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Supplement 10

Determinants

Permutations , Determinant functions , Determinant of a linear operator , Orientations ,
Determinants and Volumes

To understand and appreciate the Supplements which are marked with the symbol 1 one may possibly require
more mathematical maturity than one may have! These are steps towards applications to various other
branches of mathematics, especially to analysis, number theory and Affine and Projective Geometry.

Participants may ignore these Supplements — altogether or in the first reading!!

S10.1 For n > 3, the symmetric group G, is not abelian and for n > 4, the alternating group 2l,, is
not abelian.

S10.2 (Inversions of a permutation) Inthecase I ={l,...,n} the signature of a
permutation 6 € S(I) = &, can also be computed by counting the so-called inversions.
For o € 6, apair (i,j) €I xIiscalleda inversion of oifi < j, but 6(i) > o(j). The
number of inversions of ¢ is denoted by z(o). For example :

(1) The transposition (i, j) € &,, i < j, has the inversions (i,i+1),...,(i,j); (i+1,j),...,(j—1,j) and
hence z((i, j)) =2(j—i) — 1.
(2) In the permutation ¢ := (
z(o) = (5).

(3) The permutation ¢ := (é%gﬁ) € G5 has the inversions (1,2), (1,4), (3,4) and (3,5) and hence z(c) = 4.

1 2.
nn—1..

'i) € 6, all the pairs (i, j) with 1 <i < j < n inversions and hence

In general, for an arbitrary permutation 6 € &, Signc = (—1)%(%). (Proof : Since by Example (1)
above a transposition has an odd number of inversions, it is enough to prove that: For 6,7 € &, (—1)%°% =
(=1)49) (=1)9), For 6 € &, clearly (—1)°) = [1 Sign(o(j)—o(i)). Therefore (=1%o =
1<i<j<n

[ Sign(o(z())) —o(z(i)) = (-1)? T[] Sign(o(s)—o(r)) = (=1)“? (=1)"°). The second
1<i<j<n 1<r<s<n
equality follows from the fact that exactly there are z(7) pairs (7(i), 7(j)), 1 <i< j <n such that their
components are interchanged and for this we need to consider the set of all pairs (r,s5), 1 <r<s<n.)

S10.3 For the following permutations ¢ find the canonical cycle decompositions, representations
as the product of transpositions, the number of inversions, the signatures, the inverse permutation
o~ ! and the orders (in the permutation group) :
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@ (123 45678091011 12 .
A3 209 8 .

10 12 461 11 7 5) € G12. Moreover, compute the power &

(Ans: Signo =1, Ordo =12.)

10 11 12

51
5 3 9 '

(b) (; 122 ? 140 2 g 171 i 2 ) € G1». Moreover, compute the power ¢
(Ans: Signo =?, Ordoc =77.)

123 456 7 8 9 1011 12 13 14 15
(©) €6is.

(Ans: Signo =?, Ordo =77.)
d) (1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)6620.
15 8 17 4 7 14 20 19 18 13 10 6 11 5 3 12 1 9 2 16
Moreover, compute the power o100, (Ans: Signo =1, Ordo = 84.)

()123456789101112131415161718192066
©\17 1911 6 12 2208 1018 1 13 5 15 9 4 3 4 16 7 20+

Moreover, compute the power ¢'%. (Ans: Signo =1, Ordo = 60 and ¢'? = (5,12,13).)

1 410 12 5 7 11 2 15 14 9 8 6 3 13

S10.4 For a subset J C {1,...,n} with J = {j1,...,jm}, j1 < -+ < jm, let oy be the so-called
shuffle-permutation:

o) — 1 ceoom m'—f—l e cB,.
J1 -+ Jm I cor lpem
where the numbers i; < --- < i,,_p, are the elements of the complement J' of J in {1,...,n}. Show

that the number of inversions of oy is z(oy) = Yo (Ju—H)= <ZZ1:1 ju) — (’";1) . In particular,

Sign(oy) = (—1)%%) . (Hint: See Supplement S10.2.— The set of inversions of o is {(u,V) | u =
IL....m,v=m+1,...,n and j, > iy }.— Remark : In general, it is important and difficult to compute
the order of the shuffle-permutations in the permutation group &,,. For computations of the order of shuffle-
permutations and applications, see the article : [ D. P. Patil and U. Storch : Group Actions and Elementary
Number Theory. J. Indian Inst. Sci. 91 (2011), No. 1, 1-45.1)

S10.5 Let 1, J be two finite sets,
of the following permutations :

(@) (x1,x2) > (x2,x1) of Ix 1.

(b) cwt e S(IWJ) with (cW7t)|; =0, (CWT)|;=T1.

(¢) oxteS(IxJ) with (0x 7)(x,y) = (0(x),7(y)). (Hint: The permutation in (a) has the sign
(—1)(’;) and Sign (oW 1) = Sign o - Signt and Sign(ox 7) = (Signo)”" - (Signt)™.)

I|=m,|J| =n,and 6 € &(I), 1€ &(J). Then compute the sign

S$10.6 Let I be a finite set, |I| = m and B, (I) be the set of the r-subsets of I, 0< r <m. For
o € &(I), compute the sign of the permutation induced by ¢ : B, (0): J—oc(J) of B,(I). (Ans:
Sign (B,(0)) = (Signc)(rfjlz), where we put (’":12) :=0 for all me IN. —Proof: Note that ,.(07) =
B-(0)B,(7) for o, 7€ P,(I). Therefore, it is enough to prove this assertion for a transposition ¢ = (a,b).
Since €y(/) = {0}, we may assume that r> 1. If J € B,(I) and if either botha ¢ J, b ¢ J, or both a,b € J,
then o(J) = J. Further, o interchanges the subsets {a} UJ' and {b} UJ’, J' € B,_1(I~{a,b}). Now, since
Br—1(I~{a,b})| = ("}), the assertion follows. .
— Remark : If m > 2, then by Supplement S10.5 (b), o induces a permutation *B(c) on B(7) =" B, (I)

and (Signo )?" " =T, Sign(P.(c)).)

$10.7 A subgroup of the permutation group &,, n € IN*, which contain an odd permutation
contains equal number of even and odd permutations. (Hint: Let o € H be an odd permutation. The
left translation A : H — H, T +— o7 is bijective (with inverse A1) and maps even permutations in H onto
odd permutations in H.)

S10.8 (a) A permutation 6 € &, n € N which is of odd order is an even permutation.

(b) The square ¢ of a permutation ¢ € &,,, n € INT, is an even permutation.
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(Hint : If the order of o is odd, then all cycles in the canonical decomposition of ¢ have also odd order, since
the order of o is the LCM of these orders. Therefore, all these cycles are of odd lengths and hence even
permutations. Therefore, their product is also even. (b) follows from Sign 6> = (Signo)? = 1.— Remark :
More generally : If H C G is a subgroup of a group G of index 2, then a®> € H for all a € G. Note that (b)=
(a): If o is an element of an odd order m in an arbitrary group G, then 6 = ¢"*! = 12 with 7 := omt1)/2)

S$10.9 Let 6 = (ip,...,ix—1) be acycle of length k > 2. What is the inverse of ¢ ? For which m € Z,
o is a cycle of length k?

S$10.10 Let 6 € &, and m € Z. Every orbit of ¢ of length k decomposes into gcd (k,m) orbits of
the length k/ gcd (k,m) of ™.

S10.11 Let I be a finite set. The inverse 6! of a permutation ¢ € &(I) has the same orbits and
same sign as those of ©.

S10.12 Letm = p‘lx1 -+ p% be the canonical prime factorisation of m € IN*. Then the permutation
group G, contain an element of order m if and only if n > p‘lx1 + -4 p%. Give an element of
biggest possible order in the group Gs. For which n € IN there exists an element of order 3000
(respectively 3001) in the group G,,?

¥$10.13 Let T be a set of transpositions in the group &,,, n > 1. We associate the graph |I| I'r to
T as follows : the vertices of 'y are the numbers 1,...,n and two vertices i and j with i £ j are
joined by a edge if and only if the transposition (i, j) = (j,i) belong to T. Let I',...,I’, be the
connected components of I'7.

(a) The transpositions in T generate the grou,zﬁ G, if and only if I'7 is connected, i.e. if any two
vertices of 'z can be joined by the sequence of edges in I'7. The subgroup of G,, generated by T
is the product S(I'}) x --- x &(T',) C &,,.

(b) If T is a generating system for the group &,,, then T has at least n — 1 elements. (Hint:
Let 71,..., T, be the elements of T (may be with repetitions) with 7;---7, = id. Then m is even and

m=>2%5 (T =1))

(c) Every generating system of &,, consisting of transpositions contain a (minimal) generating
system of G, with n — 1 elements. (Remarks : The graphs corresponding to such a minimal generating
systems are called trees. Every connected graph has a generating system which is a tree. See also remarks
in Subsection 6.D.— There are exactly n"~> generating systems consisting 7 — 1 transpositions (Cayle

!Simplicial Complexes and Graphs. A simplicial complex Kisaset V(X)calledthe vertex set
(of X) and a family of subsets of V(X), called simplexes (in X) such that (i) for each v € V(X), the singleton
set {v} is a simplex in K. and (ii) if s is a simplex in X then so is every subset of s.
A simplex sin K is calleda g-simplex if card(s) = g+ 1 and say thats has dimension g.For asimplicial
complex X, we put dim(X) := sup{q | there exists a g-simplex in X} and is called the dimension of X. A
simplicial complex of dimension < 1 is calleda graph.
An edge in X is an ordered pair (v, v;) of vertices such that {vy,v;} is a simplex in K. If e = (vg,v;) is an edge in
XK, then we put vo = ct(e) and v; = €(e)) and are called the initial and end points of e, respectively.
A path yin X of length n is a sequence e;e; - - - €, of edges in K with €(e;) = a(e; ;) forevery 1 <i<n—1. Fora
path y=ejey---e,, we put &t(y) = ct(e;) and £(y) := €(ey,) and are called the initial and end points of y.
A simplicial complex X iscalled connected if for every pair (vo,v;) of vertices in X there exists a path @ in X
such that orig(at) = vp and end(@) = v;.

