
NOTES ON LINEAR ODE AND STABILITY

1. Why to care about differential equations

(1) All laws of nature are differential equations (whether ODE or PDE). Even modelling simple
things like “There are 25 rabbits and 13 foxes; after observing them for a month, predict
how the situation will be like if there were 15 foxes to begin with” boil down to differential
equations.

(2) The question of “Can we draw a map of Bangalore on a piece of paper such that is to scale
? That is, 2 cm in the map is maybe 1 km in Bangalore ?” (No) This has to do in a deep
manner with certain kinds of partial differential equations. This is the beginning of the study
of Differential Geometry (geometry on curved surfaces like that of the earth).

(3) Find positive integers x, y, z so that x
y+z + y

z+x + z
x+y = 4. This is a shockingly diffi-

cult problem. The smallest integers satisfying this are 80 digit numbers ! This has deep
connections to an ODE (involving complex numbers no less!) whose solutions are called
Weierstrass elliptic functions. You can read more about this on https://www.quora.com/

How-do-you-find-the-positive-integer-solutions-to-frac-x-y%2Bz-%2B-frac-y-z%

2Bx-%2B-frac-z-x%2By-4/answer/Alon-Amit

The examples above cannot be understood by simply knowing a collection of techniques to solve
simple differential equations. What we need is a unified theory. For instance, one question which
mathematicians try to answer is “Does a solution to this differential equation exist ? Is it unique ?”
- Note that one can write innocent looking differential equations for which you can prove that there
are no solutions (leave alone actually finding a formula for the solutions using techniques you learn
in college).

So our aim in this set of lectures is to rigorously study some aspects of the theory of differential
equations, in particular, linear differential equations.

2. A seemingly silly example

Q : Suppose D = (0, 1)∪(2, 3). Find a differentiable function f : D → R satisfying f
′
(x) = 0 ∀ x ∈

D.
Ans : One might be tempted to say that f is a constant. This is not true ! f = 1 on (0, 1) and
f = 2 on (2, 3) is a non-constant solution ! So firstly, the solution (or the lack of thereof) of a
differential equation might depend on the domain. In fact, knowing all solutions of this differential
equation tells us that D is not connected ! In other words, one can potentially shed light on the
shape of a region by studying solutions of differential equations on it !

So the answer is f = c1 on (0, 1) and f = c2 on (2, 3). How does one prove this ? There are two
ways. In each of these, let us prove that f is a constant on (0, 1) (the case of (2, 3) is similar).

(1) (MVT) : Suppose a ∈ (0, 1). Since f is assumed to be differentiable on (0, 1), it is also
continuous on it. Hence it is continuous on [12 , a] (or [a, 12 ] if a < 1

2). Then f(a) − f(12) =

f
′
(θ)(a − 1

2) for some θ. This is the content of the Mean Value Theorem. Hence f(a) =

f(12) ∀ a ∈ (0, 1).
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(2) (FTC) : If f is continuous on [a, b] and there is a differentiable function F so that F
′

= f

on [a, b], then F (b) − F (a) =
∫ b
a f(x)dx. Since f

′
= 0 is continuous,

∫ a
1/2 f

′
(x)dx = f(a) −

f(1/2) = 0.

3. A slightly less silly one

Many situations in real life (population of humans or rabbits or anything else, radioactivity, chem-
ical reactions, etc) involve the rate of change being proportional to the quantity present (the more

rabbits, the faster their number grows). This is modelled by the differential equation dy
dx = ay for

some constant real number a.
Q : Find all differentiable functions y : R→ R such that dy

dx = ay.
This is a question you can all solve but we want to be rigorous and extract concepts out of the

solution. The claim is that all solutions are of the form y = Ceax. Indeed, d(ye−ax)
dx = 0 and hence

(since R is connected), y = Ceax. More importantly, if a = 0, y = C, if a > 0, y increases very
quickly (faster than any polynomial), and if a < 0, it decreases quickly. y is never 0 unless it is so to
begin with.

