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R2. Convergent sequences and Completeness

C o n s t a n t i n C a r a t h é o d o r y †

(1873-1950)

R2.1. Unless otherwise stated, in the following exercises elements are in a fixed ordered fieldK , for
example in the field of real numbers.

1). Let (xn) be a convergent sequence withs ≥ xn (resp. s ≤ xn) for almost alln ∈ N . Then show
that s ≥ lim xn (resp. s ≤ lim xn) .

2). Let (xn) be a convergent sequence with a positive (resp. negative) limiting value. Then almost all
members of this sequence are also positive (resp. negative) .

3). Let (xn) be a sequence and let(xnk
) and (xmk

) be subsequences of(xn) such that every member
xn is contained in at least one of the subsequence, (i.e., every indexn is contained in one of the index
sequences(nk ) and (mk) ) . Show that the sequence(xn) is convergent if and only if each of the
subsequence converges to the same limiting value (and it is naturally equal to limxn ) .

4). A sequence(xn) is a null-sequence if and only if(|xn|) is a null-sequence.

5). Let (xn) be a null-sequence and let(yn) be a bounded sequence. The the sequence(xnyn) is also
a null-sequence.

6). a). A sequence with all positive (resp. all negative) members (improperly) converges to∞ (resp.
−∞ ) if and only if the reciprocal sequence is a null-sequence. A sequence(xn) with xn �= 0 for all
n ∈ N is a null-sequence if and only if the sequence(|1/xn|) converges to∞ .

b). Let lim xn = ∞ and limyn = a ∈ K \ {0} . Then limxnyn = ∞ , if a > 0 , and limxn = −∞ ,
if a < 0 .

c). If the sequence(xn) is convergent (improperly) to∞ , and the sequence(yn) is bounded, then the
sum sequence(xn + yn) is also (improperly) converges to∞ .

7). Suppose that the sequences(xn + yn) and (xn − yn) are convergent with the limiting valuesα
resp. β . Then sequences(xn), (yn) and (xnyn) are also convergent and limxn = (α+β)/2, lim yn =
(α − β)/2, lim xnyn = (α2 − β2)/4 .

8). Let (xn)n∈N be a convergent sequence (not necessarily proper). For every permutationσ of N , the
sequence(xσ(n))n∈N is also convergent with the same limiting value.

9). For which convergent sequences one can choose the placen0 ∈ N in the definition 4.E.1 independent
of ε (> 0) ?

R2.2. 1). Discuss the convergence of the sequences

(n + 1)(n2 − 1)

(2n + 1)(3n2 + 1)
; n + 1

n2 + 1
; 4n + 1

5n
; 1

n2
+ (−1)n

n2

n2 + 1

and determine their limiting values.
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2). Let t �−→ f (t) := ∑k
i=0 ait

i and t �−→ g(t) := ∑m
j=0 bj t

j be polynomial functions withai, bj ∈
R, ak �= 0, bm �= 0 . For all n ≥ n0 , assume thatg(n) �= 0 . Show that the sequencef (n)/g(n) ,
n ≥ n0 , is defined and we have :

lim
n→∞

f (n)

g(n)
=




0 , if k < m ,
am/bm , if k = m ,
∞ , if k > m and ak/bm > 0 ,
−∞ , if k > m and ak/bm < 0 .

3). Determine limn→∞(n − √
n)/(n + √

n + 1) and limn→∞(
√

n + 1)/(n + 1) .

4). Determine the following limiting values :

lim
n→∞

(√
n + 1 − √

n
) ; lim

n→∞
√

n
(√

n + a − √
n

)
, a ∈ R, n ≥ |a| ;

lim
n→∞

( 1√
n + 1

− 1√
n

)
n ; lim

n→∞

(√
n + √

n −
√

n − √
n

)
; lim

n→∞ n
(√

1 + 1
n

− 1
)
, n ≥ 1 .

5). Let a > 0 . Then show that limn→∞ n
√

a = 1 . ( Hint : If a ≥ 1 , write n
√

a = 1 + hn and apply
the Bernoulli’s inequality (see Exercise R1.5-1)) or use the fact that ifa ≥ 1 , then the sequence is monotone
decreasing and hence converges tox ≥ 1 , on the other handx = lim n

√
a = lim( 2n

√
a)2 = x2 .)

