
LECTURES 3 AND 4 (KÄHLER METRICS, COHOMOLOGY, AND EXAMPLES)

1. Lecture 3 (Kähler metrics)

There is a natural Hermitian metric on T1,0CPn called the Fubini-Study metric. Here is the
unmotivated definition of the same : On U0, define hi j̄ =

∑
i

dzi
⊗dz̄i

1+|z|2 −
∑

i, j
z jz̄idzi

⊗dz̄ j

(1+|z|2)2 . It is not immediately

obvious that this is even positive-definite. (Do this as an exercise.) On U1 let w1 = X0

X1 ,wi = Xi

X1 and

define h̃i j̄ =
∑

i
dwi
⊗dw̄i

1+|w|2 −
∑

i, j
w jw̄idwi

⊗dw̄ j

(1+|w|2)2 and likewise for the other coordinate charts. This metric is
well-defined. Indeed, when does a collection of coordinate expressions define a metric ? Note that
dz̃i = ∂z̃i

∂z j dz j and hence

h = hi j̄dzi
⊗ dz̄ j = h̃kl̄dz̃k

⊗ d ¯̃zl

= h̃kl̄
∂z̃k

∂zi
∂ ¯̃zl

∂z̄ j dzi
⊗ dz̄ j(1.1)

⇒ hi j̄ = h̃kl̄
∂z̃k

∂zi
∂ ¯̃zl

∂z̄ j .(1.2)

Indeed, a calculation shows (do it!) that indeed the above expressions satisfy this change-of-variable
condition and therefore define a well-defined Hermitian metric. This metric plays the same role
in complex differential geometry as the round metric on the sphere plays in usual Riemannian
geometry.

In Riemannian geometry, a nice coordinate system around each point p called normal coordinates

can be obtained. In such a coordinate system gi j(p) = δi j and
∂gi j

∂xk (p) = 0. (Therefore, all the Christoffel
symbols vanish in this coordinate system at p. However, in general one cannot do better. The second
derivatives of g are related to the curvature of g.)

Given a compatible Riemannian metric g on a complex manifold M, a natural question is whether
there exists a holomorphic normal coordinate system. If there is a such a system, then clearly
ω(X,Y) = g(JX,Y) also satisfies the same property (because J is standard in holomorphic coordinates).
Therefore, dω(p) = 0, i.e., ∂ω(p) = 0 and ∂̄ω(p) = 0. Since this equation is independent of coordinates
and holds for all p, a necessary condition is that dω = 0. For instance, hi j̄ = (1+ |z2

|
2)dz1

∧dz̄1+dz2
∧dz̄2

does not define a metric in C2 where such holomorphic normal coordinates can be found. (So this
is not a trivial condition.) This condition is actually sufficient :
Using a linear change of coordinates (how ?) we can make sure that z is a coordinate system where
h(p) = δi j̄dzi

⊗ dz̄ j and

bi j̄k =
∂hi j̄

∂zk
(p) =

∂hk j̄

∂zi (p) = bk j̄i.

Let zi = wi
−
∑

a,b
caīb
2 wawb for sufficiently small |w| be a new coordinate system around p (where p

corresponds to z = w = 0). Then ∂zi

∂w j = δi
j −

1
2
∑

a,b(c jībwb + caī jwa) = δi
j −
∑

a c jīawa. The metric in the w
1
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coordinates near p is

h̃i j = h̃uv
∂zu

∂wi
∂z̄v

∂w̄ j = h̃uv(δu
i −
∑

a
ciūawa)(δv

j −
∑

a
c̄ jv̄awa)(1.3)

Choosing c = b we are done.

A Hermitian metric h on a complex manifold is called Kähler if dω = 0 (which is equivalent to
∂ω = ∂̄ω = 0). Here are some examples :

(1) The Euclidean metric on an open subset of Cn.
(2) The standard flat metric on a complex torus.
(3) The Fubini-Study metric on CPn. (Exercise.)
(4) The metric hi j̄ = ∂2

∂ziz̄ j ln(1 − |z|2) on the open unit disc. This can be done as an exercise but it

is easier to note that in this case ω =
√
−1
2 ∂∂̄ ln(1 − |z|2) and hence ∂ω = 0 = ∂̄ω. (This metric

plays the same role in complex differential geometry as the hyperbolic metric in Riemannian
geometry.)

