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S u p p l e m e n t 5

Linear Maps

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S5.1 Determine whether the following maps are R-linear:
(a) f :R2→R2 with f (x1,x2) := (x2

1 , x2) .
(b) f :R2→R2 mit f (x1,x2) := (x1 +1 , 0) .
(c) f :R2→R2 with f (x1,x2) := (x1 + x2 , x1) .
(d) f :R3→R2 with f (x1,x2,x3) := (|x1− x2| , 2x3) .
(e) f :R3→R2 with f (x1,x2,x3) := (3x1 +2x2 , x1 + x3) .

S5.2 Determine whether the following maps f on the K-vector space C∞
K(I) of infinitely many

times differentiable K-valued functions on the interval I ⊆R into itself are K-linear:
(a) f (x) := anx(n)+ · · ·+a1ẋ+a0x+b (an, . . . ,a0,b ∈ C∞

K(I) fixed).
(b) f (x) := x2 + ẋ2.

(c) f (x) := (t 7→ x(t0)+
∫ t

t0
x(τ)a(τ)dτ) (t0 ∈ I and a ∈ C∞

K(I) fixed).

S5.3 (a) The complex conjugation z 7→ z̄ of C into itself is R-linear, but not C-linear.

(b) The maps z 7→ Re z and z 7→ Im z are R-linear forms on C.

S5.4 For the following linear maps f compute the bases for Ker f and Im f .
(a) f :R3→R3 with f (x1,x2,x3) := (x1 +2x2 + x3,x1 +3x2 +2x3,x1 + x2) .
(b) f :R4→R3 with f (x1,x2,x3,x4) :=(x1 +3x2−2x3 + x4,x1 +4x2−x3 +3x4,2x1 +3x2−7x3−4x4).

(c) f :R3→R4 with f (x1,x2,x3) := (x1 +3x2 +3x3,−2x1−3x3,−x1 + x2− x3,3x1− x2 +4x3) .

(d) f :R5→R4 with f (x1,x2,x3,x4,x5) :=
(2x1− x2− x3 + x4,−x1 + x3 + x4 + x5,x2− x3− x4,x1 + x2−2x3 + x4 +2x5) .

S5.5 Let V :=K[t] be the K-vector space of K-valued polynomial functions on K. Which of the
following maps f : V →V are K-linear ? Find the bases for Ker f and Im f for those f which are
K-linear.
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(a) f (x) := x(n) = (the n-th derivative of x, n ∈N.)
(b) f (x) := x(0)+ ẍ.

(c) f (x) := (t 7→
∫ t

0
τ ẋ(τ)dτ ).

(d) f (x) := P(D)x , where P(t) ∈K[t] is a monic polynomial1 and D is the differential operator
x 7→ ẋ. ( Remark : See also Supplement S3.18. )

S5.6 Let h : D→ D′ be an arbitrary map. For every field K, the map h∗ : KD′ → KD defined by
g 7→ g◦h is K-linear. Describe the functions in Kerh∗ and in Im h∗. Show that h∗ is injective (resp.
surjective) if and only if h is surjective (resp. injective).

S5.7 A map f :V →W of Q-vector spaces V and W is already Q-linear if it is additive. The
corresponding assertion also holds for vector spaces over the fields Kp =Z/Z p, where p is a prime
number.

S5.8 For every K–vector space V , the map f 7→ f (1) is a K-isomorphism of HomK(K,V ) onto V .

S5.9 Show that the following linear maps fi :R3→R2, i = 1,2,3, in HomR (R3,R2) are linearly
independent: f1 : (x1,x2,x3) 7→ (x1 + x2 + x3,x1 + x2) , f2 : (x1,x2,x3) 7→ (x1 + x3,x1 + x2) , f3 :
(x1,x2,x3) 7→ (2x2,x1).

S5.10 Let K′ be a subfield of the field K, V be a K′-vector space and W be a K-vector space. Then
W is a K′-vector space in a natural way. With this vector space structure HomK′ (V,W ) is even a
K-subspace of WV .

†S5.11 ( C h a r a c t e r s ) In this exercise we give generalization of the Lemma of Dedekind-Artin
(see Exercise 5.5). Let M be a monoid and et K be a division ring (not necessarily commutative ring
with K× = Kr{0}, i. e., every non-zero element have multiplicative inverse).
(a) Let ϕ1, . . . ,ϕr ∈ KM be characters of M with values in K which are linearly independent over
K. If a linear combination ϕ = a1ϕ1 + · · ·+arϕr with coefficients a1, . . . ,ar ∈ K is also a character
of M with values in K, then ϕ = κaiϕi for every i with ai 6= 0. (Hint : Note that: for all x,y ∈M, on
one side, we have

ϕ(xy) = a1ϕ1(xy)+ · · ·+arϕr(xy) = a1ϕ1(x)ϕ1(y)+ · · ·+arϕr(x)ϕr(y)
and the other-side

ϕ(xy) = ϕ(x)ϕ(y) = a1ϕ(x)ϕ1(y)+ · · ·+arϕ(x)ϕr(y) .)

