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S u p p l e m e n t 7

Direct Sums and Projections ; — Dual spaces

To understand and appreciate the Supplements which are marked with the symbol † one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.
Participants may ignore these Supplements — altogether or in the first reading!!

S7.1 In the following examples determine whether the vector space R3 respectively R4 are the
direct sums of the subspaces U and W :
(a) U := {(a1,a2,a3) | a1 +a2 +a3 = 0,a2 = a3} ; W := {(a1,a2,a3) | a1 +2a2 = 0,a1 = a3} .
(b) U := {(a1,a2,a3) | a1 +a2 +a3 = 0} ; W := {(a1,a2,a3) | a1 +2a2 = 0} .
(c) U := {(a1,a2,a3) | a1 +a2 +a3 = 0, a2 = a3} ; W := {(a1,a2,a3) | a1 = a3} .
(d) U :={(a1,a2,a3,a4) | a1+a3=0, a2+a4=0} ; W :={(a1,a2,a3,a4) | a1 +a2=0, a1 +a4=0} .

S7.2 Show that the sum ∑
n
i=1Ui of subspaces U1, . . . ,Un of the K-vector space V is direct if and

only if (U1 + · · ·+Ui)∩Ui+1 = 0 for i = 1, . . . ,n−1.

S7.3 Let Ui , i ∈ I be a family of subspaces of the K-vector space V , let I j , j ∈ J be a partition of
the indexed set I and let Wj := ∑i∈I j Ui , j ∈ J . The following statements are equivalent :
(i) The sum of the Ui , i ∈ I is direct.
(ii) For every j ∈ J the sum of the Ui , i ∈ I j , is direct and the sum of the Wj , j ∈ J, is direct.

S7.4 Let W be a complement of the subspace U in the K-vector space V . For every subspace V ′ of
V with U ⊆V ′, show that the subspace W ∩V ′ is a complement of U in V ′.

S7.5 Suppose that the K-vector space V is the direct sum of its subspaces U and W . If V =U ′+W ′

with subspaces U ′ ⊆U and W ′ ⊆W , then show that U ′ =U and W ′ =W .

S7.6 A linear operator f on a K-vector space V is called an i n v o l u t i o n of V if f 2 = idV .
Let InvKV (resp. ProjKV ) denote the set of all involutions (resp. projections) of V . Suppose that
CharK 6= 2, i. e ., 2 = 1K +1K 6= 0. Then the map γ : ProjKV → InvKV defined by p 7→ idV −2p is
bijective. Further, for p ∈ ProjKV show that
(a) Im p = Ker(id+ γ(p)) and Ker p = Ker(id− γ(p)) .
(b) For an involution f = γ(p) of V there is a direct sum decomposition :

V =V−⊕V+
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where V− := {x ∈V | f (x) =−x}= Im p and V+ := {x ∈V | f (x) = x}= Ker p .

S7.7 If U1, . . . ,Un are finite dimensional subspaces of the K-vector space V , then show that

DimK (U1 + · · ·+Un)≤ DimK U1 + · · ·+DimK Un .

Moreover, the above inequality is an equality if and only if the sum ∑
n
i=1Ui is direct.

S7.8 The K-vector space KR (resp. KK ) of the K-valued functions on R (resp. C) is the direct
sums of the K-subspaces Weven and Wodd of all even and all odd functions, respectively. ( Hint :
See Exercise 2.1 (b). )

S7.9 Let p be a projection and let f be an arbitrary operator on the K-vector space V .
(a) p and f commute (i. e., f p = p f ) if and only if the subspaces Im p and Ker p are invariant
under f , i. e., f (Im p)⊆ Im p and f (Ker p)⊆ Ker p .
(b) The subspace Im p is invariant under f if and only if f p = p f p .
(c) The subspace Ker p is invariant under f if and only if p f = p f p .