The smallest subgroup H(a; | i € I) of a group G containing the family a;, i € I, of elements in G, is called the
subgroup generated by the family a;, i€/ (itis the intersection of the subgroups of G containing all
a;, € I) and the family a;, i € I, is calleda generating system for the subgroup H(g; | i € I). A family q;,
i€l,iscalleda generating system forthe group Gif G=H(a; |i €I). We say that a groupin finitely
generated if there exists a finite family ay,...,a, € G such that G = H(ay,...,a,). Finite groups are clearly
finitely generated. The groups (Z,+) and (Zy,,+,) are generated by single elements, namely by 1 and [1],,, respectively.
Such groups are called cyclic groups. The groups (Q,+) and (Q*,-) are not finite generated! (remember the
Fundamental Theorem of Arithmetic)

3Arthur Cayley (1821-1895) an English mathematician and leader of the British school of pure mathematics

that emerged in the 19th century. The most important of Cayley’s work is in developing the algebra of matrices and
work in non-euclidean and n-dimensional geometry.
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For this prove somewhat general: For 1 <k <n, let f,; denote the number of forests with the vertex set
{1,...,n} and exactly k marked trees (so-called roo t-trees), then f, , = 1, (n—k+1) fx—1 =n(k—1) f, «
(by "grafting" one can get from a forest with k > 2 root-trees n(k—1) forest with k—1 root-trees and by
removing a edge at a time from a forest with k—1 root-trees n—k-+1 forest with k root-trees) and hence

fok = (2:} ) n"~*, 1 <k<n.— The required number is f,|/n.)

(d) The transpositions (1,2), (2,3),...,(n— 1,n) (respectively (1,2), (1,3),...,(1,n)) form a
minimal generating system of G,,. (Proof : By induction on j, show that every transposition (i, j), i < j,
is a product of transpositions of the form (1,2), (2,3),...,(n— 1,n). Induction starts at j = i+ 1 and for
the inductive step, note that (j, j+ 1)(i, j}(j,j+ 1) = (i, j+ 1). For the minimality, suppose that (i,i+ 1)
can be dropped. Then, since for all other remaining transpositions the subsets {1,...,i} and {i+1,...,n}
are invariant, every permutation ¢ € &, with 6(i) =i+ 1, in particular, (i,i+ 1), can not represented as a
product of the remaining transpositions. — For the second sequence of transpositions, every transposition
(i,]), i < jisaproduct (1,i)(1,)(1,i) = (i, j). For minimality, suppose (1, )i can be dropped. Then, since i
is fixed under all other remaining transpositions, a permutation ¢ € &,, for which i is not fixed, in particular,
(1,i) can not be represented as a product of the remaining transpositions. o)

2

(e) An analogous assertion to the part (a) also hold for the alternating group. For a “triangle
A ={a,b,c} €B3({l1,...,n}), let a(A) denote the set of the two 3-cycles (a,b,c), (a,c,b) =
(a,b, c)’1 (which is independent of an order or of “orientation” of the A).

For 3—setsE| Aty DN € B3({1,...,n}), show that o(Ay)U---U a(A,,) generates the group
() x - xA(T,) CA,, where I'y,...,T, are the connected components of the graph with vertex-
set {1,...,n} and whose edges belongs to any one of the triangle Ay,...,/\,,. (Hint: By induction
ont prove that: If Ay,.... A, are 3-sets with A;N A1 #0 fori=1,....t—1,then a(A)U---Ua(L,)
generates the alternating group A(A;U---UA,).)

Deduce that: The minimal number of 3-cycles which generates the group 2, n > 3,is [(n—1)/2].
Give three 3-cycles which generates the group s, but no two (= [(5—1)/2]) among them generate
the group 2s.(Hint : Check that (1,2,3), (1,2,4), (1,2,5), is a minimal generating system for the group
As. )

(f) Forn>3,the3-cycles (1,2,3),(2,3,4),...,(n—2,n—1,n) (resp. (1,2,3),(1,2,4), ..., (1,2,n))
form a generating system for the alternating group 2(,,. (Hint : Note that (e)=(f). )

(g) If n is even (resp. odd), then the cycles (1,2,3), o := (1,2,3,...,n) (resp. (1,2,3), 7:=
(2,3,...,n)) generate the alternating group 2,,. (Hint : Since 6%(1,2,3)0 % = (k+1,k+2,k+3) and
8(1,2,3)t7F = (1,k+2,k+3), k=0,...,n—3, it follows that (e)=-(g).)

7510.14 A permutation ¢ € &, with s orbits has a representation as a product of 7 — s transpositions
and no representation as a product of less number of n — s transpositions. (Remark : This exercise has
a following natural generalisation: Let 7 C G,, be a set of transpositions which generates the group &,, (for
example, by the given connected graph I' = I'7 on the vertex set {1,...,n}, see Supplement S10.12 (a)). For
o € 6, determine the minimum /(o) = {7(o) of the m € IN, for which there is a representation ¢ = 7; - - T,
with 7;€ T. Incidentally, £(c) = £(c"), and d(01,02) := £(020, "), 61,02 € &,,, is a metric on &,,. Further,
the left- and right-translations A; : 6, - &,,, 6 — 1o and p; : S, — &, 6 — o7 are distance preserving
(for this, it enough to check that d(767,70) = £(10, - (t01) " )l(t020, 't7!) = (020, ') = d(01,0,) and
similarly, d(0,1,0,T) = d(07,0,) for every transposition T € S,). For I'r, besides the complete graphs, one
can also consider the following examples :

etc.

For the first of these graph see Exercise 10.2. For T C T', it is clear that {7/ < £7.)

S$10.15 (a) Thecycles (1,2), (2,...,n) generate the group S,,, n > 2. (Proof : Since ord (2,3,...,n) =

n—1,(2,3,...,n)" ' =id and (2,3,...,n)" 2 =(2,3,...,n)~!. By Supplement S10.13 (d), it is enough to
prove that every transposition of the form (1, j) is a product of given cycles. This is proved by induction on j.

4For any r € IN, let %3, (I) denote the subset of the power set 3(I) of a set I consisting of subsets J C I of cardinality
exactly r. With this r-s e t is an element B,({1,...,n}), 1. e. a subset of {1,...,n} of cardinality r.
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Induction begins at j=2 and the inductive step follows from (1, j+1) = (2,3,...,n)(1,/)(2,3,...,n) "1 =
(2,3,...,m)(1, j)(2,3,...,m)"" %)

(b) The cycles (1,2), (1,2,...,n) generate the group S,, n > 2. More generally : if k,n € IN are
natural numbers with 1 < k < n, then the cycles (1,k), (1,2,...,n) generate the group &, if and
only if gcd(k— 1,n) = 1. In particular, the cycles (1,n), (1,...,n) generate the group &,,, n > 2.
(Hint : Use Supplement S10.12 (d). )

S10.16 (Boss-Puzzle) Let r,s € IN*, r,5s > 2. In an right side box there are rs — 1 numbers

1,2,...,rs — 1 are arranged in a r X s-rectangle (as shown in the left-rectangle which is made up of
equal rs sliding square-blocks) by the permutation
I 2 3 - rs—2 rs—1
V= € Grs—l
Vi V2 V3 0 Vg p Vi
Vi Ve_1 Vv 1 e | s —1 Ry
Virl Vos_ 1 Vo s+1 e | 25—1 | 28
Vir—1)s+1 Vis—1 # (r—l)(s—1)+1 el rs—1 | #

The lower-right corner square-block marked with # is kept free. The goal is to reposition the
square-blocks by sliding the square-blocks (one at a time) into the standard-configuration (shown in
left-hand table). Show that this possible if and only if the permutation v € G,,_1 is even.

(Remark : The special case r = 4 and s = 4 is the (original) 15-puzzle E]:

S| 2] 3|10 30 2|13
IS 6 9|8 S {10 11| 8
14 4 |12 9 61 7|12
13 1 | 7 |11 4 11514 1

This puzzle has inspired a sizable number of articles and references in the mathematical literature. Most
references explain the impossibility of obtaining odd permutations, but the result that every even permutation
is indeed possible is proved by few authors and a number of them give unnecessarily complicated explanations.
Indeed, Herstein and Kaplansky in(see: [Herstein, I. N. and Kaplansky, K.: Matters Mathematical,
Chelsea, New York, 1978, 114-115]) write that “no really easy proof seems to be known”. —Hint: A sim -
ple move interchanges the blank-square # with adjacent to it; for example, there are two beginning
simple moves, namely, either interchange # and V,,_; or interchange # and V(,_y),. To analyze the game,
note that each simple move is a special kind of transposition, namely, one that moves #. Moreover,
performing a simple move corresponding to a special transposition T from a position corresponding to
the permutation ¢ yields a new position (corresponding to the permutation 7o). For example, if v is the
position above and T = (#, V,5_1), then TV(#) = T(#) = Vis_1, TV(rs — 1) = 7(v,5—1) = #and tv(i) =i for
all other i. Therefore to come to the standard position, one needs special transpositions 7y, 7,..., T, such

5The 15-puzzle (alsocalled Gem Puzzle, Boss Puzzle, Game of Fifteen, Mystic Square
and many others) was "invented"by Noyes Palmer Chapman,apostmaster in Canastota, New York as early
as 1874. The game became a craze in the U. S. in February 1880, Canada in March, Europe in April, but that craze had
pretty much dissipated by July.