In each of the above examples the form ω is locally of the form
√
−1∂∂̄ f for some real-valued locally

defined function f . In fact, this phenomenon is not a coincidence :

Theorem 1.1. (Local ∂∂̄ lemma) Let h be a smooth Kähler metric on a discDr ⊂ Cn of radius r centred at 0.
There exists a smooth function f : Dr → R such that ω =

√
−1∂∂̄ f .

Before we prove this statement, let us look at another point. How can one come up with examples

of two forms ω (let alone (1, 1)-forms of the type ω =
√
−1
2 hi j̄dzi

∧ dz̄ j where h is a positived-definite
matrix) that are closed, i.e., dω = 0 ? One way is to take an exact form ω = dη (and hence
dω = d2η = 0). This raises a couple of questions ?

(1) Is every closed k-form exact ? No. Indeed, take η =
−ydx+xdy

x2+y2 There is no smooth function f

on R2
− {0} such that η = d f . Indeed, if there was one, then

∫
x2+y2=1 η =

∫
S1 d f = 0 (by Stokes)

but
∫

S1 η = 2π (as can be calculated easily).
(2) At least, is a Kähler form ω exact ? Certainly never on compact complex manifolds. Indeed,

if ω = dη, then ωn

n! =
dηωn−1

n! =
d(ηωn−1)

n! whose integral is 0 by Stokes. But, the integral of the left
hand side is the volume of the manifold which is always positive.

The above being said, here are a few related points.

(1) (Poincaré lemma) : A closed k-form (k¿0) on an open ball in Rn (or more generally, on a
convex subset of Rn) is exact. While this lemma is not terribly hard to prove, we shall only

prove it for 1-forms η = ηidxi such that dη =
∑

i< j(
∂ηi

∂x j −
∂η j

∂xi )dxi
∧ dx j = 0. Indeed, define

f (x) =
∫ 1

0 ηi(tx)xidt. Now

∂ f
∂x j =

∫ 1

0

∂ηi

∂x j (tx)txi + η j(tx)dt

=

∫ 1

0
(
∂η j

∂xi (tx)txi + η j(tx))dt = η j(x).(1.4)
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2. Lecture 4 (Kähler metrics)

(1) In general, we can try to measure how much forms fail from being exact (and that information
will help us detect the number of “holes” in our manifold like in the example above) using
a tool called De Rham cohomology. Indeed, let Ck(M) be the (infinite-dimensional) space of
smooth closed k-forms and dCk−1(M) the subspace of smooth exact k-forms. We can take a

quotient of these spaces, i.e., Hk(M) =
C

k(M)
dCk−1(M) to get a vector space consisting of equivalence

classes [ω] (basically closed forms upto exactness) called the kth De Rham cohomology of
M. It turns out that these vector spaces (or groups as they are called sometimes) are finite-
dimensional if M is a compact manifold.
Poincaré ’s lemma can be stated as Hk(B ⊂ Rn) = 0 ∀ k > 0. For k = 0, d f = 0 implies that
f is a constant on each component. Hence, dim(H0(M)) is simply the number of connected
components of M. (So to prove something is connected, one can try to calculate the 0th De
Rham group and prove it is one-dimensional.) Clearly, Hk(M) = 0 when k > dim(M). For
a compact Kähler manifold, H2(M) , {0} because [ω] , [0] where ω is the Kähler form. (In
fact, a standard method calculating De Rham cohomology shows that the Hopf surface has
H2 = 0 and hence cannot be Kähler.) Here is an exercise :
Exercise : Calculate the De Rham cohomology of a torus S1

× S1 . . . from first principles.
(2) A compact oriented manifold has dimHdim(M)(M) = 1. Also, a non-trivial result (Poincarè du-

ality) shows that dim(Hk(M)) = dim(Hdim(M)−k(M)) when M is a compact orientable manifold.
In general, there are many techniques to compute the De Rham cohomology. So it is a useful
tool to distinguish between manifolds.