S7.10 Let p1, . . . , pn be distinct pairwise commuting projections of the K-vector space V . Then
show that the composition p := p1 · · · pn is a projection of V with

Im p = (Im p1)∩·· ·∩ (Im pn) and Ker p = (Ker p1)+ · · ·+(Ker pn) .

Further, show by examples that the composition p1 p2 of two projections can be a projection without
the condition that p1 and p2 commute.

S7.11 Let p1, . . . , pn be distinct pairwise commuting projections of the K-vector space V and let
q1 := idV − p1, . . . ,qn := idV − pn be the complementary projections.
(a) Show that the projections p1, . . . , pn , q1, . . . ,qn are pairwise commuting.
(b) For H = {i1, . . . , ir} ⊆ {1, . . . ,n} with i1 < · · · < ir, let pH := pi1 · · · pir and qH := qi1 · · ·qir .
Show that

idV = ∑
H∈P({1,2,...,n})

pHqH ′ ,

where H ′ :={1, . . . ,n}rH is the complement of H in {1, . . . ,n}. ( Hint : idV =(p1+q1) · · ·(pn+qn). )
(c) Show that V is t he direct sum of the subspaces

UH :=
(⋂

i∈H

Im pi

)
∩
(⋂

i 6∈H

Ker pi

)
, H∈P({1, . . . ,n}) .

( Hint : For H,L⊆ {1, . . . ,n} with H 6= L, we have pH qH ′ pL qL ′ = 0. )

S7.12 Let p1, . . . , pn be distinct pairwise commuting projections of the K-vector space V . Then by
Supplement S7.11 (c), V is the direct sums of the subspaces

U1 := Im p1∩ Im p2 , U2 := Im p1∩Ker p2 , U3 := Ker p1∩ Im p2 , U4 := Ker p1∩Ker p2 .

For all 16 subsets S⊆ {1,2,3,4} give (with the help of p1 and p2) the projection onto ∑i∈SUi along
∑i 6∈SUi.

S7.13 Let p and q be projections of the K-vector space V .
(a) Suppose that CharK 6= 2, i. e., 2 = 1K +1K 6= 0 in K. Then show that p+q is a projection of
V if and only if pq = qp = 0. Moreover, in this case vspace*-2mm

Im (p+q) = Im p⊕ Im q and Ker(p+q) = (Ker p)∩ (Kerq) .

(b) Suppose that CharK = 2. Then show that p+q is a projection of V if and only if pq = qp .
Moreover, in this case
Im (p+q) = (Im p∩Kerq)⊕ (Im q∩Ker p) and Ker(p+q) = (Im p∩ Im q)⊕ (Ker p∩Kerq) .
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S7.14 Let p and q be projections of the K-vector space V . Show that p and q have the same image
if and only if pq = q and qp = p .

S7.15 Suppose that U and U ′ are two complements of the subspace W of the K-vector space V
and p denote the projection of V onto U along W . Then show that the restriction p |U ′ : U ′→U is
an isomorphism.

S7.16 Let vi , i ∈ I be a basis of the finite dimensional K-vector space V and let U be a subspace of
V . Then show that there exists a subset J of I such that the projection pJ onto VJ := ∑i∈J Kvi along
VI \J = ∑i∈I\J Kvi induces an isomorphism of U onto VJ . ( Remark : This assertion is true even if I is
not a finite set. )

S7.17 Let f : V → V ′ be a homomorphism of K-vector spaces. Show that W ⊆ V is a direct
summand of Ker f in V if and only if f induces an isomorphism f |W :W → Im f of W onto Im f .

S7.18 Let V be a K-vector space and let f1 : U1 → V , f2 : U2 → V be two surjective homo-
morphisms of K-vector spaces. Further, let f : U1⊕U2→ V be the homomorphism defined by
f (x1,x2) := f1(x1)+ f2(x2) , x1 ∈U1, x2 ∈U2. Then show that

Ker f1⊕U2 ∼= Ker f ∼=U1⊕Ker f2 .