Samuel Loyd (1841-1911) an American chess player-composer, puzzle author, and recreational mathematician,
claimed from 1891 until his death in 1911 that he invented the 15-puzzle. This is false — Loyd had nothing to do with
the invention or popularity of the puzzle. Later interest was fuelled by Loyd offering a $1,000 prize for anyone who
could provide a solution for achieving a particular combination specified by Loyd, namely reversing the 14 and 15, i. e.
o = (14, 15). This was impossible, as had been shown over a decade earlierby Johnson and Story (1879), (see:
[Johnson, W. W.; Story, W. E.: Notes on the 15-Puzzle, American Journal of Mathematics, 2 (4), (1879), 397-404])
as it required an even permutation. Robert James “Bobby” Fischer (1943-2008) an American chess
Grandmaster and the 11-th World Chess Champion, was an expert at solving the 15-Puzzle and had demonstrated on
Nov. 8, 1972 a solution within 25 seconds. Today the puzzle appears on some computer screen savers and a version
is distributed with every Macintosh computer. For larger versions of the n-puzzle, finding a solution is easy, but the
problem of finding the shortest solution is NP-hard (77?).
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that 7,,--- 7, 7]v = id. Each simple move takes # up, down , left or right. Therefore the total number m of
moves is u+d + ¢+ r, where u, d, ¢, r are the numbers of up, down, left, right moves, respectively. If #
is to return at the position where it was, then u = d and ¢ = r. Therefore the total number of moves must
be m = 2u+ 2r even. The permutation v € G4 corresponding to the configuration in the above picture is
v={(1,15,14,13,3,2)(4,12,11,5)(6,10)(7,9,8) is an odd permutation and hence it is not possible to bring
it to the standard configuration. For the converse, use Supplement S10.13 (f) to reduce the problem to the
cases s =2, r =2 or 3. — The permutations for which this is possible form a subgroup of &, in fact, it is
the alternating group 2, onn symbols.

— How to solve the 15-Puzzle for the magic square painted in the Diirers painting (where the number 16
represents the empty square, see the right picture above)?

— How can one convert the sequence of alphabets on the left side into the quotation of J. Sylvester (1814-1897)
given on the right side. (see also a book by J. DieudonnAl' (1906-1992)).

allajalclclelelelf|[h|h|i1 M|aft|{hfelmf|a|t|i]c|[s]|-
1 ([ M{M|m|[n|offo|Rfs|s|s]t Mful|s|ifc ol f t|hie
tftful- Rijiefafs|ofn

— For more such problems of this kind see : [Wilson, R.M.: Graph Puzzles, Homotopy, and the Alternating
Group, Journal of Combinatorial Theory (B) 16, 86-96 (1974).])

$10.17 Let n € IN*. Show that

(a) The number of permutations T € &,, which commute with the permutation ¢ € G,, of the type
(Viy...yVu) is vi!l--- v, IV1 .. p¥n. (Hint: These permutations form the centraliser Cg, (o) of o, see
Example 9.A.20.)

(b) The number of involutions, , i.e., 62 = id (called reflection) in &,, without any fixed
point in Gy, is 1-3---(2n—1) = (2n)!/n!2" (~ /2(2n/e)" for n — o).

n\ (2k)!
2k> k12K

(d) The number of permutations in G,, with exactly 7 orbitsisthe Stirling’s number of

first kind s(n,t). (—The Stirling’s numbers s(mn),0<n<m, of first kind
1 m

are defined by the equation: <x) =— (—l)m_”s(m,n) x" (and otherwise s(m,n) = 0) They clearly
m m! =0

(¢) The number of involutions (reflections) in &,, is Z >0 <

satisfy the recursion-formula: s(0,n) = &, and s(m+ 1,n) = ms(m,n)+s(m,n—1).)

(e) The number of permutations in &,, such that its canonical decomposition contain a (and hence
exactly one) cycle of length >n/2, is n!( ¥, /2<k<, 1/k) (~n!In2 for n — eo). (Proof: Let 1 <k<n.
Acycle (ig, . ..,ix—1) of length k in &,, is determined by the injective map {0,...,k—1} — {1,...,n}, V> iy,
where two such injective maps o7 and o0, define the same cycle if and only if 07 = 0, ¢ with an element
¢ in the cyclic subgroup of &({0,...,k — 1}) generated by the cycle (0,...,k—1). Therefore, there are
[n)x/k =n!/k-(n—k)! cycles of length k in G,,. Since a permutation in &, has at most one cycle of the length

k>n/2, for such a cycle there are exactly (n—k)! permutations such that this cycle occurs in its canonical
!
decomposition. Therefore altogether, there are ¥ (n—k)!- ——~——— =n! ¥ 1/k=n!(H,— H, 2)
n/2<k<n k- (l’l—k)' n/2<k<n
permutations in S, such that a cycle of length >n/2 occur in their canonical decomposition (H,= Y, 1/k
kEIN* k<x

for xe R} are the harmonic numbers.) The asymptotic representation Y. 1/k ~ In2 for
n/2<k<n
n— oo follows directly from Y 1/k= ¥ (=1 '/kand ¥ (—1)* !k =1n2, or also from H, =
n/2<k<n 1<k<n k=1

Inx+ v+ O(1/x) for x— oo. o

— Remark : The probability that a permutation in S, has a cycle of length > n/2 in its canonical de-
composition is H, — H, , and for n — o symptotically equal to In2 = 0.693.... —For an application, see
Exercise 10.2.)

(f) The number of permutations in &, without any fixed point is n!( Y}_o(—1)*/k!) (~ n!/e for
n — o). (Hint : For counting use the Inclusion Exclusion Principle.)

S10.18 (a) Using the simplicity of the alternating group %I, n > 5, prove that the group %, is the
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only non-trivial normal subgroup of the group &,, for n > 5. (Hint : See Example 9.A.23.)

(b) Let n>2 be a natural number. Show that the group &,, is isomorphic to a subgroup of 2, »,
but not isomorphic to any subgroup of 2, 1.

S10.19 (a) The groups 2U4 and Uy are the only non-trivial normal subgroups in Gg.
(b) The group Yy is the only non-trivial normal subgroup in 2{4. (Hint : See Example 9.A.23.)

S$10.20 (a) For a natural number n > 2, Sign: &, — {—1, 1} is the only non-trivial group homo-

morphism. (Hint: (ab) and (cd) be two transpositions &,,. If o € &,, be an arbitrary permutation with
avsc,b—d,then o(ab)o~! = (cd) and so every homomorphism ¢ : &, — {1,—1} have the same value
on all transpositions. If this value is 1, then ¢; if it is —1, then ¢ = Sign.)

(b) Show that 2, = [S,,&,]| (= the commutator subgroup E| of &,).

S10.21 Let I be a finite set and let c € &(I) be a permutation of /. If the order Ordo = p™ is a
prim power, then n := |I| = |Fixc| (mod p ), where Fixo := {a € I | 6(a) = a} is the fixed point
set of 0. In particular, : (1) If n is not divisible by p, then o has at least one fixed point. (2) If n
is divisible by p, then the number of fixed points of o is also divisible by p. (Remark : This is a
special case of the assertion at the end of Example 6.E.5.)

$10.22 Which of the following maps f:R? x R? — R are bilinear, symmetric resp. alternating?
@ f((x1,x2),(1,y2)) ==x1+y2. () f((x1,x2), (y1,y2)) == x1y2.

© f((x1,%2),1,32)) =xix2—yiy2. (@D f((x1,x2),(v1,32)) == x1y2 — y1x2.

) f((x1,%2),(y1,2)) == x1y2 +y1x2.

$10.23 Let V and W be K-vector spaces, I be a finite indexed set and f:V! — W be a multi-linear
map. Let g:U — V and h:W — X be K-vector space homomorphisms. Then ho fogl:U!l — X
is a multi-linear map, where g’ is defined by g ((u;)) := (g(u;)). (u;) € U'. If f is symmetric
(respectively skew-symmetric, alternating), then so is ho fogl.

S10.24 Let vj, j € J be a basis of the K-vector space V and let wy;,, (ji) € J' be a family of
elements of the K-vector space W, where [ is a finite indexed set. Then there exists a unique
K-multi-linear map f:V/ — W such that f((v})ier) = wijy, (i) € JI. If V and W are finite
dimensional, then the K-vector space of the multi-linear maps from V/ into W has the dimension
(Dim V)l - Dim g W .

S$10.25 A n-linear map f:V" — W of K-vector spaces is alternating if f(xi,...,x,) =0 for every
n-tuple (xi,...,x,) in which two consecutive components are equal. (Proof : By induction on d >0,
we shall show that f(xy,...,x,) =0forall i,j € {1,...,n} with |i—j| =d, if in the n-tuple (x1,...,x,) the
i-th and the j-th components are equal. The case d =1 is the hypothesis and so induction starts. For the
inductive step we choose a k € {1,...,n} in between i and j. Then |i—k| and | j—k| are smaller than d, and
hence by the induction hypothesis

O=f(.cox+y, e x+y Xy ) = floox, o Xy Xy o ) f Yy Xy ey X))
Fr Y Xy ) ey Yo e Xy ) = XY X ),

where only the i-th, k-th and j-th components in the arguments are noted, the remaining are not altered.)

