put ln(λ ) := ln(|λ |)+ iπ and the eigenspace of sT
at λ is exp(ln(λ )/Tt)Vper ,T .
(c) For K=R, show that every positive real number λ is an eigenvalue of sT and the eigenspace
of sT at λ is λ t/T Vper ,T .
(d) For K = R, the eigenspace of sT at the eigen-value −1 is called the h a l f p e r i o d i c
f u n c t i o n s and is usually denoted by Vhper ,T . Show that
(i) Every half periodic function is period with period 2T .
(ii) Vhper ,T = cos(π t/T )Vper ,T + sin(π tT/)Vper ,T .
(iii) For a positive real number λ , the eigenspace of sT at −λ is VfT (−λ ) = λ t/T Vhper ,T .
(e) Eigenfunction corresponding to an eigenvalue λ 6= 1 are called p e r i o d i c f u n c t i o n s
o f s e c o n d k i n d w i t h m u l t i p l i c a t o r λ . Show that if λ is a n-th root of unity then
every eigen-function of second kind with multiplicator λ is periodic with period nT . ( Remark :
The same assertions (a) to (e) hold for the restriction of sT to the subspaces Ck

K(R) , k ∈N∪{∞,ω} . )

∗11.2 Let A ∈Mn(K) , n≥ 2 be a nilpotent matrix.
(a) If An−1 6= 0, then there does not exists any matrix B ∈Mn(K) with B2 = A.
(b) The following statements are equivalent : (i) µA = χA (= Xn). (ii) An−1 6= 0. (iii) Rank A=
n−1. (iv) There exists a x ∈ Kn such that Ai x, i = 0, . . . ,n−1 is a basis of Kn. (Hint : Since A
is nilpotent, the characteristic polynomial χA = Xn and the minimal polynomial of µA = Xm with m ≤ n.
Prove the implications (i)⇐⇒ (ii)⇐⇒ (iv) and (ii)⇐⇒ (iii). The matrix A defines K-linear map f := fA :
Kn → Kn, f (x) := Ax. Then Rank f = RankA. Since A (and hence f ) id nilpotent, Rank f ≤ n− 1 and
Dim KKer f = n−Rank f ≥ n− (n−1) = by Rank-Theorem. For (iii)⇒(ii) by induction on n. — Remark :
This Exercise give the characterization of the cyclic nilpotent operators, where an operator (resp. a matrix) is
called c y c l i c if it satisfies the condition (iv). In general, this is further equivalent to the condition that the
characteristic and minimal polynomials are equal, see Exercise 11.8 (e) below.)

11.3 Let f :V →V be an operator on the K-vector space V . The following statements are equivalent :
(i) f is a homothecy. (ii) Every subspace of V is f -invariant. (iii) Every non-zero vector in V is
an eigen-vector of f .

11.4 Let A and B be two n×n-matrices over the field K, assume that one of them is invertible. Then
there exists at most n distinct elements a ∈ K such that the matrix aA+B is not invertible. (Hint :
Suppose that A is invertible, then DetA 6= 0. Now, since Det(aA+B) = Det(aEn +BA−1) ·Det(A) =
χ−BA−1(a) ·Det(A), only for at most n eigenvalues a of −BA−1, Det(aA+B) = 0.
Now suppose that B is invertible, then aA+B is invertible for a = 0 and for a 6= 0, aA+B is not
invertible only for the n eigenvalues of −AB−1, since Det(aA+B) = Det(AB−1 + a−1En) ·Det(B) =
a ·χ−AB−1(a−1) ·Det(B).)