(3) On a complex manifold, there are other cohomology groups : We can ask whether ∂̄-closed
forms are exact or not for instance. So we have the Dolbeault cohomology groups Hp,q

∂̄
(M) =

∂̄ closed (p,q) f orms
∂̄ exact (p,q) f orms . For Kähler manifolds, it turns out that Hk

≡ ⊕p+q=kHp,q, and that Hp,q =

Hq,p,Hn−p,n−q = Hp,q. So in particular, for Kähler manifolds, b1 = dim(H1) = dim(H1,0) +
dim(H0,1) = 2dimH1,0 is even. Also, dimH1,1 > 0 for a Kähler manifold because the Kähler
form is in it.

(4) There is a ∂̄ Poincaré lemma for a ball in Cn. It is actually quite non-trivial to prove even for
(0, 1)-forms on C. Indeed, if η = gdz̄ on a disc, then it turns out that f = 1

2π
√
−1

∫ g(w)
w−z dw ∧ dw̄

satisfies ∂̄ f = η on a slightly smaller disc. This itself requires a trick (partition-of-unity) to
prove. The proof is in Griffiths and Harris.

(5) Hence, if dω = 0 where ω is a (1, 1)-form on a ball in Cn, then ω = dη where η = η1,0 + η0,1.
Hence, ∂η1,0 = 0, ∂̄η0,1 = 0. Thus, ω = ∂η0,1 + ∂̄η1,0 = ∂∂̄ f1 + ∂̄∂ f2. Now, η1,0 + η0,1 = η is a real
form and hence η1,0 = ¯η0,1. Hence, f2 can be chosen to be equal to f̄1. Thus, ω =

√
−1∂∂̄ f

where f is a real-valued function. This proves the local ∂∂̄ lemma.

On a compact manifold, is there a version of the ∂∂̄ lemma globally ? Thankfully, yes.

Theorem 2.1. If ω is a d-closed real (1, 1)-form, then any other d-closed ω
′

in [ω], i.e., ω′ = ω + dη (where
η is a real 1-form) can be written as ω

′

= ω +
√
−1∂∂̄φ where φ is a smooth globally defined real valued

function.

The proof of this theorem uses an analytic tool (the Hodge theorem) and we will not do it (at least
right now).

We are in a position to state the Calabi volume conjecture. (Calabi made many interrelated
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conjectures. One of them is this one.) : Given a smooth function f and a Kähler metric ω such that∫
M

e fωn =

∫
M
ωn, there exists a unique Kähler metric ω′ in the same De Rham cohomology class

of ω such that the volume form of ω′ is e fωn. In other words, prove that there is upto constants a
unique smooth function φ satisfying the complex Monge-Ampère equation

(ω +
√

−1∂∂̄φ)n = e fωn.(2.1)

Is there a systematic way of coming up with the Fubini-Study metric ? It turns out that there is at
least a systematic way of coming up with some closed (1, 1)-forms (that are not necessarily exact). So
at least that gives us some hope. Indeed, let L be a holomorphic line bundle. Recall that it means that
L = ∪pLp is a complex manifold such that Lp is a complex 1-d vector space at every p, and that locally,
there exists a holomorphically varying basis sα : Uα → L. A smooth Hermitian metric h on L is simply
a smoothly varying collection of inner products hp, i.e., the local functions hα(p) = hp(sα(p), sα(p))
are smoothly varying. Moreover, if we change our local basis to sβ such that sα = gβαsβ where
gβα : Uα ∩ Uβ → C∗ is a holomorphic function, then hα = h(gβαsβ, gβαsβ) = |gβα|2hβ. Consider the
expression Θα = ∂̄∂ ln hα = ∂̄∂ ln(hβ) = Θβ. So using a Hermitian metric on a holomorphic line bundle
L, we can produce a globally defined (1, 1)-form Θ = ∂̄∂ ln hα that is clearly d-closed. This (1, 1)-form
is called the “curvature form” of the “Chern connection” of h. This form is purely imaginary.


	1. Lecture 3 (Kähler metrics)
	2. Lecture 4 (Kähler metrics)