S10.26 Let K be a field and let V, W be vector spaces over K. Let f: V" — K be an alternating
multi-linear form on V and let g: V — W be a K-linear map. Show that the map

n
(X0y -y Xp) — Z(—l)’f(xo,...,xi_l JXit ] ye - Xn) &(X)
i=0

® For an arbitrary group G, the subgroup generated (see Footnote 8) by the commutators [a,b] :=aba”'b~!,
a,beG,iscalledthe commutator subgroup orthe derived group of G;itis usually denoted by
[G, G] or by D(G). Clearly, G is abelian if and only if [G, G] is trivial. More generally, [G, G] is a normal subgroup of G
and the quotient group G/[G, G] is abelian.
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is an alternating K-multi-linear map V"*! — W. (Proof: The map is obviously multi-linear. By
Supplement S10.25 it is enough to show that it vanish on every (n + 1)-tuple with two equal consecutive
components, say x; = x;+1 =: X. Since f is alternating, in the above sum all terms except the i-th and the
(i41)-th term, are all 0. The remaining sum of two terms is:

(1) X0yt X1 X2, Xn) 8(x0) + (= 1) f (o, st X, X2, %) g (i)
= (_l)l (f('xoa-"axi—l 7-x7-xi+27’"7'xn)g('x)_f(x07"'7-xi—1 7-x7-xi+27"‘7'x’l)g('x)) :O)

$10.27 Let A be a K-vector space of dimension n with a (n+1)-multi-linear map A"*! — A,
(X05 -+ +,%) = X0+ Xp11. Then show that Yscg,,, (Signo)xso - xgn = 0 for all xo,...,x, € A.
(Hint: By Theorem 9.B.7 the map (xo,...,X:) = Yoee,,, (Sign0) x60 - - Xon is alternating (n-+1)-linear
map and by Corollary 9.B.6/it is 0, since DimA = n. — We mention the following example: Let A x A — A
be a K-bilinear (or an arbitrary) operation (x,y) + xy on A. Then Yscg,,,(Signo)xso- - Xon = 0 for

all xo,...,x, € A, if we compute all the (n+1)-fold products with one and the same fixed given rule of
1

parentheses. — There are -5 (Zn”) possible rules of parentheses.)

S10.28 For the matrices

1101 553 1
200 0 1210
=17 1 11 and B=[, 111
210 1 3112

compute the adjoint matrices, the determinants and the product 2 - Adj2( and 8 - Adj*B.

S10.29 Determine for which a € R the following systems of linear equations over R has exactly
one solution and in this case find the solution by the Cramer’s rule :

ax;+ x+ x3=b X1+ x2o— xp=b
(1) X1+axx+ x3=by (2) 2x1+3xy+axp =by
X1+ xp+axz3=bs. x1+axy+3x=b3.
(Answers: (1) This system of equations has a unique solution if and only if a ¢ {1, —2} with the solution :
= bi(a+1)—by—b3 = bi(a+1)—b;—b3 = bi(a+1)—bi—b;
(a—1)(a+2) (a—1)(a+2) (a—1)(a+2)

(2) This system of equations has a unique solution if and only if a ¢ {2, —3} with the solution :
. _bl(a—3)+b2—b3 . _b1(6—a)—4b2+b3(a+2) . _b1(3—2a)+b2(a—1)—b3
' a—2 R (a—2)(a+3) PR (a—2)(a+3) '

)

S10.30 Let 2 = (a;;) be an n x n-matrix over the field K. For cy,...,c, € K*, show that:
Det (a;;) = Det (c,-cjfla,-j) . In particular, Det (a;j) = Det ((—1)*/a;;).

S10.31 Let 2 and B be n x n invertible matrices over the field K. Then show that:
(a) Adj(AB) = AdjB-AdjA. (b) AdjA~! = (AdjA)~!.
(c) Det(Adj2) = (Det2)"!. (d) Adj(Adj2A) = (Det2)"22L.

(Remark : All these formulas, except (b) are also valid for not-invertible matrices ; for (d) assume n > 1.)

S10.32 Let 2 be a non-invertible n x n-matrix over the field K, n > 1. Show that the rank of the
adjoint matrix Adj%l is:
1, if RankA=n—1,

Rank Adj® = i
0, if RankA<n—1,

Moreover, if Rank2( = n—1, then show that every non-zero column of Adj%l generates the kernel
of 2, i. e. the space of all r € K" with 2y = 0.

$10.33 The n x n-matrix 2" = (a;;) obtained from the n x n-matrix 2l = (a;;) by reflection through
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the anti-diagonal, i. e., d;

ain
az

an—1,1
anl

ain
an

an—1,2
a2

J

Ap—j+1,n—i+1- Then show that Det2l’ = Det®, i. e.,

aln—1
azn—1

an—1,n—1
ann—1

Aln
azn

an—1,n

Ann

Ann
ann—1

an2
anl

an—1,n
ap—1,n—1

an—1,2
an—1,1

azn

Aln—-1 Alp—1

ansn
asi

aln

a2
ari

(Hint: Use Det 2l = Det'2, see Theorem9.D.1 and the permutation o : {1,...,n} — {1,...,n}, i —
n—i+ 1 on the rows or columns of ‘2 and use [Rule (3) before Theorem 9.D.2| to conclude : Det ' =
Det (agj) =Det (an—jt1.n-i+1) =Det (a,_j11,60)) = Sign(c)Det (aq(;);) = Sign(c)Sign(c)Det (a;;) =
(Sign(o))?*Det 'A = Det 21.)

S$10.34 Let xj,...,x, € K" be columns of the matrix 2l € M, (K).

(@) Let1, JC {1,...,n} be (n—r)-element subsets with the complements I’ = {iy,...,i,}, J' =
{jtseesgrks 1<ii< - <ip<n, 1 <j; < -+ <j,<n. In the matrix 2 replace the columns with
numbers ji,..., j, by the standard basis vectors e;,,...,e; , then the determinant of this matrix is

the higher cofactor (_1)2[,:1 (ip+ip) Det 24; s, where the matrix 2l; ; is obtained from the matrix 2A
by removing the rows and columns with numbers iy,...,i, and ji,..., j., resp.

(Note that the usual cofactor (—1)"*/A;; correspond to the (n— 1)-element subsets I={1,...,i,...,n} and
J=1{1,....],...,n}.—Proof : Interchanging the rows with numbers ii,...,i, in altogether Yo1(ip—p)
steps bring to the positions 1,...,r and interchanging the columns with numbers ji,..., j. in altogether

!
<%’ QQ[[[ j> with

the determinant Det 2l; ;. o)

Yp—1(jp— p) steps bring to the positions 1, ..., r, we obtain a block matrix of the form

(b) Let B be another n x n-matrices with columns yy,...,y, € K". For a subset J C {1,...,n}, let
) (/)

¢, be the n x n-matrix with the columns z;"/,...,z; ’, where

) xi, ifiel,

Z: = .

! yi, if i §é J.

Show that
Det (A+B)= )  Det¢;.
JC{1,....n}
(Hint: Det (A+B) =Ac(x1+y1,... .5 +y) = ¥ Af,....2/)= ¥ Det¢,.—Remark:
JCA1,....n} JCA1,...n}

If B = Diag(by, ..., b,) is a diagonal matrix, then Det &; = b’ Det 2, _;, where b’ = [[;¢; b; for IC {1,...,}
and J' is the complement J. Altogether, we have :
Det (2A+Diag(by,...,by)) = ¥

S10.35 (a) Suppose that a column (or a row) of the n X n-matrix 2 has all entries 1. For the
cofactors (—1)"A;;,i,j=1,...,n, of 2, show that

Y Y (—1)"/A;; = Det.

i=1j=1
(b) Let A = (a;;) be an n x n-matrix over the field K with the cofactors (—1)"/A;;,i,j=1,...,n.

Further, let
1 -+ 1

QQ
I

e vl eM, (K )
1 --- 1
is the matrix with all the coefficients are equal to 1. Show that

n n
Det(2A+aJ) =DetA+a Y ) (—1)"A;.
i=1j=1
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(Hint : To apply Supplement S10.34 (b) with 8 = aJ and with the introduced matrices €;. If |J| < n—2, then
two distinct columns of €; are equal to '(a,...,a) and hence Det €; = 0. If J = {1,...,j—1,j+1,...,n}, then
¢; have same columns as 2 except the j-th column which has all entries a. Expanding the determinant with

n .
respect to the j-th column, we get Det €; = ¥ (—1)""/aA;;. Finally, €; = for J = {1,...,n}. Therefore, by
i=1

non L

Supplement S10.34 (b), Det (A+aJ,)= Y Det€;=DetA+ Y ¥ (—1)""/aA;;.—Remark: Using
JC{1,..,n} j=li=1

the Remark in Supplement S10.34, it follows that

Det (aJ,+ Diag(by,...,b,)) = b; -~-bn+a)E by---bj--by.)
=1

S10.36 Let K be a field and A = (aij) € M, (K), n € N* be a matrix of rank < 1. Show that:

n
Det (a€+2) =a" +a"! Za,-,- forall a€Kk.
i=1

S$10.37 Let A = (a;;) € M,(Q) be an invertible matrix with integer coefficients a;;. Show that the

coefficients of the inverse matrix 2~ are again integers if and only if DetQ = +1.