∗∗11.5 Let n ∈N and let K be a field with k ·1K 6= 0 for all k = 1, . . . ,n .
(a) An operator f on the n-dimensional K-vector space V is nilpotent if and only if Tr f = Tr f 2 =
· · ·= Tr f n = 0 . (Hint If f is nilpotent, then so are f 2, f 3, . . ., f n and hence the characteristic polynomials
χ f i = Xn, in particular, Tr f i = 0 for all i = 1, . . . ,n. Prove the converse by induction on n. Since Tr( f i) = 0
for all i = 1, . . . ,n, by Cayley-Hamilton Theorem 0 = χ f ( f ) = f n− (Tr( f )) f n−1 + · · ·+(−1)nDet idV and
hence applying the trace map, we get 0=Tr(χ f ( f )) =Tr( f n)−(Tr( f ))Tr( f n−1)+ · · ·+(−1)nDet Tr(idV ) =
(1)n nDet( f ) . It follows that Det f = 0 and hence f is not injective and Dim KV < n = Dim KV , where
V :=V/Ker f . Now use Test-Exercise T10.24 and apply induction.)

(b) Suppose that a1, . . . ,an are elements in K with
a1

1 + · · ·+a1
n = 0

· · · · · · · · · · · ·
an

1 + · · ·+an
n = 0 .
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Then a1 = · · · = an = 0. (Hint Let f : Kn → Kn be the linear map defined by the diagonal matrix
Diag(a1, . . . ,an) (with respect to the standard basis e1, . . . ,en of Kn). Then for every k = 1, . . . ,n, the
matrix of f k (with respect to the standard basis) is the diagonal matrix Diag(ak

1, . . . ,a
k
n) and by hypothesis

Tr( f ) = Tr( f 2) = · · · = Tr( f n) = 0. Now apply the part (a) above, to conclude that A is nilpotent. —
Remark : The parts (a) and (b) are equivalent: There exists (by Kronecker’s Theorem2) a field extension
K ⊆ L such that the characteristic polynomial χ f of f splits into liner factors χ f = (X −a1) · · ·(X −an) in
L[X ]. Then the trace Tr( f k) = ak

1 + · · ·+ak
n, see Example 11.B.13.)

11.6 Find the characteristic polynomial of the following matrices :

(a) A :=



a1 0 · · · 0 0 · · · 0 b1
0 a2 · · · 0 0 · · · b2 0
...

... . . . ...
... . . . ...

...
0 0 · · · an bn · · · 0 0
0 0 · · · bn an · · · 0 0
...

... . . . ...
... . . . ...

...
0 b2 · · · 0 0 · · · a2 0
b1 0 · · · 0 0 · · · 0 a1


∈M2n(K) .

( Ans : χA = ∏
n
k=1(X−ak−bk)(X−ak +bk). ) ( Hint : See Supplement S10.64 (c). )

(b) A :=


a b2 · · · bn
c2 0 · · · 0
...

... . . . ...
cn 0 · · · 0

 ∈Mn(K). ( Ans : χA = Xn−aXn−1−
(
∑

n
k=2 bkck

)
Xn−2 n≥ 2. )

(c) Fn :=



0 1 0 · · · 0 0 0
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 0


∈Mn (R) .

(Ans : 2nUn(X/2) , where Un is the n-th Tchebychev polynomial of second kind (see Supplement S10.61 (c).)
In particular, λk := 2cos(kπ/(n+ 1)) , k = 1, . . . ,n are eigenvalue s of Fn . The vector with components
sin(kπi/(n+1)) , i = 1, . . . ,n is an eigenvector corresponding to λk .)

11.7 Let f and g be operators on the K-vector space V .

(a) If either f g or g f is algebraic, then both f g and g f are algebraic and the minimal polynomials
of f g and g f are either equal or differ by the factor X . Moreover, if either f or g is invertible,
then µ f g = µg f . Give examples of operators f and g on K2 such that µ f g 6= µg f .

