LECTURE - 2 ALMOST COMPLEX STRUCTURES, METRICS, ETC

Now that we know what complex manifolds are, an interesting question is “Given a 2n-real
dimensional smooth manifold, is it secretly a complex manifold ?” A much easier question is :
“What piece of information on a real vector space allows it to become a complex vector space ?” The
answer to this easier question is obtained by knowing how V-1 acts on the real vector space V. The
properties it should satisfy are :

(1) The action should be R-linear, and
(2) its square is —Id.

We define a almost complex structure | on a real vector space V as a real linear map | : V — V

such that J> = —I. In particular, on R?", there is a natural almost complex structure given by
0 -I
] std = I 0

Exercise : Prove that such a V is even (real) dimensional and that there exists a basis so that | = Jg4 =

0 -I

I 0

An almost complex manifold is a smooth manifold equipped with a smoothly varying (means
that for any smooth vector field X, JX is a smooth vector field, or alternatively, ] = | fjdxj ® % in local

coordinates where ]f]. are smooth functions) almost complex structure | : TM — TM. Not every

manifold can be given an almost complex structure (even if it is even dimensional). A complex
manifold has a natural almost complex structure given by | (%) = 8iyi and | (8%1-) = —% where
z' = x' + Y=1y". Why is this well-defined ? If we choose a different set of holomorphic coordinates
Z, then
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At this point, note that % = 0 (the Cauchy-Riemann equations). Substituting these in 0.3 we see
that 5 5
J (ﬁ) = 0=

%0 dy
and likewise. Therefore, | is a well-defined endomorphism of TM. Please note that NOT every
almost complex manifold arises out of a complex manifold. (It is not easy to give such counterex-
amples though.)

Note that we can consider the complexification of the tangent bundle TcM = TM ® C (simply
replace each tangent space by its complexification). The a.c.s extends in C-linear manner to T¢M.

Now note that ]% = —1% and ]% = - V—l% where we recall that % = %(% - —1(9%,.). In
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fact, one can prove that on any a.c. vector space (V,]), Jc has only two eigenspaces V10, V01 with
eigenvalues + V-1.

The map L : (T,M,]) — (T;’OM, V-1) given by % - % and (9%1. - \/—1% is a complex linear
isomorphism between the bundles. (It is well-defined because it can be written in a basis inde-
v— \/—_l]v

pendent manner as v - ———.) Note that we have a natural almost complex structure on T"M
as well : J'dx' = —dy/, J'dy’ = dx’ (why is it well-defined ?). Likewise, dzt = dx' + \/—_1dyi is an
element of (T"?M)* (and likewise for dz). There is a natural complex linear isomorphism dx' — dz!,
dy' — —V=1dz' between T*M and T"M.

Consider the standard manifold C and IR?>. Both have two other natural structures - standard
metrics. How do they play with the almost complex structures ? The inner product ¢ (which is
also going to be called a metric from now onwards) on R? is very special in that | preserves it (after
all, | is rotation anticlockwise by 90 degrees), i.e., g(Jv, Jw) = g(v,w). Now there is a Hermitian
metric on T'°C given by h(%, %) =1,ie,h =dz®dz (just like g = dx ® dx + dy ® dy, h is a bilinear
map from T x T%' — C and hence factors uniquely as a linear map from the tensor product
and is hence an element of the dual of the tensor product). Writing dz = dx + V-1dy, we see that
h=g- V-1(dx®dy — dy ® dx) = g — V=1dx A dy. The real part of 1 is g and V-1Im(h) seems to be
a2-form w = gdz A dz. Note that a)(%, %) = g(]%, %).

More generally, if M is a complex manifold with a Hermitian metric # on T"’M (it is a smoothly
varying Hermitian inner product), then locally, & = h;z' ® dz/ where h;; is a smooth Hermitian
positive definite matrix. Its real partis g = Re(hif)(dxi ®dx/ +dy' ®dyl) + Im(hi]v)(dxi ®dy/ —dy' ®@dx)).
It is clear that ¢ is symmetric. It defines a well-defined compatible Riemannian metric on M because
it can be written in a basis independent manner as g(v,w) = Re(h(Lv, Lw)) (and this also proves
that it is positive-definite). The imaginary part is —w = —Re(h;7)(dx' ® dy/ — dy' ® dx/) + Im(h;;)(dx’' @
dxl +dy' ® dyl) = V-1 };dz" A dZ/ is a globally-defined real 2-form because w(v, w) = —Imh(Lv, Lw).
In fact, as one can see from the local expression, it is a (1,1)-form. Conversely, given a compat-
ible Riemannian metric g, we can define w(X,Y) = g(JX,Y) and a Hermitian metric & on T'? by

h(Lv, Lw) = g(v, w) — V-1w(v, w).

Now we notice an important fact : A complex manifold is always orientable. To prove this, we
simply need to prove that the (real) transition functions have positive Jacobian. The derivative
linear map Df, at a point p is (in the x, y, %, 7 bases)

axl dyl
a2

axl  dyl

(0.4) [Dfy] =

Since we can complex linearly extend Df, : T¢ym — TepM we can choose to express it in the basis
Jd d
FEl as
A
(0.5) [Dfl, = [ = ) )
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whose determinant is positive. In fact, this can be generalised to say that any biholomorphic map
between complex manifolds is orientation preserving.

Since compact complex manifolds are orientable in a standard way, we can integrate top forms on
them. In particular, given a Riemannian metric g, there is a volume form +/det(g)dx! A dy' A dx? A
dy? ... We can express this form for a compatible Riemannian metric as ‘;’1—7 Indeed, it is enough to
prove that these two forms coincide at every point in some coordinate system (that can vary from
point to point).

Exercise : Show that there is a choice of holomorphic coordinates around a point p so that h(p) = ¥.; dz* AdZ'
(and hence g(p) = ¥.;dx' ® dx' + dy' @ dy' and w(p) = Y;dx’ A dy'.

Using the exercise, one can see that the forms are equal. Given a complex submanifold S € M, and
a Hermitian metric & on M, we have an induced Hermitian metric on T'°S and hence an induced
compatible Riemannian metric, and an induced 2-form ws = i@. The volume of S equals “SJ—:
This is in stark contrast to smooth submanifolds where the volume/area need not be the integral of

a globally defined form.

To give more examples, especially on compact manifolds, let us look at a simple comapct manifold
: Complex tori. Let A Cc C" = R? be a complete lattice, i.e., there is a basis ey, ey, . . ., €2, of R?" such
that every element of A is of the form }_; n;e; where n; € Z. Define an equivalence relation z ~ w iff
z—w € A.

Exercise : %’ is a compact complex manifold diffeomorphic to S' x S' x ...

One coordinate chart on this complex torus is z!, ..., z" (just coordinates on C"). The other charts
are obtained from this by simply translating by appropriate elements of A. Hence dz!,dz>... are
globally well-defined holomorphic 1-forms. Likewise, % are globally well-defined holomorphic
vector fields (that are everywhere linearly independent). Hence, define a smooth Hermitian metric
by h(a%, % =0y, ie, h =1}, dz' ® dz'. Tt is basically the metric induced from the usual one on C".