6). Show that lim n
√

n = 1 . ( Hint : Use arguments similar to the exercise 5) above. Forn ≥ 3 , the sequence
is monotone decreasing.)

R2.3. 1). Let (xn) be a sequence of non-zero real numbers.

a). If there exists a real numberq with 0 < q < 1 and|xn+1/xn| ≤ q for almost alln , then limxn = 0 .

b). If there exists a real numberq with q > 1 and|xn+1/xn| ≥ q for almost alln , then lim|xn| = ∞ .

c). Show that limn→∞
(
n

k

)
/2n = 0 for everyk ∈ N .

2). Let a1, . . . , am ∈ R+, m ≥ 1 . Show that limn→∞ n
√

an
1 + · · · + an

m = Max (a1, . . . , am) .

3). Let (xn) be (eventually improper) convergent sequence of real numbers with limxn = x .

a). The sequencean := 1
n
(x1 + · · · + xn), n ≥ 1 , of arithmetic mean converges tox .

b). Suppose thatxn > 0 for all n . Then the sequencehn := n
1
x1

+ · · · + 1
xn

, n ≥ 1 , of harmonic mean

converges tox . ( Hint : Follows from the part a) .)
c). Suppose thatxn > 0 for all n . Then the sequencegn := n

√
x1 · · · xn of the geometric mean also

converges tox . ( Hint : Apply Exercise R1.7). By the way by transition to logarithms the assertion follows
directly from the part a) because of the continuity of ln and exp .)
d). With the help of the part c) give solutions to the Exercises R2.2-5) and R2.2-6) and prove that
limn→∞

n
√

n! = ∞ and limn→∞
n
√

n!/n = 1/e . ( Hint : Both these assertions also follow from Stirling
formula, this supply even the sharper assertion limn→∞ n!/

√
2πn(n/e)n = 1 .)

e). Show by giving counter examples that the converse assertions in the parts a), b), c) are not true in
general.

f). Let (xn) be a sequence of positive real numbers such that the sequence(xn+1/xn) converges tox .
Then show that the sequence( n

√
xn) also convergers tox .

4). Let (xn) be convergent (eventually improper) sequence of real numbers with limxn = x . Then the
sequence 2−n

∑n
m=0

(
n

m

)
xm , n ∈ N , is also convergent with limiting valuex .

5). Let (xn) and (yn) be sequences inR with yn > 0 and limn→∞(y0 + · · · + yn) = ∞ . If the
sequence(xn/yn) converges toa , then the sequence(x0 + · · · + xn

y0 + · · · + yn

)
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also converges toa .

6). Show that

a). limn→∞
(
1 − (1/n2)

)n = 1 . ( Hint : Use the Bernoulli’s inequality.)

b). limn→∞
(
1 − (1/n)

)n = 1/e .

c). limn→∞
(
1 + (1/n2)

)n = 1 . ( Hint : Consider
(
1 + (1/n2)

)n2 → e .)

7). Show that the sequencefn+1/fn , n ≥ 1 , the quotients of the Fibonacci-sequence converges to
ϕ := (1 + √

5)/2 . ( Remark : If a segment is divided into the ratio of theg o l d e n r a t i o ,i.e. the ratio of
the total segment to the bigger part of the segmenta which is also the ratio of this bigger part of the segment to
the smaller part of the segmentb , then(a + b)/a = a/b = ϕ = 1+ϕ−1 = ϕ2−1 .) 1) – By the wayfn+1/fn

is the (n−1) -th approximation of the continued fraction ofϕ = [1, 1, 1, . . .] . )

R2.4. 1). Discuss the convergence for the following recursively defined sequences(xn) and compute
their limiting values

a). xn+1 = x2
n + 1

4 , n ∈ N , with 0 ≤ x0 ≤ 1
2 .

b). x0 = 0, xn+1 = 1
2(a + x2

n) , n ∈ N , with 0 ≤ a ≤ 1 .

c). x0 = 0, xn+1 = 1
2(a − x2

n) , n ∈ N , with 0 ≤ a ≤ 1 .

d). x0 = 2, xn+1 = 2 − 1/xn , n ∈ N .

e). x0 = 0, xn+1 = √
a + xn , n ∈ N , with a > 0 . ( Hint : For a = 2 , we get the sequence(cn) of

example 4.F.11.)
f). xn+1 = 2xn − ax2

n , n ∈ N , with a ∈ R, a > 0 and 0< x0 < 2/a .

g). xn+1 = (xn + 2)/(xn + 1) with x0 ≥ 0 .

h). xn+1 = 1
3(x2

n + 2) with x0 arbitrary.