S7.19 Let V be a two dimensional K-vector space with basis x,y. Show that the complements of
the line Kx in V are the distinct lines of the form K(ax+ y) , a ∈ K.

S7.20 Suppose that the K-vector space V is the direct sum of the subspaces U and W . Further,
let V ′ be another K-vector space and let f :V →V ′ be a linear map of K-vector spaces such that
f |W : W → Im f is bijective (see Supplement S7.17). Then show that there exists a unique K-linear
map g :U →W such that Ker f = Γ(g) = {u+w | u ∈U,w = g(u)} . (Remark : In this case the
equation w = g(u) is called the s o l u t i o n o f t h e e q u a t i o n f (x) = 0, x ∈V , a l o n g w ∈W .
This is the linear version of the Theorem on implicit functions from Analysis.)

S7.21 Let V be a finite dimensional K-vector space and let f : V →V be an operator on V . Show
that f is a projection of V if and only if there exists a basis x1, . . . ,xn of V such that f (xi) = xi ,
i = 1, . . . ,r, and f (xi) = 0, i = r+1, . . . ,n. (Remark : Analogous assertion holds even if V is not finite
dimensional, formulate this assertion and prove it.)

S7.22 Let V be a finite dimensional K-vector space and let f : V →V be an arbitrary operator on
V . Show that there exists an automorphism g : V →V of V and projections p,q : V →V on V such
that f = pg = gq. (Hint : Extend a basis of Ker f to a basis of V . — In general, such a representation does
not exists for operators on infinite dimensional vector spaces. Example?)

S7.23 Let f : V → V ′′ be a surjective K-linear map, let U ⊆ V be a K-subspace of V and let
f |U : U →V ′′ be the restriction of f to U . Then show that
(a) f |U is injective if and only if U ∩Ker f = 0.
(b) f |U is surjective if and only if U +Ker f =V .
(c) f |U is an isomorphism if and only if V =U⊕Ker f , i. e., U is a complement of Ker f in V .

†S7.24 Let E be an affine space over the K-vector space V and let U,W be subspaces of V . Show
that
(a) Any two affine subspaces F and F ′ of E which are parallel to U and W , respectively, intersects
if and only if V is the sum of U and W .
(b) Any two affine subspaces F and F ′ of E which are parallel to U and W , respectively, intersects
exactly in a point if and only if V is the direct sum of U and W .
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†S7.25 Let f : V → V ′′ be a surjective K-linear map and let W be its kernel. Then the set of all
complements U of W in V is an affine space over the K-vector space HomK(V ′′,W ) with respect to
the operation HomK(V ′′,W )×C(W,V )→ C(W,V ) , (h,U) 7−→ h+U :=

{
h
(

f (x)
)
+ x

∣∣ x ∈U
}

,
h ∈ HomK(V ′′,W ) .

S7.26 For a subspace U of V , the following statements are equivalent:
(i) U 6=V and there exists a v ∈V , such that V =U +Kv.
(i′) There exists a v ∈V , v 6= 0, such that V =U⊕Kv.
(ii) There exists a linear form f 6= 0, on V such that U = Ker f . (Remark: The subspaces U with these
properties are called h y p e r p l a n e s in V .)

S7.27 Suppose that V is not finite dimensional and let vi , i ∈ I be a basis of V . Further, let v∗i ,
i ∈ I be the coordinate functions with respect to the basis vi i ∈ I and W := ∑i∈I Kv∗i ⊆V ∗ be the
subspace of V ∗ generated by v∗i , i ∈ I. (Consider in particular, the concrete situation V := K(I), vi := ei ,
i ∈ I with V ∗ ∼= KI , W ∼= K(I) ⊂ KI .)

(a) The linear form ∑i∈I aivi 7−→ ∑i∈I ai on V does not belong to W . In particular, W 6=V ∗ and v∗i ,
i ∈ I is not a basis of V ∗.
(b) ◦W = 0 and so (◦W )◦ =V ∗ 6=W .
(c) The canonical homomorphism σV :V →V ∗∗ is not surjective.