So the initial condition y(0) determines whether y is positive always or negative always. When
a < 0, the solution tends to come back to equilibrium. When a > 0, it tends to move away from
equilibrium. The solution y = 0 is hence a stable (a < 0), unstable (a > 0) or neutral equilibrium.

4. A far less silly one

Here is another example : In a realistic population model, growth cannot be exponential forver.
After some time, the lack of resources will decrease the rate of growth and it stabilises to some
“carrying capacity”. So a more realistic model (called the Logistic model) is

dy

dx
= ay(1− y

K
)(4.1)

on [0,∞). One can solve this explicitly using standard techniques

y =
K

1 + (Ky0 − 1)e−ax

This sort of a function is called the Logistic function/sigmoid function (and it comes up in other
areas of life such as statistics and machine learning). But this is not the point. We want to study
qualitative behaviour. If y0 = 0 or y0 = K, then y = y0 (the constant solution) is a solution and
hence the solution with those initial conditions (the theorem of existence and uniqueness of solutions
to ODE). What if y0 = K ± a small amount ? Suppose y0 = K − h where h > 0 is small. Then the
right hand side is negative to begin with. Thus y decreases initially. This means the right hand side
becomes slightly less negative and so on. It turns out that in this particular case, the right hand
side never actually reaches zero but becomes less and less negative (y keeps decreasing towards K).
Likewise for the other cases. Slightly more precisely (but still not completely rigorous), if we are

given something like dy
dx = F (y) where F (y0) = 0, then writing y = y0 + h where h is small, dy

dx = dh
dx

is approximately F
′
(y0)h (the first order Taylor expansion). Thus, h is approximately h0e

F
′
(y0)x. So

if F
′
(y0) < 0, this perturbation seems to die down eventually and the equilibrium point y0 is stable.

Otherwise, it eventually seems to grow and the point seems to be unstable. In this particular case,
we can verify this rigorously using the explicit formula.
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The bottom line is that qualitative analysis of dy
dx = F (y) seems to rely on equations like dy

dx = ay.
If F (ye) = 0, then a small perturbation to this equilibrium might die out (stable) or grow (unstable)

depending on the sign of F
′
(y0). But to make this rigorous is quite challenging. It is also helpful in

these cases to draw graphs of y vs x.

5. Systems of ODE

Suppose we consider a model with two unrelated species : Pigeons and rabbits. They obey dy1
dx =

a1y and dy2
dx = a2y. Clearly, the unique solution to this system is y1 = (y1)0e

a1x and y2 = (y2)0e
a2x.

In other words, their populations grow or decay irrespective of the other one.
Here is a more interesting system

dy1
dx

= 2y1 + y2

dy2
dx

= y1 + 2y2

If we can change the variables from yi to zi such that the new equation looks like dz1
dx = λ1z1 and

dz2
dx = λ2z2 (they “decouple”), then we will be in great shape. So let’s try z1 = ay1 + by2 and
z2 = cy1 + dy2. Then

dz1
dx

= a(2y1 + y2) + b(y1 + 2y2) = (2a+ b)y1 + (a+ 2b)y2

dz2
dx

= c(2y1 + y2) + d(y1 + 2y2) = (2c+ d)y1 + (c+ 2d)y2

We want the RHS to be proportional to z1, z2 respectively. Thus

2a+ b = λ1a, a+ 2b = λ1b

2c+ d = λ2c, c+ 2d = λ2d

Therefore, (λ1 − 2)a = b, (λ1 − 2)b = a. Hence, (λ1 − 2)2 = 1 and likewise for λ2. Thus λ1 = 1 and
λ2 = 3. Once we get these λi, clearly, a = 1, b = −1 and c = 1, d = 1 do the job.

Do we see something familiar in the above example ? We can write all of these things in the
language of matrices. Indeed,

d~y

dx
= A~y

where A =

[
2 1
1 2

]
. The change of variables can be written as ~z = P~y where P =

[
a b
c d

]
. Note

that ~y = P−1~z. Therefore,

P−1 d~z

dx
= AP−1~z ⇒ d~z

dx
= PAP−1~z

So if we are lucky enough to find P so that it is invertible and PAP−1 is a diagonal matrix consisting

of λ1, λ2, we will be in great shape. Indeed, if PAP−1 =

[
λ1 0
0 λ2

]
, then z1 = (z0)1e

λ1x, z2 =

(z0)2e
λ2x. Now, ~y = P−1~z = P−1

[
eλ1x 0

0 eλ2x

]
P~y0.