( Remark : Controll the answers with computer.)

2). a). For the recursively defined sequences(xn) by x0 = a , x1 = b and xn+2 = (xn + xn+1)/2
with a, b ∈ R , show that limxn = (a + 2b)/3 . ( Hint : Look at subsequences(x2n) and (x2n+1)

separately.)
b). For the recursively defined sequence(xn) by x0 = a, x1 = 1, xn+2 = √

xnxn+1 with a ∈ R, a >

0 , show that limxn = 3
√

a .

3). Let a ≥ 1 . Show that the recursively defined sequence(xn) with

x0 = a, xn+1 = a + 1

xn

,

n ∈ N , is convergent and find its limiting value.(see also the example 4.F.13 on continued fractions.)

4). Let a, b > 0 . Show that the recursively defined sequences(an) and (bn) with a0 = a, b0 = b ,

an+1 = 2anbn

an + bn

= harmonic mean ofan , bn and bn+1 = an + bn

2
= arithmetic mean ofan , bn

form (after n = 1 ) a nested intervals for the geometric mean
√

ab of a and b . ( Hint : Note that
anbn = ab for all n ∈ N . The sequence(xn) in example 4.F.9 show that the sequence(bn) is obtained if we
put a0 = a/x0 and b0 = x0 . Since 0≤ bn+1 − an+1 = (bn − an)

2/2(an + bn) , we have quadratic convergence
of the nested intervals.)

1) ϕ like Φειδιας . The numberϕ is often also denoted byτ . — For α := π/5 from (4 cos2α − 1 −
2 cosα) sinα = sin 3α −sin 2α = 0 , we have the equations 4 cos2α−2 cosα−1=0 and 2 cosα = 2 cos(π/5) =
ϕ . Therefore cos(π/5) and hence the regular 10-gon (as well as the regular 5-gon) with the golden ratio can
be constructed. See the representation ofζ5 in ?????.
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5). Let a, b > 0 . Show that the recursively defined sequences(an) and (bn) with a0 = a, b0 = b ,

an+1 = an + bn

2
= arithmetic mean ofan , bn and bn+1 =

√
anbn = geometric mean ofan , bn

form (after n = 1 ) a nested intervals [bn , an] , n ∈ N
∗ . ( Remark : the numberM(a, b) defined by this

nested intervals is called the ar i t h m e t i c - g e o m e t r i c m e a n ofa and b . Since

0 ≤ an+1 − bn+1 = (an − bn)
2/2

(
an + bn + 2

√
anbn

)
here also we have quadratic convergence of the nested intervals. — Similarly, by using the harmonic and geometric
mean we can define the nested intervals and the number 1

/
M

(
1/a , 1/b

)
.)

6). Prove that the recursively defined sequence(xn) defined at the end of example 4.F.9 converges to
k
√

a , where forn ≥ 1 the we have the following error :

0 ≤ xn − k
√

a ≤ 1

k( k
√

a)k−1
(xk

n − a) .

7). Let a ∈ R
×
+ . The recursively defined sequence(xn) with x0 > 0 arbitrary and

xn+1 = x2
n + 3a

3x2
n + a

xn

converges monotonically to
√

a , where sincexn+1 −√
a = (xn −√

a)3/(3x2
n +a) , we have even cubic

convergence.

8). Let (an) be a monotone increasing and let(bn) be a montonoe decreasing sequences of real numbers
with an ≤ bn for all n ∈ N and a := lim an , b := lim bn . Show that

⋂∞
n=0[an , bn] = [a , b] .

R2.5. 1). a). Compute the dual and ternary expansions of 1/7, 1/8, 1/9, 1/10.

b). Compute theg-adic expansions ofa/(g − 1) and a/(g + 1) . Further, prove 1/(g − 1)2 =
(0, 012. . . g − 3 g − 1)g , where the overlined sequence of digits repeats iteself periodically.