S7.28 Let v1, . . . ,vn be a basis of V . For a1, . . . ,an ∈ K, find a basis of the kernel of the linear form
a1v∗1 + · · ·+anv∗n.

S7.29 If V ∗ is finite dimensional, then V is finite dimensional.

S7.30 Suppose that V is a finite dimensional. Then show that for every basis fi, i ∈ I of V ∗, there
exists a (unique) basis vi, i ∈ I of V such that fi = v∗i , i ∈ I.

S7.31 Suppose that V is a finite dimensional. Then (analogous to 5.G.9 show that DimU =
Codim(U◦,V ∗) for every subspace U ⊆ V . ( Remark : It is enough to assume that U is finite dimen-
sional. )

S7.32 Suppose that V is a finite dimensional. For subspaces U1,U2 ⊆V (resp. W1,W2 ⊆V ∗), show
that (i) (U1 +U2)

◦ =U◦1 ∩U◦2 , (ii) (U1∩U2)
◦ =U◦1 +U◦2 , (iii) ◦(W1 +W2) =

◦W1∩ ◦W2,
(iv) ◦(W1∩W2) =

◦W1 +
◦W2 .

S7.33 Let r ∈ N. The maps W 7→ ◦W and U 7→U◦ are inverses of each other on the set of all
r-dimensional subspaces W of V ∗ and the set of all r-codimensional subspaces U of V . (Remark: A
subspace U ⊆V is called r-c o d i m e n s i o n a l in V if one (and hence every) of the complement of U in
V is r-dimensional. — the map U 7→U◦ from the set of all r-dimensional subspace U of V into the set of all
r-codimensional subspaces of V ∗ (see Supplement S7.31) is injective by 5.G.7. But not surjective in the case
when V is not finite dimensional.)

S7.34 A K-linear map f : V →W be a homomorphism of K-vector spaces is equal to 0 if and only
if the dual map f ∗ :W ∗→V ∗ is the 0 map.

S7.35 Let f : V → W be a homomorphism of K-vector spaces. The kernel of the dual map
f ∗ : W ∗→ V ∗ is the space of all linear forms g : W → K on W , which vanish on the Im f , i. e.,
Ker f ∗ = (Im f )◦. The image of f ∗ is the space of all linear forms V → K, which vanish on the
Ker f , i. e., Im f ∗ = (Ker f )◦.

S7.36 Let K be a subfield of the field L.
(a) A family fi ∈ KD, i ∈ I of K-valued functions on D is linearly independent over K if and only
if the family fi , i ∈ I as a family in LD of L-valued functions on D is linearly independent over L.
Further, show that

Dim K
(
∑
i∈I

K fi
)
= Dim L

(
∑
i∈I

L fi
)

for an arbitrary family fi ∈ KD , i ∈ I .
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(b) Let W be a K-subspace of the K-vector space KD and L ·W be the L-subspace of the L-vector
space LD generated by W . Then show that KD ∩ L ·W = W . (Hint : Let f ∈ KD ∩ L ·W , but
f 6∈W . Then f can be expressed as f = c1 f1 + · · ·+cr fr with c1, . . . ,cr ∈ L and linear independent functions
f1, . . . , fr ∈W . Then f , f1, . . . , fr are linearly independent over K, but are linearly dependent over L, a
contradiction!)

S7.37 ( C - a n t i - l i n e a r f o r m s ) Let V be a C-Vector space. A C-anti-linear map V → C

is called a C-a n t i - l i n e a r f o r m on V . The C-vector space of the C-anti-linear forms on V is
denoted by V ∗.
(a) f :V →C is linear over C if and only if f :V →C (x 7→ f (x) ) is C-anti-linear. The linear forms
fi ∈V ∗, i ∈ I form a C-basis of V ∗ if and only if the C-anti-linear forms fi , i ∈ I form a C-basis of
V ∗.
(b) If vi , i ∈ I is a finite C-basis of V , then v∗i , i ∈ I is a C-basis of V ∗. In particular, DimCV =
DimCV ∗ = DimCV ∗ for every finite dimensional C-vector spaces V .
(c) HomR(V,C) =V ∗⊕V ∗ (⊆ CV ) .