(Hint: If BEM,,(Z), me N, then Det B € Z. Therefore, if 2, A~ € M,,(Z), then from (Det 2A)(Det A~ ') =
Det(A27!) = Det ¢, = 1, it follows that Det2 = Det2~! € {+1}. Conversely, if 2 € M,(Z) and
Det A = £1, then 2! = (Det 2) ! Adj2A = £Adj2 € M, (Z), since 2 and also AdjA € M,,(Z).)

$10.38 Let 2 € M,,(K) be an upper-triangular matrix. Then show that Adj2l and 2A~! (if A is
invertible) are also upper-triangular matrices.

S10.39 Let f;;, i,j=1,...,n be differentiable functions on D C K. Then show that

e Al U Al A fit o fin
1o S for o Pl | o o 1o S
SR el EPSA e o P e o N

fnl fnn fnl frm fnl fnn ,;1 fffm
S10.40 If o € &(I) is a permutation of the finite indexed / and let
PBo = (s (j) € Mi(K)
bethe permutation matrix a55001ated to o. This is the matrix obtained from the

unit matrix €; by permuting the columns according to ¢ : The j-th column of PBg is es(;), see
Example 8.C.6. Then for 6,7 € &(I) :

(a) DetBs = Signo. (b) Bor = PsPr. () (mo)_l =Ps-1 = t(mo)~
(Proof: (a) Obviously, DetBs = (Signo) Det &; = Signo (see Rule (3) before Theorem 9.D.2).

(1) PBo = (8i6j) = (65-1;;)» Pr = (8;,21). The (i, k)-th entry of the matrix PsPr is Y106-1,6) ok =
O5-1i.2x = Oj,ork Which is the (i, k)-th entry of the matrix PBsr. Or: Py is the matrix of the endomorphism
fo: KI — K, folej) = eq(j), j €I with respct to the standard basis e;, i € I, of K. Then BB is the matrix
of the composition fs fr: €j— er(j) > €sy(;), and hence Pz is the matrix of for.

DR

— Remark : The homomorphisms 6 —*Ps and o fs are canonical embeddings of the group S(I) in the
groups GL;(K) and Aut(K), resp.

©) PBoPs 1 =Pso ! =Pia = €, by (b) and hence (Po) ! =P, 1. Moreover, (i, j)-th entry of Py is
0j i = Og-1;; = & o-1; which is the (i, j)-th entry of Ps-1. o)

S10.41 Let 2A = (a;j)) € My(K) bea skew-symmetric matrix (/ finite indexed), i. e.,
A = —2(. If || is odd and if CharK # 2,1i.e.,2=2-1x # 0 in K, then Det2 = 0.

(Proof : By Theorem 9.D.1 Det 2 = Det'?A = Det (—21) = (—1)/IDet 2 = —Det 2, since |I| is odd. It
follows that 2 - Det 2l = 0, and hence Det 2 = 0 because 2 #0 in K. o)
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S10.42 Let A := (al-j) € M, (Z) be the n x n-matrix defined by a;; := < i :
J

1) . Compute the

determinant Det 2. (Hint : What is a;; —a;_1 ;?)

S10.43 (a) Fortwo matrices A € My, ,(K) and B € M,, ,,(K) with m > n, show that Det (2A5) =0.
(Hint : Consider 2l and B in M,, ,,(K) by filling the extra entries 0. )

(b) Let 2 = (a;;) € M,(K) and B := (b;j) € M,(K) with b;j := (—1)"a;;, 1 <i, j <n. Show
that Det 2 = Det ‘B.

S10.44 Let K be a field and 2 € M,(K), B € M(K), € € M,.((K) and 05, = OM;, ,(K). Then

¢ A rs
Det (‘B Osr) = (—1)"Det2-Det*B.

(Hint : Each of the last r columns of the matrix have interchanged with the first s columns and hence
altogether there are rs interchanges of columns and then apply the Block Matrix Theorem 9.D.4]:

¢ A rs A ¢ rs
Det <% OH) = (—1)"Det (Osr %> = (—1)"Det2-DetB.)
S10.45 Prove the Product Formula 9.D.5 for determinants as follows :

Let 2(,B € M,,(K). By adding suitable multiples of the first n columns of the block-matrix

(e )

to the last n columns transform this matrix to the block matrix
A B
—-¢ 0

S10.46 Let n € IN be an odd natural number and 2 € M,,(R). Then there exists a real number r € R
such that Det (2 +¢&,) = 0. (Hint : The determinant is a polynomial function of odd degree n in t and
hence by the Intermediate Value Theorem (see Footnote 4 in Exercise Set 10) has a zero in R. — Remark :
Note that Det (2A+7¢&,) = x_(?) is the characteristic polynomial y_g of —%2I, see Subsection 11.A)

and then use Supplement S10.44.

S10.47 Let fi,...,f, functions on the set D with values in the field K. Then show that fi,..., f;
are linearly independent in K? if and only if the function

filtt) - fi(ta)

(tl,...,l‘n)i—> : .. :

fn(tl) T fn(tn)
on D" is not the zero-function. (Remark : See Theorem 5.G.17 — Determinants of this form are called
alternant or (particularly in Physics) Slater’s D eterminant. For example the Vandermonde’s
determinant corresponding to f;:=1"',i=1,...,n, D:= K, see the Exercise 10.6 (a) and the Cauchy’s
double-alternants, see the Exercise 9.5-(b).

S10.48 Let fi,..., f, be polynomial functions over K of deg <n—1, n€ IN*. For all 7,....t, €

K, prove that:
filty) - filtn)
: 1 =0.
Ja(tr) oo fultn)
S10.49 (Cauchy’s Double-alternant) Letay,...,a,, by,...,b, €K with a;+b; #0
forall i,j=1,...,n. Show that
Det ( 1 >:H1§i<j§n(aj_ai) [Mi<icj<n(bj—bi)
ij=1(aitbj) ‘

ai+b,~> 1<i,j<n

(Hint : Induction on n.— See also Supplement S9.22. )
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S$10.50 For 1,...,ty, uy,...,u, € C, compute

sin(ty +uy) sin(ty +up) - sin(t;+uy)
sin(tp+uy) sin(ta+up) - sin(tr+uy,)
sin(t, +uy) sin(t,+up) - sin(t, +uy,)

(Hint: The two cases n < 2 and n > 2 separately. For n >3, we apply the addition theorem for the sin
function and the Determinant product formula to note that

sinf;y cost; O --- O||cosu; cosup --- cosuy,
sintp costpy O --- Of|sinu; sinuy --- sinu,

=1 . . . . . . . . |=0-0=0.
sint, cost, 0 --- O 0 0 e 0

See also Supplement S10.17.)
S10.51 For elements ay,...,a,,b1,...b,, n€ IN*, of a field K, show that :

1+a1by 14a1by --- 1+ab,
1+axb; 14axby --- 1+ayb,

ne— . . . . = )
1+a,by 14+ayby --- 1+aub,

if n>3,and Dy=1+4+a1b;, D)= (az—al)(bz—bl).

S10.52 Let D be aset, t1,...,t, € D and fy, ..., f, be linearly independent K-valued functions on
D such that the (n+ 1) x n-matrix
fo(tr) -+ foltn)

Saltr) - faltn)

has the maximal rank 7. (because of the linear independence of fy,..., f,, this is the case in general,
see Supplement S10.47. In this case we say that the points #{,...,f, arein general position with
respect to the fy,..., f,.) Then show that the function

fo(t) foltr) -+ folta)
@) Al) - filta)

r— . : . :

Sa(t) Saltr) - falta)

is a non-trivial linear combination of the functions fy,..., f,, which vanish on the points 7y, ...,
and is uniquely determined up to a constant factor A # 0,

S10.53 Let D be aset, E := {t,...,t,} be a subset of D with n elements and f,..., f, K-valued
functions on D with
fittt) -+ filtn)

A A
Jaltr) - fulta)

Show that the functions f |g,..., f,|r form a basis of KE . For arbitrary elements by,...,b, € K,
there exists a unique linear combination f of fi,...,f, with f(t;) = b;,i=1,...,n. This follows
from the equation

d O

@) Al) - filta)

Sa(t) faltr) - falta)

by expanding in terms of the first column. (Remark : The uniquely determined function f is called
the solution of the interpolation problem f(4)=b;,i=1,...,n, with the functions

f17"'7fn‘)
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$10.54 Let f € ZN" be number-theoretic function and let F € ZN beits summator func-

tion of f, i.e,F(n):=Y f(d),n € IN*. For n € IN*, show that the determinant of the matrix
d|n

§ = (F(ged(i, j)))1<i j<n € M, (Z) is equal the product [ _, f(m). In particular, (For-

CH7 1\ /7]
mula of Henry J. S. Smith’|) Det§F=¢(1)---¢(n) =n![],cp <1—5> , where
¢ is the Euler’s totient function, see Supplement S1.3. (Hint: For the computation of Det §, we
w(i/j) if jdivides i,

du:IN* Z is th
0, otherwise. " H A4S the

consider the matrix I := (“U)lgi,jgn’ where p;; := {

Mobius functio rﬂ defined by p(n) := (—1)", if n = py--- p, is the product of r distinct prime

numbers, otherwise t(n) = 0. Note that 90t is a lower triangular matrix and 9§ is an upper triangular

matrix with diagonal entries f(1),..., f(n). This follows immediately from the so-called M6bius in-

version formula : (arelation between a number theoretic function and its summator function)

f(m)= Y u(m/d)-F(d), m € N*. The last formula of Smith follows from the fact that the summator
d|lm

function of the Euler’s totient function ¢ is the function y : N* — Z, n+ n, since n= Y, ¢(d).
din
— Remarks : Itis interesting to note that number-theoretic functions and their properties can be studied lucidly

by using the ring structure on Z™N" , where addition is defined point-wise and the multiplication is defined
using so-called Dirichlet’s convolution : For f,g € ZN* define (f*g)(n):= ¥ f(d)g(n/d).
d|n

With these addition and multiplication Z™* is a commutative ring—called the ring of number-
theoretic functions denoted by ZF(Z) and its elements are called number-theoretic
functions. The multiplicative indenty in this ring is the function € : IN* — 7, defined by &(1) = 1
and £(n) = 0 for n > 2. An element e € ZF(Z) is a unit if and only if e(1) € Z* = {£1}. Euler’s totient
function @, the functions T, S : IN* — Z with T(n) (resp. S(n)) the number of positive divisors (resp. the
sum of positive divisors) of n, the function § : N* — Z, {(n) := 1 for all n € IN* are all number-theoretic
functions studied in elementary number theory. It is easy to check that { « f is the summator function of
every f €EZF(Z); {x{ =T, {+w =S. Further, { € ZF(Z)* and { ! = u is the Mobius function defined
above and hence f =« ( x f) for every f € ZF(Z).)