2). In every interval ofR (with more than one point) there are infinitely many rational numbers and
there are infinitely many irrational numbers. Deduce that the set of irrational numbers is dense inR .

3). For x ∈ R , the sequence of rational numbers [nx]/n, n ≥ 1 , converges tox . ( Remark : See also
example 4.F.12.)

4). The product representation 2/π = ∏∞
n=1 cn/2 of Vieta (see example 4.F.11) can be interpreted as

follows : A square with the side length 1 is circumscribed in a circle with the diameterd1(=
√

2) , in
this regular 8 -gon is again circumscribed in a circle with the diameterd2 , in this regular 16 -gon is
again circumscribed etc.. Then the sequence of diameters(dn) converges toπ/2 .

5). For a, b ∈ N
∗ , show that [a, b, a, b, a, b, . . .] = (ab + √

a2b2 + 4ab)/2b ( Remark : see also the
example 4.F.13) .)

6). For n ∈ N
∗ , show that

√
n2 + 1 = [n, 2n, 2n, 2n, . . .] ,

√
n2 + 2 = [n, n, 2n, n, 2n, . . .] ,√

(n + 1)2 − 1 = [n, 1, 2n, 1, 2n, . . .] ( Remark : See also Example 4.F.13) .)

7). Let mk andnk , k ∈ N
∗ , be sequences of positive natural numbers with the following properties : (1)

For all k , mk ≤ nk . (2) limk→∞ mk = limk→∞ nk = ∞ . (3) The limiting valuex := limk→∞(nk/mk)

exists. (For example:mk := k, nk := [kx] with x ≥ 1 fixed, see exercise 3) above.)Then

lim
k→∞

nk∑
n=mk+1

1
n

= ln x .
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In particular, (mk := k, nk := 2k )

ln 2 = lim
k→∞

2k∑
n=k+1

1
n

= lim
k→∞

2k∑
n=1

(−1)n−1 1
n

= lim
k→∞

k∑
n=1

(−1)n−1 1
n

=:
∞∑

n=1

(−1)n−1 1
n

.

( Hint : Example 4.F.10. — Use the continuity of the Logarithm: If the sequencexk ∈ R
×
+, k ∈ N converges to

x ∈ R
×
+ , then the sequence lnxk , k ∈ N , converges to lnx .)

† C o n s t a n t i n C a r a t h é o d o r y ( 1 8 7 3 - 1 9 5 0 ) Constantin Carath´eodory was born on 13 Sept 1873 in Berlin,
Germany and died on 2 Feb 1950 in Munich, Germany. Constantin Carathéodory’s father, Stephanos Carathéodory, was an
Ottoman Greek who had studied law in Berlin and then served as secretary in the Ottoman embassies in Berlin, Stockholm
and Vienna. Stephanos had married Despina Petrocochino, who came from a Greek family of businessmen who had settled
in Marseille. At the time of Constantin’s birth, the family were in Berlin since Stephanos had been appointed there two years
earlier as First Secretary to the Ottoman Legation.

The Carathéodory family spent 1874-75 in Constantinople, where Constantin’s paternal grandfather lived, while Stephanos
was on leave. Then in 1875 they went to Brussels when Stephanos was appointed there as Ottoman Ambassador. In
Brussels, Constantin’s younger sister Loulia was born. The year 1895 was a tragic one for the family since Constantin’s
paternal grandfather died in that year, but much more tragically, Constantin’s mother Despina died of pneumonia in Cannes.
Constantin’s maternal grandmother took on the task of bringing up Constantin and Loulia in his father’s home in Belgium.
They employed a German maid who taught the children to speak German. Constantin was already bilingual in French and
Greek by this time. Constantin began his formal schooling at a private school in Vanderstock in 1881. He left after two years
and then spent time with his father on a visit to Berlin, and also spent the winters of 1883-84 and 1884-85 on the Italian
Riviera. Back in Brussels in 1885 he attended a grammar school for a year where he first began to become interested in
mathematics. In 1886 he entered the high school Athénée Royal d’Ixelles and studied there until his graduation in 1891.
Twice during his time at this school Constantin won a prize as the best mathematics student in Belgium.