†S7.38 Let K ⊆ L be a field extension and let V be a L-vector space (and hence it is also a K-vector
space by the restriction of scalars). Further, let σ : L→ K be a K-linear form 6= 0. (Remark: Such
a function is also called a g e n e r a l i s e d t r a c e f u n c t i o n. For R⊆ C one may choose σ := Re.
The meaning of trace in this case is 2Re, see Exercise ???) HomK(V,K) is L-vector
space with scalar multiplication (b f )(x) := f (bx) for b ∈ L, x ∈V and f ∈ HomK(V,K) .
(a) Let [L : K] < ∞ . Then the map HomL(V,L) ≈−→ HomK(V,K) defined by f 7→ σ◦ f is an
isomorphism of L-vector spaces. (Hint : With the help of a L-basis of V one can reduce to the case V = L.
In this case use a dimension-argument. For R⊆ C and σ := Re the map g 7−→

(
x 7→ g(x)− ig(ix)

)
is the

inverse map.)

(b) If [L : K] < ∞ . Then every K-subspace U ⊆ V with CodimK(U,V ) = r ∈N is contain a
L-subspace U ′ with CodimL(U ′,V )≤ r. (See Supplement S7.33.)
(c) There exists a Q-hyperplane H in R2 such that H do not contain any R-hyperplane in R2.
( Hint : See Remark 3.A.17. )

†S7.39 Let K be a finite field with card(K) = q (note that q = pm for some m ∈N+, where p :=
CharK) and let V be an n-dimensional K-vector space.
(a) For n ∈N , let αq(n,r) be the number of linearly independent r-tuples (x1, . . . ,xr) ∈V r. For
1≤ r ≤ n , show that

αq(n,r) = q(r−1)r/2
n

∏
i=n−r+1

(qi−1) .

In particular, αq(n,r) depends only on q,n,r and does not depend on K and V . ( Hint : Use induction
on r. )

(b) card(EndK(V )) = qn2
and card(Aut K(V )) = αq(n,n) .

(c) For n ∈N , let βq(n,r) be the number of r-dimensional K-subspaces of V . For 1≤ r≤ n , show
that CharK does not divide βq(n,r) and βq(n,r) = αq(n,r)αq(r,r)−1 . In particular, βq(n,r)
depends only on q,n,r and does not depend on K and V .
(d) The number of projections of V are ∑

n
r=0 βq(n,r)qr(n−r) .

(e) Let H be an elementary abelian p–group 1 of order pn, where p is a prime number. Compute
the number of endomorphisms and automorphisms of H and the number of subgroups.

(f) Let p be a prime number and let n ∈N. For r ∈ Z, let
[

n
r

]
denote the number of subgroups

of order pr in an elementary abelian p–group of order pn. This number is 0 for r < 0 and r > n;

1The additive groups or the vector spaces over the field Kp =Z/Zp are called the e l e m e n t a r y a b e l i a n
p - g r o u p s.
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further, [
n
r

]
=

(pn−1)(pn−1−1) · · ·(pn−r+1−1)
(p−1)(p2−1) · · ·(pr−1)

for 0≤ r ≤ n. (Remark : One can define these numbers by the above properties without any reference to
the groups — and vector spaces. Note the similarity between these numbers and the binomial coefficients :[

n
r

]
=

[
n

n− r

]
, and for n≥ 1, we have the recursion formula :

[
n
r

]
= pr

[
n−1

r

]
+

[
n−1
r−1

]
.)

(g) In the set of subspaces of V which is ordered by the inclusion, the maximal number of elements
which are not comparable is βq(n, [n/2]) .
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