(b) Let M = G be a group. Then a character G→ K is then a group homomorphism G→ K×

and the group Hom(G,K×) of characters is a subgroups of (K×)G. If G is finite and χ :G→ K×
is not a trivial character, then ∑x∈G χ(x) = 0. (Hint : If y ∈ G is an element with χ(y) 6= 1K , then

∑x∈G χ(x) = ∑x∈G χ(xy) =
(

∑x∈G χ(x)
)

χ(y) , and hence ∑x∈G χ(x) = 0, since χ(y) 6= 1. — Remark : The

group Hom(G,C×) of characters with values in the field C is called the c h a r a c t e r g r o u p of G and
is denoted by Ĝ. This group plays an important roll is the study of abelian groups.)

S5.12 Some simple applications of the Lemma of Dedekind-Artin (see Exercise 5.5.)
(a) Let K be a field. The maps K→ K, t 7→ tn, n ∈N, are the only polynomial maps of K into itself
which are also characters of the multiplicative monoid of K with values in K. More generally : The
functions t 7→ tn, n ∈ Z, are the only group homomorphisms of K×→ K×, which are also rational
functions on K×. ( Hint : The case that K is finite should be treated separately ; in this case use the fact
that the multiplicative group K× is cyclic. )
(b) The functions t 7→ expat, a ∈ C, of R in C are linearly independent over C.
(c) Let K be a field. The sequences (aν)ν∈N, a ∈ K, are linearly independent over K. In particular,
the R-vector space RN is uncountable dimensional. ( Remark : See also Exercise 3.4 (a). )

1A polynomial P(t) = ∑
n
i=0 ait i ∈ K[t] of degree n over a field K is called a m o n i c p o l y n o m i a l if the

leading co-efficient an = 1.
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†S5.13 ( C o n t i n u o u s c h a r a c t e r s o f R a n d C ) The aim of this Supplement is to
describe all continuous characters of the fields of real and complex numbers.
(a) Every continuous character χ :R× → R× is either of the form x 7→ |x|β or of the form
x 7→ |x|β Signx with a (uniquely determined) β ∈R.
(b) Every continuous character χ :C×→ C× is of the form z 7→ |z|αzn with (uniquely determined)
elements α ∈ C and n ∈ Z.
(c) The functions z 7→ zn, n ∈ Z, are the only continuous endomorphisms of the circle-group
S1 := {z ∈ C | |z|= 1} . In particular, identity S1→ S1, z 7→ z and the inverse-mapping S1→ S1,
z 7→ z−1 are the only continuous automorphisms of S1. ( Hint : Use parts (a) and (b) above. )

†S5.14 Let S1 be the circle-group {z ∈ C | |z|= 1} .
(a) Every continuous character S1→ C× and every complex-analytic character C×→ C× is of the
form z 7→ zn with a unique n ∈ Z.
(b) Every continuous group homomorphism C×→ S1 is of the form z 7→ |z|−n+iγzn with a unique
γ ∈R and n ∈N.
(c) Every continuous character (C,+)→ C× is of the form z 7→ eαzeβ z̄ with a unique α,β ∈ C.
Further, its image is contained in S1 respectively, in R×, if and only if β =−ᾱ respectively, β = ᾱ .
Moreover, it is complex-analytic if and only if β = 0.
(d) Every continuous group homomorphism C×→ (C,+) is of the form z 7→ β ln |z| with a β ∈ C.
Every continuous group homomorphism S1→ (C,+) and every complex-analytic group homomor-
phism C×→ (C,+) is trivial.

†T5.15 Let I ⊆R be an interval with more than one point and a ∈ I. Let Ta :C∞
K(I)→K[[t−a]] be

the map which maps every function f ∈ C∞
K(I) to itsT a y l o r - s e r i e s of f at a, i. e.,

Ta( f ) =
∞

∑
k=0

f (k)(a)
k!

(t−a)k .