This process is called “diagonalisation”. The λi are called “eigenvalues” of A. The columns of
P−1 are called “eigenvectors”, i.e., an eigenvector of a matrix A corresponding to an eigenvalue λ
is a vector v such that Av = λv. So if given a 2 × 2 matrix A, if we manage to find 2 linearly
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independent eigenvectors v1, v2, then we can solve d~y
dx = A~y without any problem. Unfortunately,

this is not always possible. For example, the matrix

[
1 1
0 1

]
has only one linearly independent

eigenvector of the form t

[
1
0

]
for any t ∈ R. In general, how does one determine the eigenvalues

of a matrix A ? Well, an eigenvalue is a (real or complex) number λ so that Av = λv. This means
that (A − λI)v = 0. This means that A − λI is not invertible and hence det(A − λI) = 0. In fact,
if det(A − λI) = 0, then there is a vector v so that (A − λI)v = 0. Indeed, for 2 × 2 matrices,

av1 + bv2 = λv1 and hence assuming b 6= 0, choosing v2 = (λ−a)
b , v1 = 1, we see that (A− λI)v = 0.

Sometimes, the roots of this “characteristic” polynomial det(A−λI) can be complex numbers. For

instance, if A =

[
1

√
2

−
√

2 −1

]
, then the eigenvalues are ±

√
−1. How can we interpret this in terms

of differential equations ? It just means that z2 and z1 are complex linear combinations of y1, y2.

Also, dy
dx = (a + ib)y can be solved as y = y0e

(a+ib)x. Indeed, d(ye−(a+ib)x)
dx = 0. So setting the real

and imaginary parts to 0 and using our previous discussion that real-valued functions on R whose
derivative is 0 are constant, we see that y = y0e

(a+ib)x = eax(cos(bx) + i sin(bx)). So alternatively, in
the case where the eigenvalues are complex, y1, y2 are real linear combinations of cosines and sines.

By the way, the second order equation d2y
dx2

= −y can be written as a system of two first order

equations by introducing a new variable v = dy
dx and writing dy

dx = v, dvdx = −y. Thus A =

[
0 1
−1 0

]
in this case. The eigenvalues are ±i and 2 linearly independent eigenvectors are

[
1
i

]
,

[
1
−i

]
.

Hence P−1 =

[
1 1
i −i

]
. This means that P =

[
1
2 − i

2
1
2

i
2

]
Thus, ~y = P−1

[
eix 0
0 e−ix

]
P~y0 =[

(y1)0 cos(x) + (y2)0 sin(x)
−(y1)0 sin(x) + (y2)0 cos(x)

]
In any case, whether real or complex, we are still faced with the questions : “How can you know if

a matrix is diagonalisable ?”, ”Even if it is, how can you calculate the eigenvalues and eigenvectors

?”, ”If it is not diagonalisable, how can you solve the differential equation d~y
dx = A~y ?” (We shall

restrict our attention to 2× 2 real matrices. But this discussion can be generalised to n×n complex
matrices too.)

We first prove this result :

Lemma 5.1. If A has distinct eigenvalues, i.e., λ1 6= λ2, then A is diagonalisable, i.e., there are
two linearly independent vectors v1, v2 (which may have complex entries) such that Avi = λivi.

