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Recap

Defined immersions, submersions, embeddings.

Gave several examples and non-examples.

Defined (embedded) submanifolds (and immersed
submanifolds).

Stated Whitney’s embedding theorem.
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Proof of a weak version for compact manifolds without
boundary

Let ρj be a smooth partition-of-unity subordinate to Uj .

Define F : M → Rnk+k by F (p) =
(ρ1(p)φ1(p), ρ2(p)φ2(p), . . . , φk(p)ρk(p), ρ1(p), ρ2(p), . . . , ρk(p)).
F is clearly smooth and well-defined.

Suppose F (p) = F (q). Thus ρi (p) = ρi (q) for all i . Since∑
i ρi (p) = 1, there is at least one i = i0 so that ρi (p) 6= 0.

Since the φi0 are diffeomorphisms, p = q. So F is 1− 1. Since
M is compact, F is homeomorphic to its image.

Suppose (F∗)p(v) = 0. Note that
(F∗)p = (((ρ1)∗)pφ1(p) + ρ1(p)((φ1)∗)p, . . . , ((ρ1)∗)p, . . .).
Now ((ρi )∗)p(v) = 0 for all i . Thus, ρi (p)((φ1)∗)p(v) = 0 for
all i . Choose an i so that ρi (p) 6= 0. Then ((φi )∗)p(v) = 0
and hence v = 0. F is an immersion.
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Function theorems on manifolds

How can we come up with examples of embedded
submanifolds?

(HW 3) suggests that having inverse/implicit function type
theorems on manifolds can help. From now onwards, we will
focus mainly on manifolds without boundary. Towards the end
of this course, we will again come back to
manifolds-with-boundary (for Stokes’ theorem).

Inverse function theorem on manifolds: Let M,N be smooth
manifolds without boundary and F : M → N be a smooth
map. If (F∗)p : TpM → TF (p)N is invertible, then F is a local
diffeomorphism, i.e., there exist connected neighbourhoods
U,V of p,F (p) such that F : U → V is a diffeomorphism.

Proof: Choose coordinate charts (Ũ ⊂ M, x) and (Ṽ ⊂ N, y)
centred at p,F (p). In these charts (abusing notation), (F∗)p
is [DF ]p which is assumed to be invertible. Thus, by the usual
IFT, F is a local diffeomorphism.
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centred at p,F (p). In these charts (abusing notation), (F∗)p
is [DF ]p which is assumed to be invertible. Thus, by the usual
IFT, F is a local diffeomorphism.

Function theorems on manifolds 4/9



Function theorems on manifolds

How can we come up with examples of embedded
submanifolds?

(HW 3) suggests that having inverse/implicit function type
theorems on manifolds can help. From now onwards, we will
focus mainly on manifolds without boundary. Towards the end
of this course, we will again come back to
manifolds-with-boundary (for Stokes’ theorem).

Inverse function theorem on manifolds: Let M,N be smooth
manifolds without boundary and F : M → N be a smooth
map. If (F∗)p : TpM → TF (p)N is invertible, then F is a local
diffeomorphism, i.e., there exist connected neighbourhoods
U,V of p,F (p) such that

F : U → V is a diffeomorphism.

Proof: Choose coordinate charts (Ũ ⊂ M, x) and (Ṽ ⊂ N, y)
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Constant rank theorem

Suppose M,N are manifolds (without boundary) and
F : M → N is a smooth map with constant rank r . For every
p ∈ M,F (p) ∈ N, there exist charts so that
F̂ (x1, . . . , xm) = (x1, . . . , x r , 0, 0, . . .).

Proof: Choose some arbitrary charts centred at p,F (p). Now
the problem is a local one, i.e., if F : U ⊂ Rm → Rn is a
smooth map with constant rank r and F (0) = 0, then we
need to prove that there exist local diffeos
φ : V ⊂ U → φ(V ) ⊂ Rm and ψ : W ⊂ Rn → ψ(W ) such
that F̂ = ψ ◦ F ◦ φ−1 has the desired form. We shall abuse
notation and denote F̂ by F as always.

Using appropriate linear transformations, we can ensure that

DF (0) is of the form

[
Ir×r 0

0 0

]
(why?)
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Constant rank theorem

We need to use the IFT or ImFT to choose charts (by a
nonlinear transformation) so that this behaviour of DF (0)
translates into the same kind of behaviour for F itself.
Consider the map G : U → Rm given by
G (x) = (F 1, . . . ,F r , x r+1, x r+2, . . .). Now G is smooth and
DG (0) = I . Thus by IFT, G is a local diffeo. Choose φ = G
itself. Then
F ◦ φ−1(y) = F ◦ G−1(y) = (y1, . . . , y r ,F r+1(x(y)), . . .).
Now we use the constant rank hypothesis to conclude that
F ◦ φ−1(y) does not depend on y r+1, . . . (why?). Thus
F ◦ φ−1(y) = (y ,S(y)) for some smooth S . We need to
change coordinates in the target to make sure that S becomes
zero.
Define ψ(u, v) = (u, v − S(u)) so that the second half is 0 iff
v = S(u). Thus if ψ is a valid local change of coordinates,
then F̂ (y) = (y , 0). ψ has an explicit inverse and is a diffeo
(why?)
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Slice charts

We want to model embedded submanifolds by means of the
standard inclusion Rm → Rn. (In particular, we want to say
embedded submanifolds are locally graphs of smooth
functions.) This means that we want to choose nice charts to
make this happen.

More generally, we say that if U ⊂ Rn is open, then a k-slice
of U is xk+1 = ck+1, xk+2 = ck+2, . . ., i.e., set all except for
k coordinates to constants. Alternatively, simply consider the
graph of a constant function.

If M is a manifold (without boundary) and S ⊂ M, then S is
said to be a local k-slice near p if there exists a chart (φ,U)
near p so that S ∩U is a k-slice in this chart. (By the way, we
can always make sure that the constants are 0 by subtraction.)
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Slice charts exist for embedded submanifolds

Theorem: If S ⊂ M is a k-dimensional embedded
submanifold, then S is a local k-slice for all p ∈ S .
Conversely, if S ⊂ M is a subset that is a local k-slice for all
p ∈ S , then with the subspace topology S is a topological
k-fold. Moreover, it has a smooth structure making it into a
k-dimensional embedded submanifold. (As we shall see later,
this is the unique-upto-diffeo smooth structure on S making it
into a submanifold.)
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