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@ Tensor products.

e Types of tensors, symmetric and alternating tensors (forms).
Symmetrisation, Anti-symmetrisation.
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o Let T,'M:=T,M® T,M... T,M® T;M& TiM....

o The disjoint union T*'M = Upem T,I,(’II\/I can be given a
vector bundle structure over M. This bundle is called the
bundle of mixed (k, /)-tensors. Smooth sections of this bundle
are called smooth (k, /)-tensor fields, i.e., smoothly varying
tensor fields.

@ Indeed, consider the obvious projection map to M. Each fibre
is a vector space. Suppose (U, x) is a coordinate chart.
Consider the basis -2- @ ... ® 22— ® dx/t @ dx.

Oxi1 Ax'k
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o Let T,'M:=T,M® T,M... T,M® T;M& TiM....

o The disjoint union T*'M = Upem T,I,(’II\/I can be given a
vector bundle structure over M. This bundle is called the
bundle of mixed (k, /)-tensors. Smooth sections of this bundle
are called smooth (k, /)-tensor fields, i.e., smoothly varying
tensor fields.

@ Indeed, consider the obvious projection map to M. Each fibre
is a vector space. Suppose (U, x) is a coordinate chart.
Consider the basis 8)8(,-1 ®...0 af"k ® dx' @ dxJI. This basis
gives a local trivialisation 7= 1(U) — U x R"**) We declare
the topology and manifold structure such that these local

trivialisations are diffeomorphisms (as usual).

@ As a consequence, a tensor field is smooth iff the coefficients
in this trivialisation are smooth functions.
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Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,0) x (0,27):

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr @ dr + r?>df ® d6.

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is basically the Euclidean metric on R?

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is basically the Euclidean metric on R? but in different
coordinates!

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is basically the Euclidean metric on R? but in different
coordinates! This raises a question:

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is basically the Euclidean metric on R? but in different
coordinates! This raises a question: Is every metric on R”
secretly the Euclidean metric locally in some coordinate chart?

Tensors 4/9



Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dxt) @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is basically the Euclidean metric on R? but in different
coordinates! This raises a question: Is every metric on R”
secretly the Euclidean metric locally in some coordinate chart?
The answer is NO.
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Riemannian metrics

@ An example of a covariant symmetric 2-tensor field is a
Riemannian metric: A Riemannian metric g on a smooth
manifold M is a covariant symmetric 2-tensor field that
defines an inner product on every tangent space.

@ Example: The Euclidean metric
g = (dx') @ (dx!) + ...+ (dx") ® (dx") on R". A metric on
(0,00) x (0,27): g = dr ® dr + r?df ® df. Note that this
metric is basically the Euclidean metric on R? but in different
coordinates! This raises a question: Is every metric on R”
secretly the Euclidean metric locally in some coordinate chart?
The answer is NO. There is an obstruction called the Riemann
curvature tensor.
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Existence of Riemannian metrics

@ Theorem: Every smooth manifold (with or without boundary)
admits a Riemannian metric.

@ Proof: Cover the manifold by coordinate charts (Uy, xa).
Consider a partition-of-unity p, subordinate to this cover.
Now take the locally defined Riemannian metric
8o = dxl @dxt + ...+ dxI ® dx? and define g = Y, pasga-
This sum gives a well-defined smooth covariant symmetric
2-tensor. It is positive-definite because at least one of the p,
is non-zero at every point.

@ Using Riemannian metrics, one can measure distances and so
on. One can also define the notion of an isomorphism in this
category (Isometry).
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alternating iff a(va, ..., vk) = 0 whenever the collection vy, ..., vk
is linearly dependent: Indeed, if the latter holds, in particular, if
two of the v; coincide, a(vi, ..., vk) = 0. This means,

a(V1+Vi,...,Vi+V1,...,):0.
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alternating iff a(va, ..., vk) = 0 whenever the collection vy, ..., vk
is linearly dependent: Indeed, if the latter holds, in particular, if
two of the v; coincide, a(vi, ..., vk) = 0. This means,
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Returning to alternating tensors, here is a useful result: « is

alternating iff a(va, ..., vk) = 0 whenever the collection vy, ..., vk
is linearly dependent: Indeed, if the latter holds, in particular, if
two of the v; coincide, a(vi, ..., vk) = 0. This means,

a(vi+ Vi,...,Vi+vi,...,) =0. Thus,
afvi,...,vi+wv,...)+a(vi,...,vi+vi,...) =0. Thus

alvi,...,Vviy...) = —a(Vvj,...,v1,...) and hence « is alternating.
Conversely, if « is alternating, and ), ¢jv; = 0 with ¢; # 0
WLOG, then firstly, a(va, ..., vk) = 0 whenever two of the v;
coincide (why?) and hence

alcivi,...,vk) =alavi+ v +...,va,...) =0 (why?) Thus
a(vi, ..., vk) =0 whenever they are linearly dependent. O
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Elementary alternating tensors (to get a basis)

@ Let V be a f.d. vector space with a basis e1,...,e,. Let
€L, ..., €" be the dual basis for V*. Given a multi-index
I = (i1,...,ix), consider the k-covariant tensor
6'1(V1) cee E'I(Vk)
el(vi,..., vk) = det : : =
eik(vl) - eik(vk)
v{l v,il
, that is,
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o If J=1I,, then ¢/ = sgn(c)e’ (why?).

o €(ej,....e,) =0 (why?).
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