S10.55 (a) Let P, = (ay;,...,ani), i =0,...,n be points in the affine space A"(K) = K". Then

the P, are affinely dependent if and only if
1 1 - 1
aip dair - din

an0 dnl -+ dan

(b) Let P,=(ay;,...,ani), i=1,...,n be affinely independent points in A”(K) = K". The equation
of the affine hyperplane H in A"(K) generated by the points Pj,...,P, is

X1 4aix - din
. — 7
Xn Aupl - dpn

i. e., the point P = (xy,...,x,) € K" belong to H if and only if its component satisfy the above
(affine) equation. (See |Supplement S9.36.)

"Henry John Stephen Smith (1826 —1883) was an Irish mathematician remembered for his work in
elementary divisors, quadratic forms, and Smith-Minkowski-Siegel mass formula in number theory. In matrix theory
the Smith Normal Form anormal form that can be defined for any matrix (not necessarily square) with
entries in a principal ideal domain (PID), e. g. Z, it is a diagonal matrix, and can be obtained from the original matrix
by multiplying on the left and right by invertible square matrices. In particular, since Z is a PID, so one can always
calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely
generated modules over a PID, and in particular for deducing the structure of a quotient of a free module.

8In 1832 A. F. Mobius (1790-1868) defined Mobius function which is important in number theory
and combinatorics where it is used and generalized extensively.
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S10.56 Let P, = (6111 ,azl), P = (a12 ,6122) , Py = (a13 ,6123> be three points in R2 which do not
lie on a line. Then show that :

1 1 1 1
X1 ai aip as _0
X3 asy az a3 B

2,2 2 2 2, 2 o | 9
Xptxy ajtay aptay ajztdxp

is the equation of the circle passing through P, P>, Ps.

$10.57 Let (a;j) and (b;;) be two n x n-matrices over the field K. Then show that :

ap -+ d
R : L @ e bijoean,
Y |ba bin | =Y, S
i=1 1 - . i—1
‘] anl DRy bnj Y ann
(2773 ann[

(Hint: If (—1)""/A;; are the cofactors of (a;;), then by expanding the determinants by using the i-th row
respectively the j-th column we have the equality :

ary © dln

a | :

Y b bin

=1 . . i
anpl -+ Qpn

=1j=1

=) Xn:(—l)i+jbiinj =)

n

j=li

M=

S10.58 Compute the following n x n-determinants over () :

n

1 n n n

n 2 n n
(a) n n 3

nnon n
Ans : = (—1)""!n!

1 2 2 . 2

2 2 2 . 2
(c) 2 2 3 .

2 2 2 -+~ n

Ans : = (-2)(n—2)!

(b)

L o|an e by an,
(=0TbsA=3 | ¢ - )

=1 apl : bnj st dpp
1 2 3 4 n
2 1 3 v n—1
3 2 1 2 n—>2 .
n n—1 n—2 n-3 1

Ans : = (—1)" Yn+1)2"!

1 23 n—2 n—1 n
2 3 4 n—1 n 1
3 4 5 n 1 2
nl 2 n—3 n—-2 n—1

Ans :=—1)&(n+ D" /2

(Hints (a) Subtract the blast column from all other columns to get the upper triangular matrix with diagonal

entries 1 —n,2—n,3—n,...,1,n.)

S$10.59 Let ne N, n>2. Compute the determinant of the following matrices from M, (Z) :

1 2 n 1 2 3 n—1 n
n+1 n+2 2n 1 1 1 - 1 1-n
(a) | 2n+1 2n+2 3n) . M1 1 1 1-n 1
(n—l.)n—i-l (n—f)n—l—Z 2 1 l-n 1 - 1 1
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(Hint : For the matrix (b) add all other columns to the first column and then successively interchange 1-st
column with n-th, 2-nd with (n — 1)-th etc. and apply Supplement S10.60 (a). — Ans: (—1)(3) &21 n"1)

1 n n n

n 2 n - n
(¢) nn3 - n

nnn n

$10.60 Verify the following determinant formulas for (n+ 1) x (n+ 1)-matrices with coefficients
in a field K. (At the places marked by * one may take arbitrary elements of K.)

a b b b 1 ai a an
b a b b 1 a;+b * .
(@ |P P a0 b= (aynb)a—b)y. () |1 @ @tbh o ox g
b b b a 1 al a a,+b,
ap x  * % * 1 1 1 1 1 1 1
by ay * % * 1 by a1 a1 a ay ay
bl b2 asz ok * 1 *x bz a ap aj aj
(C) by by by ay * 1 _|x % by a3 as as | _ (a] . b]) o (an o bn) .
by by b3 Dby an * ap—1 Ap—1
by by by by b, 1 by, an
—a al 0 0 0
0 —a ap 0 0
0 0 —a3 0 0
d) | . ) ) . . =(-D"(n+1)a;---ay
0 —dap an
1 1 1 1 1

S$10.61 Prove the following determinant formulas for the n x n-matrices over a field K: Let

forall k=2,...,n.

ay,). Then

ai,...,an, by,....b,, c1,...,c,—1 be elements of K and let

aj bl 0 0 0

c1 a b2 0 0

0 Ccy as 0 0

D, =
(a) (Recursion formula): Dy = ayDy_1 — bx_1cp—1Di—2,
(b) Inpart (@) put by =---=b,_1=cy=--cy—1 =:band D, :=D(b;ay,...,
D(b;ay,...,a,) =a,D(b;ay,...,a,_ 1) —b*D(b;ay,...,a, ) foralln>2.

(c) Compute the determinant D(b; ay,...,a,) in the following cases :
Hb=a=-=a,=1.
2a=---=a,=0.
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B)K=Kandb=1,a; =cos@,a, =---=a, =2cos Q.
cos @ 1 0 0
1 2cos @ 1 0
0 1 2cos @ --- 0 —cosnp, ¢ecC.
0 0 0 -+ 2cos @

(Remark : For the modified Tchebychev P olynomial T}, see the recursion-formula in (3)-(iii)
below. — Recall the definition and some properties of Tchebychev Polynomials :

For n € IN the polynomials

W2 s Nk Ik B2l 7 ANk S —k
=8 (1) (e e =B () (1)

k=0 k=0
arecalled Tchebychev polynomials of first and second kind respectively.

Properties of Tchebychev polynomials.

1) Ih=2,T1i=Xand T,;» =XT,, 1| — %Tn for every n € IN.
(2) 2" 'T;,(cos(@)) = cos(ng) for every n € N and ¢ € R.
(3) Forn e N, put T,,(X) := 2"~ T,(X). Then:

@) 7~"0 = 1,7~’1 =X and 7~",,+2 = 2XT",,+1 — 7~",, for every n € IN.

.. =N 1 N ¢ 1w ~  [(=1)"% if n iseven
(ii) Let n € N. Then T,,(1) = 1,T,,(—1) = (—1) andTn(O)—{0 1 is odd.

(iii) T, (cos(¢)) = cos(n@) for every n € N and ¢ € R.
(4) T, and T, have n-distinct real zeros in the open interval (—1,1), namely : cos((2k + 1)7/2n) for

n—1
k=0,...,n— 1 and therefore 7,,(X) = H (X—cos((2k+ 1)7r/2n)> foreveryn>1.)
k=0
@ a=---=a,=:a.
a b 0 -~ 00
b a b 00
n/2
0 b a 00 :[z/:}(_wk(n k)anZkak.
: S k
00O a b
00O b a
(d) Inpart (@) put by =---=b,_1=—cy=--—cy_1 =:band D, :=A(b;ay,...,a,). Then

Ab:ay,...,a,) = a,A(b;ay,... a,_1) —b*A(b;ay,...,a, 5) foralln > 2.

