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Differential topology

The aim of differential topology is to classify (i.e., write a list)
of “standard manifolds” with a way of telling whether a given
manifold is diffeo to anything in the list.

@ A 1l-manifold is diffeo to either an open interval or a circle. If
it has boundary, then to an interval or a half-line.

A compact 2-manifold is diffeo to “a g-hold surface”.

Compact 3-manifolds are classified by geometrisation.

@ For 4 and above, it is complicated.
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Local to global - partitions of unity

@ Unfortunately, one cannot glue smooth functions that agree
on closed subsets.

@ On the other hand, it is helpful to construct lots of smooth
functions. For instance, if one wants a bump function or
perhaps a 1 — 1 map from M to RV, and so on.

@ More generally, one often has local functions f, that one
somehow wants to “blend together” to form a global one.

@ To this end, it is helpful to have a partition-of-unity, i.e., a
collection of smooth non-negative functions ¢, such that
Y o ®a =1 and there is a restriction on their supports.
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@ Note that it makes sense to only sum up finitely many
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every point has a neighbourhood intersecting only finitely
many sets. Such covers are called locally finite.

e Unfortunately, not every cover is locally finite (or even has a
locally finite subcover): Consider (—n, n) covering R. The
best we can do in this example is to take (m, m + 1),
(m—1/2,m+ 1/2). This cover is a refinement of the
previous cover, i.e., every subset is in some U,.

@ Paracompact space: Every open cover has a locally finite open
refinement.

@ Proposition: Every smooth (in fact, just topological is enough)
manifold is paracompact. (In fact, every metric space is so.)
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B; C K; (by inductive construction), we are done.
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@ Proposition: Given a topological manifold M, an open cover x
of M, any basis B for M’s topology, there exists a countable,
locally finite refinement of x, consisting of elements of B.
(Similar if boundary is there.)

o Proof: Consider an exhaustion K;j. Let V; = K1 — Int(K;).
Cover the V;'s by finitely many elements of 5 such that each
element is in B and in W; = Kji» — Int(Kj_1). Since
M = U;Vj, these elements cover M form a refinement, and
since W; N Wy = ¢ unless j —2 < k < j 42, it is locally finite.
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o Let x = {U,} be an open cover of M. A partition-of-unity
subordinate to  is a family of smooth functions
Pa : Uy = R>q such that 0 < p, <1, supp(pa) C U,, the

supports are locally finite, i.e. every point has a
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@ Theorem: Suppose M is a smooth manifold with or without
boundary. Let x be an open cover of M. Then there exists a
smooth partition of unity subordinate to it. There also exists
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