(b) Suppose that V is finite dimensional. Then χ f g = χg f . ( Hint : Use Exercise 8.4 (b) to assume
that either f is invertible or f is a projection. )

∗∗11.8 Let f be an operator on the K-vector space V and let x ∈V . Show that :

(a) Vx := ∑m∈NK f m(x) is the smallest f -invariant subspace of V which contain x . ( Remark :
The subspace Vx is called the f - c y c l i c s u b s p a c e g e n e r a t e d b y x . )

2Kronecker’s Theorem Let K be a field and let P ∈ K[X ] be a non-zero polynomial. Then there exists a field
extension K ⊆ L such that P factores into linear factors in L[X ]. Moreover, one can also choose L such that L has finite
dimension over K (as an K-algebra).
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(b) Vx is finite dimensional if and only if there exists a monic polynomial P ∈ K[X ] such that
P( f )(x) = 0. Moreover, in this case, if Px is the monic polynomial of the smallest degree with
Px( f )(x) = 0, then Px is the minimal polynomial and the characteristic polynomial of f |Vx .
(Remark : This polynomial Px is called the f - a n n i h i l a t o r of x and denoted by Ann f (x) . With this
Deg Ann f (x) = Dim KVx .)

(c) If V is finite dimensional and x1, . . . ,xr is a generating system for V , then µ f is equal
to lcm(Px1, . . . ,Pxr) . (Hint : Follows from (b) and the following more general assertion : If f : V →
V is a K-lienar operator and V = V1 + · · ·+Vr is a sum of f -invariant subspaces V1, . . . ,Vr, then µ f =
lcm(µ f |V1 , . . . ,µ f |Vr) . See also Supplement S11.14.)

(d) Suppose that V is finite dimensional. Then the following statements are equivalent :
(i) Vx0 =V for some x0 ∈V .
(ii) There exists a K-basis v= {v1, . . . ,vn} of V such that the matrix of f with respect to the basis
v is of the form

AP :=


0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

... . . . ...
...

0 0 · · · 0 −an−2
0 0 · · · 1 −an−1

 ∈Mn(K)

(iii) χ f = µ f .
(Remark : If any one of the above equivalent statements hold, then the operator f is called a c y c l i c
o p e r a t o r and the element x0 is called a c y c l i c e l e m e n t for f . The matrix AP is called the
c o m p a n i o n m a t r i x of the polynomial P. — A matrix A ∈MI(K) is called c y c l i c if the operator
fA : KI→KI defined by A is cyclic. A matrix A∈MI(K) is cyclic if and only if A is similar to the companion
matrix of its characteristic polynomial χA.)

(e) If χ f has only simple prime factors, then f is cyclic. ( Hint : In this case χ f = µ f by 11.A.14. )

11.9 Let V be a finite dimensional K-vector space of dimension n .
(a) Let f and g be invertible operators on V . Then all operators λ f −µg , (λ ,µ) ∈ K2−{(0,0)}
are invertible if and only if the characteristic polynomial χ f−1g of f−1g has no zeroes, i. e., f−1g
has no eigenvalue.
(b) Let Φ : V ×V → V be bilinear. If K is algebraically closed and n ≥ 2, then Φ has a zero
divisor, i. e., there exist x,y ∈V with x 6= 0 6= y and Φ(x,y) = 0. If K =R and n is odd and ≥ 3,
then Φ has a zero divisor. (Hint : For x ∈V consider the operators fx : y 7→Φ(x,y) on V . — Remark :
A well-known deep T h e o r e m o f A d a m s which states that : if K =R and n 6= 0,1,2,4,8 , then Φ

has a zero divisor, i. e., there exist x,y ∈Vr{0} with Φ(x,y) = 0.)

∗∗∗11.10 Let λ ∈K be an eigenvalue of the matrix A= (ai j)∈Mn (K) . Then show that |λ−aii| ≤
zi := ∑ j 6=i |ai j| for at least one i ∈ {1, . . . ,n} and also |λ −a j j| ≤ s j := ∑i 6= j |ai j| for at least one
j ∈ {1, . . . ,n} . In particular, the (eigen) spectrum SpecA of A is contained in

(⋃n
i=1 B(aii ;zi)

)
∩(⋃n

j=1 B(a j j ; s j)
)