Proof. Indeed, if there are distinct eigenvalues, there are eigenvectors v1, v2 corresponding to them.
We just need to prove that they are linearly independent. Indeed, if c1v1 + c2v2 = 0, then c1Av1 +
c2Av2 = 0 which means that c1λ1v1 + c2λ2v2 = 0. Thus, λ1c2 = λ2c2. If c2 6= 0, then we have a
contradiction. Otherwise, λ1c1 = λ2c1. Again, we have the same problem. �

Another nice result is :

Lemma 5.2. If A = AT , i.e., A is a symmetric real 2× 2 matrix, then it is diagonalisable.
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Proof. In this case, suppose λ1 is one eigenvalue with a corresponding eigenvector v1 =

[
α
β

]
. Then

v2 =

[
β
−α

]
is perpendicular to v1 (and hence linearly independent). Now vT1 Av2 = (AT v1)

T v2 =

(Av1)
T v2 = λ1v

T
1 v2 = 0. Thus, Av2 is perpendicular to v1. Hence, it must point along v2. Therefore

Av2 = λ2v2. This means, the linearly independent vectors v1, v2 are eigenvectors. �

All of these results still do not seem to address the case when something is not diagonalisable like

A =

[
1 1
0 1

]
. In this case, one can still solve the differential equation. Indeed, dy2

dx = y2 and hence

y2 = (y2)0e
x. Now dy1

dx = y1 + y2 = y1 + (y2)0e
x. This we can solve using an integrating factor.

Indeed, y1e
−x − (y1)0 = (y2)0x. Thus y1 = (y1)0e

x + (y2)0xe
x. So we will be in good shape even if

we manage to find a P so that PAP−1 =

[
λ 1
0 λ

]
(note that if λ1 6= λ2, it is diagonalisable; so this

problem can arise only when the eigenvalues are equal). In this case, ~y = P−1

[
eλx xeλx

0 eλx

]
P~y0.

Saying that A can be brought to this form is the same as saying that the columns of P−1 consist of
an eigenvector v and another vector w such that Aw = λw + v. Indeed,

Lemma 5.3. If λ1 = λ2 = λ, and there is only one linearly independent eigenvector v of A, then
there exists another vector w such that Aw = λw + v.

Proof. Suppose v =

[
α
β

]
. Let ṽ =

[
−β
α

]
. Then ṽ is perpendicular to v. Hence, we can resolve

any vector w into components along v and ṽ. (This needs a proof but we shall assume this.) Now
(A − λI)ṽ 6= 0 because ṽ is independent of v and A is assumed to not be diagonalisable. However,
(A−λI)ṽ = c1v+c2ṽ which means that (A−λI)2ṽ = c2(A−λI)ṽ which means that (A−λI)ṽ = αv.
Thus defining w = ṽ

α , we see that (A− λ)w = v. �

In any case, if we take a linear system of ODE, it appears that we can more or less solve it.
Moreover, if the eigenvalues of A are < 0, then as x→∞, y → 0. This is an important observation.
Suppose we have a system of nonlinear ODE like a competing species model :

dy1
dx

= y1 − y1y2
dy2
dx

= y2 − y1y2

then a natural question is “Is there an equilibrium? i.e., an initial condition for rabbits and squirrels,
so that as soon as a rabbit is born, one dies because of competition/fighting with squirrels, and
likewise for squirrels ? Is this equilibrium stable ? That is, if I introduce an extra rabbit and observe
for a long time, will the numbers return to equilibrium or will the rabbits dominate the squirrels ?”

To answer this question, set the RHS to 0. Indeed, we get the equilibria as y1 = 0, y2 = 0 and
y1 = y2 = 1. Now y1 = y2 = 1 is neither stable nor unstable because, suppose y1 = 1 + h1,
y2 = 1 + h2 where h1, h2 are small, then the equation is approximately (neglecting higher order

terms), dh1
dx = −h2, dh2dx = −h1. Thus the matrix is A =

[
0 −1
−1 0

]
whose eigenvalues are ±1.

More generally, if d~y
dx = ~F (~y), and if ~ye is a point of equilibrium, i.e., ~F (~ye) = 0, then writing
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~y = ~ye +~h where ~h0 is small, d~h
dx is approximately ∂ ~F

∂y1
h1 + ∂ ~F

∂y2
h2. If the eigenvalues of the derivative

matrix are < 0, then the equilibrium is stable. Once again, making this rigorous is quite challenging.
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