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@ One form fields, differential of a function, and pullback.
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o If we want to measure infinitesimal distances on a manifold,
we would need a “smoothly varying inner product”. How does
one define such an object?

@ In physics, if we press an elastic body, how will it react? To
know that, we would need to know a linear function that takes
the normal to a surface and produces the “stress vector”
across the surface. (The resulting linear map/matrix is called
the stress tensor.)

@ The area of a parallelogram is 3 x b. The volume of a
parallelopiped is (& x 5)8 What about in higher dimensions?
On a related note, how can one generalise the “cross product”
to higher dimensions?

@ A common thread in all the questions above is the notion of a
multilinear map or simply an object that has more than one
index (like Ajjk...). More so, we need a “smoothly varying
family” of multilinear maps. Presumably, it corresponds to the
section of some vector bundle.
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@ Proof: This set is linearly independent: Indeed, if

Civip..(e1) ® (e2)... =0, then acting on (e1;, ey, - -.) we
get ¢jj,.. = 0. This is true for all j1,j>.... Hence we are done.
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@ Proof: This set is linearly independent: Indeed, if

Civip..(e1) ® (e2)... =0, then acting on (e1;, ey, - -.) we
get ¢jj,.. = 0. This is true for all j1,j>.... Hence we are done.

It spans the space: Let F be a multilinear functional. Define
Fiyip... = F(ev,iy, €2, - . .). Now consider

w=Fi, (ef)®(e?).... Note that

(W= F)(v1,va,...) = (w—F)(V'ej,...) =

Ve L (w— F)(ery €2 --) = 0. 0

Tensors 5/11



Tensor product - Universal property

Tensors 6/11



Tensor product - Universal property

o Let Vi, V» be vector spaces.

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps.

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V5, formed by

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem:

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V)

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® Vo with the property that

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W,

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T Vi ® Vo — W such that

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T Vi® Vo — W such that T = Tor.

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T : Vi ® Vo — W such that T = T ox. Then any other
vector space satisfying this

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T : Vi ® Vo — W such that T = T ox. Then any other
vector space satisfying this universal property

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T : Vi ® Vo — W such that T = T ox. Then any other
vector space satisfying this universal property is isomorphic to
V1 ® V5, (with the isomorphism preserving the universal

property).

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T : Vi ® Vo — W such that T = T ox. Then any other
vector space satisfying this universal property is isomorphic to
V1 ® V5, (with the isomorphism preserving the universal
property).

@ Proof:

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T : Vi ® Vo — W such that T = T ox. Then any other
vector space satisfying this universal property is isomorphic to
V1 ® V5, (with the isomorphism preserving the universal
property).

@ Proof: Suppose (V’,7') is another such space.

Tensors 6/11



Tensor product - Universal property

o Let Vi, V, be vector spaces. We can bring multilinear maps
into the framework of linear maps. Basically, we want to
create a vector space Vi ® V, formed by “formal” linear
combinations of things of the type vi ® v».

@ Theorem: Suppose there exists a vector space (called the
tensor product of V;) V4 ® V5, and a multilinear map
m: Vi x Vo = Vi ® V, with the property that given any
multilinear map T : Vi x Vo — W, there is a unique linear
map T : Vi ® Vo — W such that T = T ox. Then any other
vector space satisfying this universal property is isomorphic to
V1 ® V5, (with the isomorphism preserving the universal
property).

@ Proof: Suppose (V’,7’) is another such space. Then consider
the map 7/ : V4 @ Vo — V' induced from 7.
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o Likewise, we have 7 : V/ — Vi ® V5. These two are inverses
of each other and hence give the desired isomorphism
(why?). O

@ We can prove that tensor products (if they exist) are
associative (using the universal property). We can then take
arbitrary (finite) number of tensor products.