, where Di(A) := B(aii,zi) (resp. B(a j j,s j) ) are the closed discs centered at
aii (resp. a j j) and radius zi, i = 1, . . . ,n (resp. s j, j = 1, . . . ,n), — called the G e r s h g o r i n
d i s c s. — For a diagonal matrix D, the union of the Gershgorin discs ∪n

i=1B(aii,zi) coincides
with the spectrum Spec D , and conversely. (Hint : On the contrary, suppose that |λ − a j j| > s j for
all j = 1, . . . ,n. Then the matrix λEn−A is invertible by Exercise 4.3, see also Exercise 10.7 (a) which
contradicts the fact that λ is an eigenvalue of A. The first assertion proves the second one by applying the first
to the transpose matrix tA (which has the same eigenvalues as A). — Remark : This assertion is also known
as the G e r s h g o r i n c i r c l e t h e o r e m3 which is useful in solving matrix equations of the form

3It was first published by the Belarusian mathematician G e r s h g o r i n , S . ( 1 9 0 1 – 1 9 3 3 ) in 1931, see
[Gerschgorin, S. Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk,
7 (1931), 749-754]. He studied at Petrograd Technological Institute from 1923, becoming Professor in 1930, and from
1930 he worked in the Leningrad Mechanical Engineering Institute on algebra, theory of functions of complex variables,
numerical methods and differential equations.
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Ax= b for x , where b is a vector and A is a matrix with a large condition number4. The Gershgorin circle
theorem can be strengthened as follows : If the union D(A) := Di1 ∪·· ·∪Dik of k Gershgorin-discs is disjoint
from the union D′(A) :=∪i∈{1,...,n}r{i1,...,ik}Di of the other n−k Gershgorin-discs then D(A) contains exactly
k and D′(A) n− k eigenvalues of A. — Proof : The assertion is obviously true for diagonal matrices. For a
proof consider B(t) := (1− t)D+ tA, t ∈ [0,1], where D := Diag(a11, . . . ,ann). Note that the hypothesis
D(A)∩D′(A) = /0, yields D(B(t))∩D′(B(t)) = /0 for all t ≥ 0, since the centers of the Gershgorin discs of
B(t) are same as those of A and the radii are t times those of A. Let d(t) := d(D(B(t)),D′(B(t))) denote
the distance between D(B(t)) and D′(B(t)). Then d(0) = d(D)≥ d(t)≥ d(A) = d(1)> 0 (since the discs
are closed and the function t 7→ d(t) is decreasing). Since the eigenvalues of B(t) are continuous functions
of t (this is proved below), for any eigenvalue λ (t) of B(t) in D(B(t)) , its distance δ (t) := d(λ (t),D′(t))
is also continuous. Obviously δ (t)≥ d(t)≥ d(1)> 0 for all t ∈ [0,1] and in particular, δ (0)≥ d(1)> 0.
Note that since the assertion is obviously true for the diagonal matrices, there are exactly k eigenvalues
λ1(0), . . . ,λk(0) of D in D(D). We shall use this and the continuity of the function ,δ to show that the
eigenvalues λ1(1), . . . ,λk(1) of A are in D(D). For this we fix i ∈ {1, . . . ,k} and put λ (t) := λi(t). Suppose
on the contrary that λ (1) ∈ D′(A) = D′(B(1)). Then δ (1) = 0, and hence δ (0)≥ d(0)> d(1)> 0 = δ (1).
Therefore by Intermediate value Theorem (see Footnote 4 in Exercise 10.7) there exists a t0 ∈ (0,1) such that
δ (t0) = d(1). But, then δ (t0) = d(1)< d(t0)≤ δ (t0), which is impossible. This proves the assertion.