Show that Ta is aK-linear map of C∞
K(I) in the spaceK[[t−a]] of all (formal) power series in (t−a)

with coefficients in K. The kernel of Ta is the space of all p l a t e f u n c t i o n s a t a. Further,
show that Ta is surjective.
(Remarks : The kernel of Ta is the space of all so-called p l a t e f u n c t i o n s a t a. 2 — An infinitely
many times differentiable function f : I → C is called p l a t e a t p o i n t a ∈ I, if f (n)(a) = 0 for all
n ∈N. There are functions which are plate at a point, but are not identically zero in any neighbourhood of
this point. Such a function cannot be analytic; for example, the function f :R→R defined by

f (x) :=
{

e−1/x, if x > 0,
0, if x≤ 0.

is infinitely many times differentiable and it is plate at 0.
Furthermore, Ta is surjective. This is immediate from the following classical theorem 3 of real analysis
which is proved in 1895 by the French mathematician B o r e l , É m i l e F é l i x É d o u a r d - J u s t i n
(1871-1956) in his PhD thesis. )

2Let f :D→ C be an analytic function on an interval D⊆R or a domain D⊆ C. If the derivatives f (n)(a) of f at
a point a ∈ D are zero, then by the Taylor’s formula the function f vanishes in a neighbourhood of a and hence by
the identity theorem f is identically 0 on the whole D. The analogous result does not hold for infinitely many times
differentiable functions defined on an interval I ⊆R.

3Theorem( B o r e l ) For every sequence an, n ∈N, of real or complex numbers there exists an infinitely many
times differentiable function f on R with values in R resp. C such that for all n ∈N gilt: f (n)(0) = an .
A proof of Borel’s theorem require a construction of so-called h a t - f u n c t i o n s if it satisfies properties stated in
the following theorem : Let a,a′,b′,b ∈R with a<a′<b′<b. Then there exists an infinitely many times differentiable
function h :R→R such that h(t) = 0 for t 6∈ [a ,b] , h(t) = 1 for t∈ [a′,b′] and 0<h(t)<1 otherwise.
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S5.16 (A l g e b r a s a n d A l g e b r a h o m o m o r p h i s m s) Let K be a field (or, moregen-
erally, a commutative ring).
(a) ( A l g e b r a o v e r K ) A vector space A over K together with a multiplication (need not be
commutative) A×A→ A, (x,y) 7→ xy, is called an a l g e b r a o v e r K, or a K-a l g e b r a if
the following compatibility conditions hold :
(1) A is a ring with the vector space addition and the given multiplication.
(2) For all a,b ∈ K and all x,y ∈ A, we have : (ax)(by) = (ab)(xy) .
(b) ( A l g e b r a - H o m o m o r p h i s m s ) If A and B are two K-algebras, then a map ϕ :A→ B
is called a K-a l g e b r a h o m o m o r p h i s m if :
(1) ϕ is a K-vector space homomorphism.
(2) ϕ is compatible with the multiplications on A and B, i. e., ϕ(xy) = ϕ(x)ϕ(y) for all x,y ∈ A
and moreover, ϕ(1A) = 1B .
(c) Every K-algebra homomorphism is, in particular, a ring homomorphism.
(d) Let V be a K-vector space. Then EndKV is a K-Algebra and its unit group (EndKV )× is the
automorphism-group AutKV von V .

S5.17 ( F u n c t i o n - A l g e b r a s ) An important class of (commutative) algebras is the class
of function-algebras. For an arbitrary field K and an arbitrary set D, the set KD of all K-valued
functions on D is a commutative K-algebra in a natural way and the s u b s t i t u t i o n m a p s
KD→ K, x 7→ x(t0), for a fixed t0 ∈ D, are K-algebra-homomorphisms. All examples of subspaces
given in Supplement S2.10 and Exercise 2.1 (a) are even subalgebras of the algebra of the type KD.
There by a subset A′ of a K-algebra A is called a (K-) s u b a l g e b r a o f A , if A′ is a K-subspace
as well as a subring of A.

S5.18 Let A be a K-Algebra. The map A→ EndKA, λ :x 7→ λx (where λx is the left-multiplication
by x) is an injective K-algebra-homomorphism of A in EndK(A) . Therefore, every K-algebra A is
(up to isomorphism) a subalgebra of the endomorphism-algebra of a K-vector space V . Moreover,
if A has finite dimension n, then one can also choose V of dimension n.

S5.19 Let K be a field.
(a) Every 1-dimensional K-algebra is isomorphic to K.
(b) Every two-dimensional K-algebra A has a basis of the form 1,x and hence it is commutative. The
square x2 is a linear combination x2 = α +βx of 1 and x, and using this equation the multiplication
in A is uniquely determined. (Typical Example: C with the basis R-basis 1, i and the equation
i2 =−1.) The trivial subalgebras K = K ·1A and A are the only subalgebras of A.