At this stage Carathéodory began training as a military engineer. He attended the École Militaire de Belgique from October
1891 to May 1895 and he also studied at the É d’Application from 1893 to 1896. In 1897 a war broke out between Turkey
and Greece. This put Carathéodory in a difficult position since he sided with the Greeks, yet his father served the government
of the Ottoman Empire. Now a trained engineer was offered a job in the British colonial service. This job took him to Egypt
where he worked on the construction of the Assiut dam until April 1900. During periods when construction work had to
stop due to floods, he studied mathematics from some textbooks he had with him such as Jordan’s “Cours d’Analyse” and
Salmon’s text on the “analytic geometry of conic sections”. He also visited the Cheops pyramid and made measurements
which he wrote up and published in 1901. He also published a book “Egypt” in the same year which contained a wealth of
information on the history and geography of the country.

Carathéodory entered the University of Berlin in May 1900 where Frobenius and Schwarz were professors. He attended
Frobenius’s lectures but benefited most from a twice monthly colloquium run by Schwarz who was lecturing on his collected
works. He also became close friends with Fejér while at Berlin. After hearing excellent reports of mathematics research
at Göttingen, he decided to continue his studies there and enrolled for the summer semester of 1902. Carathéodory was
indeed impressed with Göttingen, describing it as the :... seat of an international congress of mathematicians permanently
in session.

He worked on the calculus of variations and was much influenced by both Hilbert and Klein. He received his doctorate in
1904 from Göttingen University for his thesis “Über die diskontinuierlichen Lösungen in der Variationsrechnung” which
he submitted to Hermann Minkowski. His oral examination was held on 13 July when he was also examined in his
subsidiary subjects of applied mathematics and astronomy by Klein and Schwarzschild. He remained at Göttingen to write
his habilitation thesis “Über die starken Maxima und Minima bei einfachen Integralen” which he submitted on 5 March
1905. He then lectured as a Privatdozent at Göttingen until 1908.

Carathéodory had spent time in Brussels with his father Stephanos over the summer of 1907. After a few months of
deteriorating health Stephanos died in late 1907. Study, at Bonn, had proposed Carathéodory as Furtwängler’s successor and,
after serious thought as to whether he should leave Göttingen, Carathéodory went to Bonn where he became a Provatdozent
on 1April 1908. At Bonn he collaborated with Study on isoperimetric problems. On 5 February 1909 he married Euphrosyne
Carathéodory in Constantinople. In marrying Euphrosyne, who was his aunt and eleven years his junior, Carathéodory was
following a family tradition of marrying close relatives. After a year at Bonn, Carathéodory was appointed as Professor of
higher Mathematics at the Technical University of Hanover, so becoming Stäckel’s successor. Again it was not long before
he moved on and on 1 October 1910 he was appointed to the Chair of Higher Mathematics at the Technical University of
Breslau. This time he held the chair for two and a half years before being appointed professor at Göttingen from 1 April
1913. The years of World War I were difficult ones for Carathéodory and his family. Most of his colleagues and students
served in the military and he was isolated in Göttingen. The famine of 1917 hit hard but Carathéodory continued to give
lecture courses at the university.

After five years Göttingen he was appointed to the University of Berlin in 1918 but after he had been there for a year,
at the request of the Greek government, he ended his contract with Berlin on 31 December 1919 and travelled to Greece
to undertake a new venture. By this time Constantin and Euphrosyne had two children, Stephanos born in Hanover on 7
November 1909 and Despina born on 13 October 1912. Carathéodory had also accepted editorial positions on the boards of