Now we shall indicate the proof of the assertion : The zeros of a monic complex polynomial are continuous
functions of its coefficients, which is used in the above proof. More precisely :
Lemma Let λ be a zero of the polynomial Xn +an−1Xn−1 + · · ·+a0 ∈ C[X ] of multiplicity m. Further, let
ε > 0 be given. Then there exists a δ > 0 such that all polynomials Xn +bn−1Xn−1 + · · ·+b0 ∈ C[X ] with
|bi−ai| ≤ δ for i = 0, . . . ,n−1 have at least m, zeroes in the (open) disc B(λ ;ε), every zero is counted
with its multiplicity.
Proof. We consider the continuous map Φ : Cn → Cn, which maps every n-tuple of complex numbers
(λ1, . . . ,λn) to the n-tuple (a0, . . . ,an−1) of the coefficients (other than the leading coefficient) of the poly-
nomial (X−λ1) · · ·(X−λn). Then Φ is surjective by the Fundamental Theorem of Algebra5, and the fibre
of Φ passing through the n-tuple (λ1, . . . ,λn) is the set of all n-tuples σ(λ1, . . . ,λn) = (λσ−11, . . . ,λσ−1n) ,
σ ∈ Sn . Further, if A ⊆ Cn is a closed subset, then its image Φ(A) is also closed subset. For, if Φ(xν) ,
ν ∈N, xν ∈ A, is a convergent sequence in Φ(A) , then xν ∈ A, is a bounded sequence by the Exercise6 and
hence by the Bolzano-Weierstrass Theorem7 xν , ν ∈N, has a convergent subsequence. We may therefore
assume that xν , ν ∈ N, is already convergent. Then, if x := limxν ∈ A, then Φ(x) = limΦ(xν) ∈ Φ(A) .
Therefore it follows that: If U ⊆ Cn open, then its image Φ(U) is also open. The complement of Φ(U) in Cn

is Φ
(
Cn−

⋃
σ∈Sn

σ(U)
)

and hence it is closed by the above proof.
Let Xn+an−1Xn−1+ · · ·+a0 = (X−λ1) · · ·(X−λn) and ε > 0 be given. Then Φ

(
B(λ1 ;ε)×·· ·×B(λn ;ε)

)
is an open neighbourhood of (a0, . . . ,an−1) , which contains a product B(a0 ;δ )×·· ·×B(an−1 ;δ ) of discs
with δ > 0. This proves the assertion. •)

4The c o n d i t i o n n u m b e r of a square non-singular matrix A is defined by condA = ||A|| · ||A−1|| . By
convention, condA= ∞ if A is singular. It is therefore a measure of how close a matrix is to being singular. A matrix
with large condition number is nearly singular, whereas a matrix with condition number close to 1 is far from being
singular. It is obvious from the definition that a nonsingular matrix and its inverse have the same condition number.

5Fundamental Theorem of Algebra ( d ’ A l e m b e r t – G a u s s ) Every non-constant polynomial f ∈ C[X ]
has a zero in C. — d ’ A l e m b e r t , J . ( 1 7 1 7 – 1 7 8 3 ) was a a French mathematician who was a pioneer in
the study of differential equations and their use of in physics. He studied the equilibrium and motion of fluids. —
G a u s s , C . F . ( 1 7 7 7 – 1 8 5 5 ) was a German mathematician who worked in a wide variety of fields in both
mathematics and physics including number theory, analysis, differential geometry, geodesy, magnetism, astronomy and
optics. His work has had an immense influence in many areas.

6Exercise Let f = a0 +a1x+ · · ·+an−1xn−1 + xn be a monic polynomial in C[X ]. Then for every zero α of f in
C prove the estimates :
(a) |α| ≤Max (1, |a0|+ · · ·+ |an−1|) .
(b) |α| ≤Max (|a0|,1+ |a1|, . . . ,1+ |an−1|) .
(c) (C a u c h y ’ s E s t i m a t e s) |α| ≤ 2R mit R := Max (|aν |1/(n−ν),ν = 0, . . . ,n−1) . ( Hint : From |α|> 2R
and f (α) = 0, we get |α|n = |a0 + · · ·+an−1αn−1| ≤ ∑

n−1
ν=0 Rn−ν |α|ν = R

(
|α|n−Rn

)/(
|α|−R

)
< |α|n, a

contradiction. )
7 Theorem ( B o l z a n o - W e i e r s t r a s s ) Every bounded sequence of real numbers has a limit point.
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