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Recap

Gave two other definitions of tangent spaces.

Raised a question about inverse images and images of smooth
maps between manifolds.
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Immersions and submersions

Definitions: Let M,N be smooth manifolds (with or without
boundary) and F : M → N be a smooth map. The rank of F
at p is defined to be the rank of (F∗)p : TpM → TF (p)N
(which is the same as the rank of [DF ]p in coordinate charts).
If F has the same rank at every point, then it is said to have
constant rank. If (F∗)p has full rank, then F is said to have
full rank at p. If (F∗)p is surjective for all p ∈ M, then F is
called a submersion. It is 1− 1 for all p ∈ M, then F is said
to be an immersion.

Proposition: If (F∗)p is surjective, then p has a
neighbourhood U such that F : U → N is a submersion.
Likewise for injectivity at p.

Proof: Indeed, choosing coordinates, the smooth
matrix-valued function [DF ] has full rank at p iff a minor is
non-zero. That minor will continue to be non-zero in a
neighbourhood.
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Examples and non-examples

f : R→ R given by f (x) = x2 is not of constant rank. It is an
immersion (and a submersion) at x = 1 for instance.

f : R3 → R given by f (x , y , z) = x is a submersion. Likewise
for projections from products of manifolds.

f : R2 → R3 given by f (x , y) = (x , y , 0) is an immersion.
Likewise for inclusions into products of manifolds.

Let γ : J → M be a smooth map. Then γ is an immersion iff
γ′(t) 6= 0 for all t ∈ J.

A circle rotated about an axis can be thought of as an
immersion of R2 into R3.

A 1− 1 immersion need not be a homeomorphism to its
image.
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Embeddings

Our figure-8 1-1 immersion was not a manifold. The key
problem is that the map was not a homeomorphism of
(−π, π) to its image (which was a manifold).

Definition: Let M,N be smooth manifolds (with or without
boundary). A smooth map F : M → N is called a smooth
embedding if it is a 1− 1 immersion and F : M → F (M) is a
homeomorphism.

Example: Let U ⊂ M be an open subset. Then the inclusion
map i : U ⊂ M is a smooth embedding: Indeed, it is a smooth
1− 1 immersion. Its topology is induced from M and hence of
course homeomorphic to its image.

Example: The inclusion map Mi → M1 ×M2 . . .Mk given by
f (q) = (p1, p2, . . . , pi−1, q, pi+1, . . .) is a smooth embedding.
In particular, the inclusion of Rn into Rn+k is a smooth
embedding.

Example: It turns out that (HW)a torus treated as a surface
of revolution gives a smooth embedding into R3.
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Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition:

If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion,

then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if

either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or

if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image.

If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then

since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff,

F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right.

It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1.

Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions:

Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)

and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that

carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure.

If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is

a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding,

then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M.

If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then

S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M.

The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S

is dim(M)− dim(S).

Immersions and Submersions 6/11



Embeddings and submanifolds

Proposition: If F : M → N is a 1− 1 immersion, then F is a
smooth embedding if either F is an open or a closed map or if
M is compact.

Proof: If F is open or closed, it is a homeomorphism to its
image. If M is compact, then since N is Hausdorff, F is closed
and hence a homeomorphism to its image.

Sn is a manifold in its own right. It is also a subset of another
manifold Rn+1. Are the smooth structures “compatible”?

Definitions: Let M be a manifold (with or without boundary)
and let S ⊂ M be a subset that carries a smooth manifold
(without boundary) structure. If the inclusion map i : S → M
is a smooth embedding, then S is said to be an embedded
submanifold (or simply a submanifold) of the ambient
manifold M. If i is merely a 1− 1 immersion, then S is said to
be an immersed submanifold of M. The codimension of a
submanifold S is dim(M)− dim(S).

Immersions and Submersions 6/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary

is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Examples

The figure-8 is an immersed but not embedded submanifold of
R2.

The linear subspace Rn is an embedded submanifold of Rm

when m > n.

An open subset U ⊂ M is an embedded submanifold.

Sn is an embedded submanifold of Rn+1.

Every “slice” of M × N is an embedded submanifold.

Graphs are embedded submanifolds.

It turns out (HW) that the boundary of a manifold with
boundary is an embedded submanifold (without boundary) of
codimension 1.

Immersions and Submersions 7/11



Whitney’s embedding theorem

Is every manifold secretly a submanifold of RN?

Whitney’s embedding theorem: Every smooth n-manifold with
or without boundary admits a smooth embedding into R2n+1.

This theorem is akin to Cauchy’s theorem of group theory.