D. P. Patil / Exercise Set R2 aag05-er2.tex ; October 27, 2005 ; 11:42 a.m. 10



R2.6 Algebra, Arithmetic and Geometry / 2005 R2. Convergent sequences and Completeness

two major mathematics journals, the “Rendiconti del Circolo Matematico di Palermo” from 1909 and the “Mathematische
Annalen” from 1914. The Greek government had asked Carathéodory to establish a second university in Smyrna. However,
he also required a university post so he was appointed as Professor of Analytical and Higher Geometry at the University of
Athens on 2 June 1920. On 14 July the Greek government published a bill setting up a Greek University in Smyrna and soon
others were appointed at assist Carathéodory. On 28 July Carathéodory was officially appointed as organiser of the Ionian
University in Smyrna and also Professor of Mathematics at the new university. In the second half of 1921 he travelled widely
through Europe purchasing books and equipment for the new university. The Turks attacked Smyrna in September 1922
and so the planned opening of the university in October of that year became impossible. Carathéodory was able to save the
university library, which he had worked so hard to establish, and most of the equipment which he had been purchased for
the science departments, and escaped to Athens on a Greek battleship. He taught at Athens at the National University and
the National Technical University until 1924 when he moved to Munich to fill the chair left vacant when Lindemann retired.

In 1928 Carathéodory became the first visiting lecturer of the American Mathematical Society. He sailed to the United States
with his wife in January and after a lecture tour and time spent as a visiting professor at Harvard, returned to Munich in
September. In the following year he received an offer of a post from Stanford university and was in fact appointed there in
September 1929. However, he seems to have only been using this offer as a means of getting better salary and conditions
from Munich, which indeed he managed to do. On 30 January 1933 the National Socialist party led by Hitler came to power
in Germany.

Carathéodory could hardly conceive how this could happen in a country with the cultural traditions of Germany. He initially
tended to view the Hitler regime with a somewhat overconfident contempt, whereas later, when Hitler gained absolute power,
he was incapable of resistance. His behaviour in the Nazi era was, in fact, identical with that of the ... educated bourgeois
who, despite their humanistic background, in their overwhelming majority abstained from any opposition against Hitler’s
dictatorship, and especially Hitler’s war, and thus dramatically failed to exercise their historic responsibility towards both
Germany and humanity as a whole.

Carathéodory continued to hold his position in Munich until he retired in August 1938. However he certainly undertook
many duties which took him to other places. In particular he continued to work on reorganising the Greek universities,
particularly during 1930-32, with the aim of integrating Greece academically into Europe. In 1936-37 he made another visit
to the United States, giving a lecture at the American Mathematical Society meeting to commemorate the tercentenary of
Harvard University on 31 August 1936, then spending the winter semester at the University of Wisconsin as Carl Schurz
Memorial Professor.

The World War II was a difficult time for Carathéodory. Georgiadou writes :

... during World War II he took part in the procedures of the Bavarian Academy of Sciences. He did not get involved in the
movement for national socialism, but he did have connections with Nazi party members [particularly Hasse, Blaschke and
Süss]. He never openly mentioned the holocaust or the Nazi crimes against Greece. ... kept silent in the face of crimes that
violated any idea of human decency, accepted the authority of an illegal state, made his compromises and submitted to the
expulsion of Jews from scientific institutions ... However, he took great pains to re-establish mathematics as an academic
discipline in Germany after the war and thus to contribute to the reintegration of this country into the community of civilised
nations.

Carathéodory made significant contributions to the calculus of variations, the theory of point set measure, and the theory of
functions of a real variable. He added important results to the relationship between first order partial differential equations
and the calculus of variations. He contributed important results to the theory of functions of several variables. He examined
conformal representations of simply connected regions and he developed a theory of boundary correspondence. He also
made contributions in thermodynamics, the special theory of relativity, mechanics, and geometrical optics.

Carathéodory wrote many fine books including ‘Lectures on Real Functions (1918)”, “Conformal representation (1932)”,
“Calculus of Variations” and “Partial Differential Equations (1935)”, “Geometric Optics (1937)”, “Real functions Vol. 1:
Numbers, Point sets, Functions (1939)”, and “Funktionentheorie”, a 2 volume work published in 1950.

One might wonder why there is no “Real functions Vol. 2” in this list. In fact Carathéodory did write the second volume of
this work but it was destroyed while at the publisher Teubner during the bombing of Leipzig in 1943.

Perron, writing in 1952, remarks that Carathéodory :... had not published many of his ideas; they result in others works,
especially in those of the numerous students who were introduced by him to the spirit and ways of scientific research and
who partly themselves occupy university chairs today.

He supervised two doctoral students at Göttingen (Hans Rademacher and Paul Finsler), one at Berlin, and 17 at Munich.
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