S5.20 Let A be a K-algebra and x ∈ A. The smallest K-subalgebra of A, containing x, is the
subalgebra K[x] := ∑i∈NKxi of all linear combinations of the powers xi, i ∈N, of x. Show that :
(a) The K-subalgebra K[x] is a finite dimensional K-algebra if and only if the powers xi, i ∈ N,
linearly dependent over K.
(b) If K[x] is finite dimensional and DimKK[x] = n, then 1,x, . . . ,xn−1 a K-vector space basis
of K[x] . In this case x is called a l g e b r a i c over K (o f d e g r e e n). If K[x] is infinite
dimensional, then x is called t r a n s c e n d e n t a l o v e r K. If A is finite dimensional with
DimKA = m , then every element of A is algebraic over K of degree ≤ m .

S5.21 Let I be a set. Show that:

Hat-functions are very useful for many constructions in analysis.
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(a) The K-algebra KI is c y c l i c or m o n o g e n i c, i. e., KI = K[x] for some x ∈ KI if and only
if I finite and the map x : I→ K injective.
(b) A map x ∈KI is algebraic over K (see Supplement S5.20 (b)) if and only if x attains only finitely
many values. Moreover, in this case the degree of x over K is equal to the number of elements |x(I)|
of these values.

S5.22 Let I be a finite set and A be a K-subalgebra of the function-algebra KI . Show that A = KI if
and only if A separates the points of I, i. e., if for every i, j ∈ I with i 6= j, there exists an element
x ∈ A such that x(i) 6= x( j). Using this result once again prove the assertion in Supplement S5.20 (a).
( Hint : Suppose that A separates the points. Then, for every fixed i ∈ I and for each j 6= i choose x j ∈ A such
that a j := x j( j) 6= x j(i). Then ∏ j 6=i(x j−a j) ∈ A is a function, which vanishes on I−{i} and takes the value
6= 0 at i. )

S5.23 Let I be a finite set.
(a) For every K-subalgebra A of KI , the relation RA on I, defined by (i, j) ∈ RA if and only if
f (i) = f ( j) for every f ∈ A, is an equivalence relation on I.
(b) For every equivalence relation R on I, AR := { f ∈KI | f constant on the equivalence classes of R}
is a K-subalgebra of KI . (The indicator functions eJ of the equivalence classes J form a K-basis of AR.)

(c) Show that the maps A 7→ RA and R 7→ AR are inverse-maps from the set of all K-subalgebras of
KI onto the set of all equivalence relations on I. In particular, the number of K-subalgebras of KI is
equal to the Bell’s number β|I| . ( Hint : Apply Supplement S5.22. )

S5.24 (T r i g o n o m e t r i c P o l y n o m i a l s) Let ω ∈ R×+ be fixed. Then the C-subspace
∑n∈ZCeiω nt is a C-subalgebra of Cω

C(R) . It is the smallest C-subalgebra C[sinω t , cosω t ] of
Cω
C(R) , containing the functions sinω t and cosω t and the functions 1; sinnω t , cosnω t , n ∈N∗,

form a C-basis. These functions also form a R-basis of the R-subalgebra R[sinω t ,cosω t ] of the
R-valued functions in C[sinω t ,cosω t ] . (The algebras C[sinω t ,cosω t ] and R[sinω t ,cosω t ]
are called the algebras of the t r i g o n o m e t r i c p o l y n o m i a l s corresponding to the
basic-frequency ω .)

S5.25 Let A be a K-algebra (not necessarily commutative) and a ∈ A× be a unit in A. Then the map
A→ A, κa :x 7→ axa−1 is an K-algebra-automorphism of A. This is called the c o n j u g a t i o n
by a or the i n n e r a utomorphism by a. The map a 7→ κa from A× into the group Aut K−algA of
the K-algebra-automorphisms of A is a group homomorphism with the kernel A×∩Z(A) = Z(A)×,
where Z(A) denote the c e n t e r of A, which is the K-subalgebra of those elements a ∈ A, which
commute with all elements of A.

S5.26 Let K be a finite field with |K| = q. Show that the polynomials functions K→ K, t 7→ t i,
i = 0, . . . ,q−1, form a K-basis of the K-algebra PolK(K) of all polynomial functions from K into
K. Every function K→ K is a polynomial function, i. e., KK = PolK(K). (Note that xq = x for all
x ∈ K, see also Supplement S2.9, Exercise 2.4.)

S5.27 Let A be an algebra over an infinite field K which has only finitely many K-subalgebras.
Then show that A is a finite dimensional K-vector space and is monogenic K-algebra, i. e., A = K[x].
In particular, A is commutative. (If A1, . . . ,An are proper K-subalgebras of A, then choose x ∈ Ar(∪n

i=1Ai),
see Exercise 2.2.)
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