Further, for ay =---=a, =: a,

a b 0 0 0
-b a b -+ 0 O
0O b a - 0 0O R2A/_ 1
Ab;a,...,a)=| . . . ) .= ( L )an_zkbzk.
SRS S =
0O 0 O a b
0O 0 O -+ —=b a

(Remark: For a = b =1, the determinant A(1;1,...,1) isthe Fibonacci-number f,4 (the
n+ 1-term in the Fibonacci sequence fo := 0, f1 : +1, f,, := fu—1 + fu—2 for n > 2), which is equal to

n+1 n+1
1 1 5 1-+/5
(Binet’s formula): f41:=— ( +\[> — ( f) . See also Supplement S1.8)

NG 2 2
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S$10.62 Compute the determinants of the following matrices in M,,(Z):
210 00O
1 21 00O
01 2 00O
(a) |. .
00O 1 21
000 01 2
(Hint : Use induction on n. See also SupplementS10.61 (¢c)(4)(a=2b=1).)
1 12 0 0 0 0 0 0
-1 1 22 0 0 0 0 0
0 —1 1 32 0 0 0 0
(b) |+ oo P : :
0O 0 0 0 -1 1 (n—=2)? 0
0O 0 0 0 0 —1 1 (n—1)>2
0 0 0 0 0 0 —1 1
(Hint : Use induction on n and recursion formula in Supplement S10.61 (¢) (4) (a=1, b; = 2i=1,...,n—1
andq =C) ="' =Cp-1 :1).)
2 0 —1 0 0 0 0 0
0 2 0 —1 0 0 0 0
—1 0 2 —1 0 0 0 0
(c) 0 -1 -1 2 —1 0 0 0
10 0 0-1 2 -1 0 0
0 0 0 0 —1 2 —1 0
0 0 0 0 0 —1 2 —1
0 0 0 0 0 0 —1 2

(Hint : Expand using the first two columns and use Supplement S10.61 (d) (¢ =2and b=1).)

S$10.63 Let ay,...,a,,b and a;;, 1 <i, j < n be elements of a field K. Then show that:

ap+ai ai 0 0
aj ay+ap a 0
(a) 0 ar ar +as 0
0 0 0 a,—1+ay,
ail+b ap+b aig,+b
a+b an+b --- ay+b
(b) | . L =a+b
: : : ;
an1+b ap+b ann+Db

n

Y “b’) ’

j=1

O(gai> .

k=

where a :=Det (a;j) and aj; is the (i, j)-th cofactor of (aij), 1<i,j<n.

S10.64 Prove the following determinant formulas by induction :

ay+b
b
(a) | 3

by

by
ar+ by
b3

by

b by

by by
az + b3 b3

b, an+by

:al---an+i<Hai>bk,

k=1 itk

D. P. Patil /IISc

2016CSA-E0219-laa-suppl0.tex

October 3, 2016 ; 2:53 p.m.

17122



Page 18 EO0 219 Linear Algebra and Applications / August-December 2016 Supplement 10

x+ay ay az -+ ap—1 an
—1 x 0 - 0 0
0 -1 x - 0 0
(b) : A : : =x'f+ax" "+ ta,.
0 0 O X 0
0 0 O -1 x
aj O O bl
0 an, by 0| 2 42
(C) 0 bn ap 0 _kl;ll(ak bk)'
by - 0 0 - qa

S$10.65 Compute the determinant of the n X n matrix over a field K:

l—l—a1b1 a1b2 albn
aby  14+axby -+ axb,
(a) : : . :
a,bq a,br - 1+a,b,
(Hint: If all ¢; =0, then it is the identity matrix and hence its determinant is 1. Otherwise, we may assume
that a, #0. Fori = 1,...,n—1, replace i-th row by adding —a;a;, !-times the n-th row to it and then replace
the last row by by adding the —a, b;-times the i-th row, we get an upper triangular matrix :
cee —aiat
1+aiby  aitby - aiby, 1 0 - —aa,! (1) (1) _ala'il
axby 14+axby, --- arb, 0 1 R faza};l axa, n
: : .. : =1 . S . =1 = - : :1+Zaibi-)
: : . . : . . . n i=1
anby anby w1 4auby, a,by ayb, --- l1+a,b, 0 0 - 14 Y ab;
i=1

(b) Solve the following system of linear equations by using Cramer’s rule :
Xo+x3+ ot xp1+x, =1
X1 At txm =1
X1 +x2 +o X +x, =1

X1+x24+x34+ - Fx-1+x, =1

(Hint: Clearly, one sees immediately that x; 4+ 1/(n—1),k=1,...,n, is a solution. The|Cramer’s Rule 9.D.14
shows that x; = Dy /D if the the denominator determinant D = Det (J, — &,) # 0, where J, is the matrix
in the Supplement S10.35 (b). For its computation, we use Supplement S10.60 (a) with n instead of n+ 1,
a=0and b= 1 and note that D = (—1)"~!(n— 1) # 0. For the computation of the numerator determinants
Dy = Det (J — €, — &), first subtract k-th column from all other columns and then all other columns to
the k-th column to get the diagonal matrix —¢&, +2 - & and hence Dy = Det (—€&, +2¢&;;) = (—1)""1.
Therefore, we have again proved that x;, = Dy/D =1/(n—1), k =1,...,n.— One can also compute the
values of D, Dy, ..., D, by directly using the Remark in Supplement S10.35.)

$10.66 Suppose that the matrix 2 = (a;;) € GL,(K) satisfy the hypothesis of Supplement S9.41
and suppose that 2 = £ R’ with a diagonal matrix © = Diag(ay,...,a,) and a normalised lower
respectively upper triangular matrix £ respectively $R’. Then ay = Dy/Dy_1, k=1,...,n, where
Dy = Det(a;;) 1<, j< is the k-th principal minor of 2, k=0,...,n. (Put Dy =1.)
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S$10.67 Let n € IN* and let K be a field. The canonical exact sequence

1 — SL,(K) — GLu(K) 2% K% — 1

is a weak-split. Further, it is strong-split if and only if the power-map x — x"* is an automorphism
of K*. (Remarks: An exact sequence (i. €., (i) @ is injective, (ii) ¥ is surjective and (iii) Im ¢ = Ker y.)

(*) 1N %6 v H=1

of groups (not necessary abelian) is called a weak split sequence if y has a section o, i. e.
there exists a homomorphism ¢ : H — G such that yo = idy (this means G is the semi-direct product of
Imp=Nand Inoc = H)and Imo iscalleda weak complement of Im¢ in G.—If there exists a
projection 7 : G — N such that 7¢ = idy, then G is a direct product of Im¢ = N and Kerw = H, i. e. the
map Im @ x Kermw — G, (x,y) — xy is an isomorphism of groups. In this we say that the exact sequence
(¢x)isa strong split sequence and Kerwiscalleda strong complement of Img in
G. — Every strong split sequence is a weak split sequence. If ¢ is a section of ¥ and if Im ¢ is a normal in
G, then Im o is a strong complement if Im ¢ in G and the exact sequence (x) is a strong split. —- If G (and
hence H and N are abelian) then an exact sequence () is weak split if and only if its strong split. )

S10.68 Let f:V — V be a nilpotent endomorphism of the n-dimensional K-vector space V. Then
show that Det (a-idy + f) = a" for all a € K. More generally, show that Det (g + f) = Detg for
every operator g on V which commute with f,1.e., gf = fg.

S$10.69 Let V := K|t] be the vector space of all polynomial functions over the infinite field K and
let V,, := K|[t],, be the subspace of all polynomial functions of degree < n, n € IN*.

(a) Fora,b € K,lete:V — V be defined by f(t) — f(at+Db). Show that € linear and £(V,,) C 'V,
for all n. Further, compute the determinant Det (€ |y, ).

(b) Let K = K. For cy,...,c, € K, let 6:V — V be the differential operator
FO) =Y af®).
k=0
Show that 6 linear and for every n € IN*, §(V,,) C V,,. Further, compute the determinant Det (0 |y, ).

$10.70 Let m,n € N with m < n. For arbitrary matrices % = (a;j) € My, »(K) and B = (bj;) €
M, m(K) over a field K, show that

arj, - aij,| |bpa 0 bjim
Det (AB) = Y : : : :

1<ji<-<jm<n S . . .
/ =1y, j, am,j, | 1bj,1 bj,.m

(Hint: Let f: K" — K™ and g : K™ — K" be the linear maps defined by the matrices 2 and B (with respect
to the standard bases), respectively. Then compute the composition Alt(m, fog) = Alt(m,g) o Alt(m, f)
using the basis Ay, H € B,,({1,...,n}) of the K-vector space Alt(m,K").)

S$10.71 (Norm) Let A be a finite dimensional K-algebra. For x € A, let A,:A — A be the
left-multiplication y — xy by x on A. Show that A, is a K-linear operator on A. Its determinant is
calledthe Norm of x (over K) and is denoted by N% (x) = N(x).

(a) Forall x,y € A, N(xy) = N(x)N(y).
(b) Foralla € K,N(a) :=N(a- 14) = a", n:= DimgA.
(c) Anelement z € A is a unit in A if and only if N (x) # 0 in K.

$10.72 For all elements z of the R-Algebra C, show that N (z) = |z|>. (Hint : See Supple-
ment S10.71.)

S$10.73 Let A = M,(K) be the algebra of n x n-matrices over the field K. For all 2 € A, show
that N4 (21) = (Det2()". (Hint: See Supplement S10.71.— Minimal computation can be done using :
N4 (1) = (Det2)™ for a fixed m € IN. Compute this m by specialising the matrix 2, see Corollary 9.D.9.)

S10.74 Let V be a finite dimensional C-vector space and let f:V — V be a C-linear operator on V.
We consider V as a R-vector space, then f is a R-linear operator and its determinant is denoted by
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Detp f. Show that Detg f = |Det f|?. In particular, if A is a finite dimensional C-algebra, then, for

all x € A, show that N4 (x) = [N4,(x)|%, see Supplement S10.71. (Hint: If A +i%5, 2,5 € M,(R), is
the matrix of f with respect to the C-Basis vy,...,v, of V, then

(% _§> € My, (R)

is the matrix of f with respect to the R-Basis vy,...,v,, ivy,...,iv, and
A =B [A-iB —B| |A-iB B )
B A1 |B+idA Al 0 A+i1B| -

S10.75 Determine which of the following affinities of an n-dimensional oriented real affine spaces
are orientation preserving: (a) point-reflections. (b) reflections of a hyperplanes along a lines and
product of such r reflections, r € IN. (c) transvections. (d) dilatations. (e) magnifications.