The proof is tricky. We shall prove a weak version (Not
N = 2n + 1) of it only for compact manifolds without
boundary.
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Proof of a weak version for compact manifolds without
boundary

Basically, we want a smooth embedding F : M → RN , i.e., a
collection of several smooth functions F i : M → R such that
they “separate points and tangents”.

Cover M with finitely many coordinate charts
(U1, x

i
1), (U2, x

i
2), . . . (Uj , x

i
k).

We can certainly embed Uj into Rn via the coordinates
φj : Uj → Rn.

The idea is to use a partition-of-unity to “patch them
together”.
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Proof of a weak version for compact manifolds without
boundary

Let ρj be a smooth partition-of-unity subordinate to Uj .

Define F : M → RNk+k by F (p) =
(ρ1(p)φ1(p), ρ2(p)φ2(p), . . . , φk(p), ρ1(p), ρ2(p), . . . , ρk(p)).
F is clearly smooth and well-defined.

Suppose F (p) = F (q). Thus ρi (p) = ρi (q) for all i . Since∑
i ρi (p) = 1, there is at least one i = i0 so that ρi (p) 6= 0.

Since the φi0 are diffeomorphisms, p = q. So F is 1− 1. Since
M is compact, F is homeomorphic to its image.

Suppose (F∗)p(v) = 0. Note that
(F∗)p = (((ρ1)∗)pφ1(p) + ρ1(p)((φ1)∗)p, . . . , ((ρ1)∗)p, . . .).
Now ((ρi )∗)p(v) = 0 for all i . Thus, ρi (p)((φ1)∗)p(v) = 0 for
all i . Choose an i so that ρi (p) 6= 0. Then ((φi )∗)p(v) = 0
and hence v = 0. F is an immersion.
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Function theorems on manifolds

How can we come up with examples of embedded
submanifolds?

(HW 3) suggests that having inverse/implicit function type
theorems on manifolds can help. From now onwards, we will
focus mainly on manifolds without boundary. Towards the end
of this course, we will again come back to
manifolds-with-boundary (for Stokes’ theorem).

Inverse function theorem on manifolds: Let M,N be smooth
manifolds without boundary and F : M → N be a smooth
map. If (F∗)p : TpM → TF (p)N is invertible, then F is a local
diffeomorphism, i.e., there exist connected neighbourhoods
U,V of p,F (p) such that F : U → V is a diffeomorphism.

Proof: Choose coordinate charts (Ũ ⊂ M, x) and (Ṽ ⊂ N, y)
centred at p,F (p). In these charts (abusing notation), (F∗)p
is [DF ]p which is assumed to be invertible. Thus, by the usual
IFT, F is a local diffeomorphism.
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centred at p,F (p). In these charts (abusing notation), (F∗)p
is [DF ]p which is assumed to be invertible. Thus, by the usual
IFT, F is a local diffeomorphism.

Immersions and Submersions 11/11



Function theorems on manifolds

How can we come up with examples of embedded
submanifolds?

(HW 3) suggests that having inverse/implicit function type
theorems on manifolds can help. From now onwards, we will
focus mainly on manifolds without boundary.

Towards the end
of this course, we will again come back to
manifolds-with-boundary (for Stokes’ theorem).

Inverse function theorem on manifolds: Let M,N be smooth
manifolds without boundary and F : M → N be a smooth
map. If (F∗)p : TpM → TF (p)N is invertible, then F is a local
diffeomorphism, i.e., there exist connected neighbourhoods
U,V of p,F (p) such that F : U → V is a diffeomorphism.

Proof: Choose coordinate charts (Ũ ⊂ M, x) and (Ṽ ⊂ N, y)
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centred at p,F (p). In these charts (abusing notation), (F∗)p
is [DF ]p which is assumed to be invertible. Thus, by the usual
IFT,

F is a local diffeomorphism.

Immersions and Submersions 11/11



Function theorems on manifolds

How can we come up with examples of embedded
submanifolds?

(HW 3) suggests that having inverse/implicit function type
theorems on manifolds can help. From now onwards, we will
focus mainly on manifolds without boundary. Towards the end
of this course, we will again come back to
manifolds-with-boundary (for Stokes’ theorem).

Inverse function theorem on manifolds: Let M,N be smooth
manifolds without boundary and F : M → N be a smooth
map. If (F∗)p : TpM → TF (p)N is invertible, then F is a local
diffeomorphism, i.e., there exist connected neighbourhoods
U,V of p,F (p) such that F : U → V is a diffeomorphism.

Proof: Choose coordinate charts (Ũ ⊂ M, x) and (Ṽ ⊂ N, y)
centred at p,F (p). In these charts (abusing notation), (F∗)p
is [DF ]p which is assumed to be invertible. Thus, by the usual
IFT, F is a local diffeomorphism.
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