@ We need to manage to construct one such space. The idea is
to take the free vector space F(S =V x V4 x ...) defined as
the set of all formal linear combinations of elements of S, i.e.,
f S — R such that f(s) = 0 for all but finitely many s.
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(vi,vo,...,avj,...) —a(vi,v2,...) and
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o Likewise, we have 7 : V/ — V4 ® V5. These two are inverses
of each other and hence give the desired isomorphism
(why?). O

@ We can prove that tensor products (if they exist) are
associative (using the universal property). We can then take
arbitrary (finite) number of tensor products.

@ We need to manage to construct one such space. The idea is
to take the free vector space F(S =V x V4 x ...) defined as
the set of all formal linear combinations of elements of S, i.e.,
f S — R such that f(s) = 0 for all but finitely many s.
Define a subspace R generated by the set
(vi,vo,...,avj,...) —a(vi,v2,...) and
(vi,vo,...,vi+ Vv, . )—(vi,...,vi,...) = (vi,..., v/, ...).
The quotient space is denoted as V; ® V5 ... and the
projection map by 7.
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o Likewise, we have 7 : V/ — V4 ® V5. These two are inverses
of each other and hence give the desired isomorphism
(why?). O

@ We can prove that tensor products (if they exist) are
associative (using the universal property). We can then take
arbitrary (finite) number of tensor products.

@ We need to manage to construct one such space. The idea is
to take the free vector space F(S =V x V4 x ...) defined as
the set of all formal linear combinations of elements of S, i.e.,
f S — R such that f(s) = 0 for all but finitely many s.
Define a subspace R generated by the set
(vi,vo,...,avj,...) —a(vi,v2,...) and
(vi,vo,...,vi+ Vv, . )—(vi,...,vi,...) = (vi,..., v/, ...).
The quotient space is denoted as V; ® V5 ... and the
projection map by 7. m(vi, v2,...) is denoted by vi ® v5. . ..
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o Likewise, we have 7 : V/ — V4 ® V5. These two are inverses
of each other and hence give the desired isomorphism
(why?). O

@ We can prove that tensor products (if they exist) are
associative (using the universal property). We can then take
arbitrary (finite) number of tensor products.

@ We need to manage to construct one such space. The idea is
to take the free vector space F(S =V x V4 x ...) defined as
the set of all formal linear combinations of elements of S, i.e.,
f S — R such that f(s) = 0 for all but finitely many s.
Define a subspace R generated by the set
(vi,vo,...,avj,...) —a(vi,v2,...) and
(vi,vo,...,vi+ Vv, . )—(vi,...,vi,...) = (vi,..., v/, ...).
The quotient space is denoted as V; ® V5 ... and the
projection map by 7. m(vi, v2,...) is denoted by vi ® v5. . ..
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o Likewise, we have 7 : V/ — V4 ® V5. These two are inverses
of each other and hence give the desired isomorphism
(why?). O

@ We can prove that tensor products (if they exist) are
associative (using the universal property). We can then take
arbitrary (finite) number of tensor products.

@ We need to manage to construct one such space. The idea is
to take the free vector space F(S =V x V4 x ...) defined as
the set of all formal linear combinations of elements of S, i.e.,
f S — R such that f(s) = 0 for all but finitely many s.
Define a subspace R generated by the set
(vi,vo,...,avj,...) —a(vi,v2,...) and
(vi,vo,...,vi+ Vv, . )—(vi,...,vi,...) = (vi,..., v/, ...).
The quotient space is denoted as V; ® V5 ... and the
projection map by 7. m(vi, v2,...) is denoted by vi ® v5. . ..
One can prove that indeed this satisfies the universal property.
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@ One can also prove that if e;; are bases for V;, then
e1j, ® e, ... is a basis for the tensor product.

@ Moreover, there is a canonical isomorphism between V" ® ...
and Mult(Vy, V... R).

o Likewise (in finite-dimensions), there is a canonical
isomorphism between Vi ® ... and Mult(V}, V5, ...;R).
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i.e., an element of V* ® V*. Indeed, it is a multilinear
functional on V x V. In fact, if ey, ..., e, is an ordered basis
of V and el... is the dual basis, then
(,) = (e, eJ-)e’ ®e = gje' ®¢e

@ This example is very special. It is symmetric, i.e.,

(v,w) = (w,v).