S10.76 Let E be an oriented n-dimensional R-affine space. Suppose that the affine basis Fy, ..., P,
represents the orientation of E. For a permutation ¢ in &({0,...,n}), show that the affine basis
Ps(0):- - -+ Po(n) Tepresents the orientation of E if and only if ¢ is even. Further, show that the affine
Basis P, ..., Py also represents the orientation of £ if and only if n =0 or n = 3 modulo 4. (Hint :
See also Exercise 10.9 (a). )

S10.77 In every subgroup of the affine group A(E) of an oriented finite dimensional real affine
space E which has at least one orientation reversing map, the subset of all orientation preserving
maps form a subgroup of index 2.

S10.78 Suppose that the finite dimensional R-vector space V is the direct sum of the subspaces U
and W. By the following specifications of orientations on two of the spaces U, V, W a orientation
on the third is determined : Suppose that u = (uy,...,u,) respectively o = (wy,...,w;) are bases of
U respectively W. Then the basis (uy,...,u,,wy,...,ws) represents the orientation of V.=U &W
if and only if the bases u respectively tv both represents (or both don’t represent) the orientations of
U and W respectively. (Hint : Note the dependence on the sequence U and W.)

S$10.79 Let V be a finite dimensional R-vector space, V' C V be a subspace of V and V=V /V' be
the quotient space of V modulo V’. By the specifications of the orientations on the two of the spaces

V', V,V aorientation on the third is determined : Suppose that v},...,v. € V' is a basis of V' and
that the residue-classes of vi,...,vs € V form a basis of V. Show that the basis v{,...,v,.,vi,...,vs
of V represents the orientation of V if and only if the bases v},...,v. of V' and vy,...,V; of V both

represent (or both don’t represent) the orientations of V’ and V respectively.

S10.80 Determine which of the following bases of R” represent the standard orientation :
@ n=2;vi=(1,1),va=(1,-1).

(b) n—= 3;\/1 = (—1,0,1), V) = (0,—1,1), V3 = (1,—1,1).

(© n=4;vi=(1,1,1,1),vo=(1,2,1,1),vs = (1,1,3,1),v4 = (1,1,1,4).

S10.81 (a) Every C-linear isomorphism of finite dimensional complex vector spaces is orientation
preserving. (see Example 9.F.6.)

(b) A C-anti-linear isomorphism of finite dimensional complex vector spaces (see Example 5.C.7.)
is orientation preserving if and only if their common complex dimension is even.

S10.82 Let E be a real affine plane with the volume-function A, with respect to the basis vy, v,
of the space of the translations of E and R, ...,P,, r > 2, be points with the coordinates (a;,b;),
J=0,...,r, with respect to an affine coordinate system O ;vy,v;,. Furthermore, let [Py, P}, ..., P, Py|
be a simple closed polygon, i. e. the edges meet exactly at the adjacent vertices. Show that the
surface area of enclosed polygon is, up to a sign, equal to

1 ap a ar—1 ay ar agp
2<Det<bo bl>+---+Det(br_1 b, + Det b, by )
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(Remark : What do we mean by sign? Think about the orientation of E.— For the inductive-step from r — 1
to r use: by suitable numbering of the vertices of the polygon with vertices P, ..., P-_; and the complement
of the triangle with the vertices P,_; , P, , Py with only one common edge [P, , R].)

S10.83 The volume of the ellipsoid

n x% X,% n
{(xl,...,xn)G]R ‘z—{-—{-;él}gR,
1 n

a; € RY,1<i<n,is w,ay ---a,, where @, is the volume of the unit-sphere
{(x1,...,.x0) €R" !x%+~--+x,%§ 1}.

(Remarks : Note that @, = /> /(n/2)!; this needs a proof and uses Measure Theory. The volume of the unit-
sphere is @, = 7"/%/(n/2)!. — To compute the Volumelﬂof the unit-ball B" :=B(0;1) = {xeR" | ||x]| <1}
in R", where ||—|| denote the standard Euclidean norm.

Vi-i?

We put @, := A"(B"). The volume of a ball with radius r is then @,”". (Why?) It is easy to check
that g =1, w; =2, @, = 7 and the equality of Archimedes: w; = %ﬂ, since the surface-area
A2 (({r}xR*)NB3) = m(1—1%), —1<r <1, is a polynomial of degree 2 (<3) in.)

S10.84 Sketch the picture of the set M := Hi N H, N H3 in R?, where

H;:= {(X,y) € Rz | fl(x7y) > 0}7
i=1,2,3,and fi(x,y) :==x+3y+1, fo(x,y) := =5x+y+1, f3(x,y) :== x — y+ 3 and compute its
area.

S10.85 Let fi,..., f, be a basis of the space of linear forms on R". Let 2 := (a;;) € GL,(R) be
the transition matrix from the dual basis e7, ..., e, (with respect to the standard basis ey, ..., e, of
R") to the basis fi,..., f,. Therefore f; =Y | a;je}, and fi,..., fy is the dual basis with respect to
the basis v; =Y | bjje;, j=1,...,n, where B := (b;;) = 19(~1 is the contra-gradient matrix of 2
(see Supplement S9.23). Let d := |Det2(|. Show that

(a) Forcy,...,c, > 0, the volume of {x e R" ‘ i) <e¢i, i= 1,...,n} is equal to 2"cy -+~ ¢, /d.

(b) For ¢ >0, the volume of {x € R" | Y1, | fi(x)| < c} is equal to 2"¢" /n!d .

(¢) For ¢ > 0, the volume of the ellipsoid {x € R" | Y2, | fi(x)|* < ¢*} is equal to @,c"/d, where
), have the same meaning as in Supplement S10.83.

°In general it is difficult to compute the (volume =) Borel-Lebesgue measure A”(M) of an arbitrary Borel-set
M C R”. For subsets in R?, we have used the Fundamental Theorem of Differential-and Integral Calculus:
Theorem (Fundamental Theorem of Differential-and Integral Calculus) Let f:
b
[a,b] = R, a < b, be a continuous function with f > 0. Then the integral / f(t)dt is the area of the compact
a

set G(f;a,b) :={(x,y) |a<x<b,0<y< f(x)}
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(d) For cg,cy,...,c, € Rwithcg <cy+---+cp, the volume of the simplex

{XERn ‘ fl('x) SC,’, = 1)‘"7”5 fl(x)++fn<x) ZCO}
isequal to " /n!d mitb:=ci+---+c,—cp.-
(Proof : The matrix of the linear map f: R" — R” with f(x,...,x,) = (f1 (X1, Xn),s - ..,f,,(xl,...,xn))
with respect to the standard basis is the transpose '2(. Therefore Det f = Det ' = Det A = d and so
IDet f~!| =d~'. Now by Theorem 9.G.2|and the remarks after that A" (f~'(M)) = A"(M)/d. for every set
M for which A" (M) is defined.
(a) The volume of the cuboid Q := [—cy,¢p] X+ X [—cy, ¢p] is equal to the product (2¢;) - -+ (2¢,) =2"¢c1 - ¢n
of the lengths of its sides, and it follows that A"(Q) = A"({xeR" | |[fi(x)| <c1,...,|fu(x)| < cn}) =
)."(ffl([—cl,cz] XX [—cn,cn])) =2"¢c;---cp/d.
(b) Since the volume of the simplex {y = (y1,...,y,) €RL | y1+---+yu < c} (by 9.G.4) is equal to ¢ /n!, the
volume of M :={y = (y1,...,yn) ER" | [y1]|+ -+ |yn| < c} is 2°¢"/n! . It follows that A"(M) = A"({xe
R" [ [i(x)|+- + @) < c}) =A"(f 1 (M) =2""/dn!.)

S10.86 Let Py,...,P, € R" be affinely independent points and let S be the (convex) simplex with
these vertices. Further, let yo,...,y, € R, and H be the affine hyperplane in R"*! through the
points (Py,¥0) ..., (Pn,yn) € R*"1. Therefore H is the graph of the affine function #: R” — R with
h(P,) =y;,i=0,...,n. If T C R""! is the solid-body in between S and H, i. e.,

T:={(x,y) € R"H! |xeS,0<y<h(x)},
then Yot
N n+1
(Hint: A"1(T) is additive in (yo,...,y,) and does not change if the values yy,...,y, are permutated. One
can also assume that all y; are equal or that all y; other than a value y;, vanish.)

Compute the volume of the following solid-bodies in R3, where the top surface area is:

AT 21(S).

(0,0,¢)
0,1,b)

(1,0,a)

(X(), Yo ? ) e ol yo
X A

S$10.87 The group GL,(RR), n € IN* is the direct product of the groups I,,(R) of volume preserving
(or unimodular) matrices B € GL,(R) with |DetB| =1 and the group R} €&, = R of the
scalar matrices a€,, acR7, i. e. every matrix 2€ GL,(R) has a representation 2 = aB = B a with
uniquely determined (by 1) elements a € R and B €1,(R). (Remark : Deduce that: Every linear
automorphism f of R” is the composition of a volume-preserving automorphism g and a homothecy a-id

with positive stretching-factor a, where g and a = |Det ]| 1/n are uniquely determined by f. The automorphism
giscalledthe volume-reserving part andthe scalaraiscalledthe stretching-factor

of f.)
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