@ On the other hand, suppose vi, ..., Vv, are n elements of R”
forming the columns of a matrix A, then det(A) is a
multilinear map from R” x ... to R, i.e., a covariant tensor of
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tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

e Example: A (skew)symmetric matrix gives a (skew)symmetric
tensor: A(v,w) = vTAw. Now A = A+27AT + A_zAT, i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

@ Motivated by this construction, define the symmetrisation of a
k-covariant tensor « as
Sym(a)(va, ..., ) = % > oes, UVo1), - --)- It is symmetric
and Sym(a) = «a iff a is symmetric.
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Symmetric and Alternating tensors

@ Def: A symmetric covariant tensor is one that is unchanged
under a transposition of two of its entries (and hence under
any permutation). An alternating/antisymmetric covariant
tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

e Example: A (skew)symmetric matrix gives a (skew)symmetric
tensor: A(v,w) = vTAw. Now A = A+27AT + A_zAT, i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

@ Motivated by this construction, define the symmetrisation of a
k-covariant tensor « as

Sym(a)(va, ..., ) = % > oes, UVo1), - --)- It is symmetric
and Sym(a) = «a iff a is symmetric.

@ The antisymmetrisation/alternation is defined as
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Symmetric and Alternating tensors

@ Def: A symmetric covariant tensor is one that is unchanged
under a transposition of two of its entries (and hence under
any permutation). An alternating/antisymmetric covariant
tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

e Example: A (skew)symmetric matrix gives a (skew)symmetric
tensor: A(v,w) = vTAw. Now A = A+27AT + A_zAT, i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

@ Motivated by this construction, define the symmetrisation of a
k-covariant tensor « as

Sym(a)(va, ..., ) = % > oes, UVo1), - --)- It is symmetric
and Sym(a) = «a iff a is symmetric.

@ The antisymmetrisation/alternation is defined as
Alt(a)((viy ..., vk) = % > oes, s8n(a)a(vo), - - ).
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Symmetric and Alternating tensors

@ Def: A symmetric covariant tensor is one that is unchanged
under a transposition of two of its entries (and hence under
any permutation). An alternating/antisymmetric covariant
tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

e Example: A (skew)symmetric matrix gives a (skew)symmetric
tensor: A(v,w) = vTAw. Now A = A+27AT + A_zAT, i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

@ Motivated by this construction, define the symmetrisation of a
k-covariant tensor « as
Sym(a)(va, ..., ) = % > oes, UVo1), - --)- It is symmetric
and Sym(a) = «a iff a is symmetric.

@ The antisymmetrisation/alternation is defined as

Alt(a)((vis- - vi) = & > oes, S8N(a)a(Vy(1),---). Itis
alternating and
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Symmetric and Alternating tensors

@ Def: A symmetric covariant tensor is one that is unchanged
under a transposition of two of its entries (and hence under
any permutation). An alternating/antisymmetric covariant
tensor changes sign under a transposition (and hence picks up
the sign of the permutation).

e Example: A (skew)symmetric matrix gives a (skew)symmetric
tensor: A(v,w) = vTAw. Now A = A+27AT + A_zAT, i.e., every
matrix is a sum of symmetric and antisymmetric matrices.

@ Motivated by this construction, define the symmetrisation of a
k-covariant tensor « as
Sym(a)(va, ..., ) = % > oes, UVo1), - --)- It is symmetric
and Sym(a) = «a iff a is symmetric.

@ The antisymmetrisation/alternation is defined as

Alt(a)((vis- - vi) = & > oes, S8N(a)a(Vy(1),---). Itis
alternating and Alt(«) = « iff «v is alternating.
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